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Abstract: Pure marine chemical sediments are archives of geochemical proxies for the composition of
seawater and may provide information about the ancient hydrosphere–atmosphere system. The early
stage of the Emeishan large igneous province (ELIP) was characterized by the subaqueous eruption
of mafic igneous rocks around the J. altudaensis zone of the Capitanian Stage that has been proposed
to have contributed to the Guadalupian mass extinction. However, detailed mechanisms and the
impact of the eruption on the Guadalupian marine environment have yet to be assessed. Here, to
examine the Guadalupian marine environment, we studied major and trace element concentrations,
particularly rare earth element and yttrium data, along with high-precision Sr-Nd isotope ratios, of
three types of Mn ores (i.e., clastic, massive, and oolitic) and siliceous limestones from the Zunyi Mn
deposit in South China formed following the early-stage eruption of the ELIP. Our results indicate
that the clastic Mn ores contain notable detrital mafic aluminosilicates. In contrast, the massive
and oolitic Mn ores and siliceous limestones preserved the pristine geochemical signatures of the
Middle–Late Permian seawater characterized by distinctly low (87Sr/86Sr)i and high εNd(t) values.
These data indicate a strong impact of the early-stage submarine eruptions of the ELIP on the marine
environment in South China and worldwide, likely through intensive seawater–rock interaction.

Keywords: Zunyi manganese; marine chemical sediments; Nd isotope; early stage of the ELIP;
Guadalupian extinction

1. Introduction

The Permian Emeishan large igneous province (ELIP) in South China has been pro-
posed to be at least partially responsible for the Guadalupian mass extinction [1–6]. Previ-
ous examinations of ELIP’s impact on the paleo-marine environment are mainly focused on
the later eruptive phases of terrestrial flood basalts and silicic rocks due to their strikingly
large volume [4,7–9]. However, based on high-precision radiometric and biostratigraphic
dating constraints, the earlier subaqueous eruptive phases of pillow basalts with mafic sub-
marine hyaloclastite (tuff), which lie in the J. altudaensis zone of the Capitanian Stage [10,11]
with radiometric ages of ~262 Ma [12,13], temporally fit the Guadalupian oceanic mass
extinction [6,14,15]. Therefore, it is necessary to seek reliable proxies that provide various
information on seawater composition during the Capitanian Stage to test the effects of
early-stage ELIP volcanism.

Previous studies have used the carbon isotope (δ13C) and strontium isotope (87Sr/86Sr),
both of which have a negative excursion from the carbonate of South China, to reflect the
influence of this early phase of ELIP volcanism on the seawater system (e.g., [11,16,17]). In
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addition, rare earth elements and yttrium (REY) in a variety of marine chemical sediments
(e.g., fish debris, carbonates, manganese formations, and banded iron formations) have also
been used as the robust seawater proxies. The close similarity between these sedimentary
rocks and the REY distribution pattern in modern seawater can provide the possibility
of evaluating the chemical composition and the physico-chemical conditions in ambient
seawater from which they formed (e.g., [18–22]).

Another viable proxy is the Sm-Nd isotope system, which provides information on
the source(s) of REY in chemical sediments and, therefore, ancient seawater [23–29]. ELIPs
always carry a distinct Nd signature compared to the average continental crust and thus
might have left a distinct imprint on the seawater record [3]. Additionally, the Sm-Nd
isotopic system is resistant to diagenesis and metamorphism during post-deposition [26,27].
Therefore, Nd isotopic variations of marine chemical sediments should reflect source
changes. However, no previous studies have focused on the Nd isotope composition of
Guadalupian seawater in South China, and there is a lack of perspective regarding what
influence the ELIP may have had on the region.

The Zunyi manganese deposit is located in the southwestern Yangtze Platform, South
China. The Mn-rich units are hosted in the silicified limestone series in the upper part of the
Maokou Formation around the Guadalupian–Lopingian boundary (G-LB) [30–32]. The age
of the Zunyi Mn deposit was constrained by the U-Pb dating of zircons from mafic volcanic
ash beds in the hanging and foot walls of the Zunyi Mn ore beds, which yielded an age of
~262 Ma [13], corresponding to the J. altudaensis biostratigraphic zone of the Capitanian
Stage. Therefore, the Zunyi Mn deposits lie on an isochronous horizon with the early-stage
subaqueous eruption of the ELIP in South China.

Several studies have proposed that the Zunyi Mn ores are marine chemical precipi-
tates [31] and are formed by microbially-meditated mechanisms [33], therefore providing
an ideal and potential target for examining the Nd isotopic composition of seawater in
South China during the early stage subaqueous ELIP eruption. In this study, we report
major and trace element compositions, especially rare earth elements and yttrium, and
Sr-Nd isotopes of samples from the Zunyi Mn deposits to test the reliability of REY on
the reflection of seawater composition. We subsequently evaluate the regional isotopic
evolution of Nd in Guadalupian seawater in South China. Based on these examinations, we
suggest that the early subaqueous eruption of ELIP profoundly affected the Guadalupian
marine paleoenvironment in South China, supporting the link between this early-stage
volcanism and the Guadalupian biotic crisis.

2. Geological Setting
2.1. Emeishan Large Igneous Province

South China evolved as an isolated continental block during the Permian that occu-
pied tropical latitudes in the eastern Paleo-Tethyan Ocean with the Panthalassa Ocean
to the east (Figure 1) [34]. A shallow-water carbonate platform was developed during
the Early Permian to Middle Permian [35]. Across the G−LB, an area of ~250,000 km2

in South China (Figure 2a) [36] was covered by the ELIP over an estimated duration of
~4 Ma (~263–259 Ma), constrained by bio- and magneto-stratigraphy [37] and geochronol-
ogy [3]. The early stage (stage 1) of this igneous province consists of voluminous subaque-
ous pillow basalts with submarine mafic hyaloclastites deposited at ~262 Ma [13] in the
J. altudaensis conodont zone, Capitanian Stage [10]. Zhu et al. [6] implicated an emergent
volcanic system developed in a continental subaqueous rift environment as a consequence
of back-arc extension related to the subduction of the Paleo-Tethys oceanic crust beneath
the Yangtze plate. Subsequently, an even larger volume of terrestrial flood basalts (stage 2)
and silicic rocks (stage 3) were deposited between 260 and 259 Ma that characterize the later
eruptive phases (e.g., [3]). The later phase eruption was closely related to the impingement
of a mantle plume on the already extant rift system, resulting in the emplacement and
distribution of volcanic rocks over a vast region of the western Yangtze plate (e.g., [6]).
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Figure 2. (a) Distribution of Guadalupian–Lopingian boundary (G-LB) sections in the concentric inner,
intermediate, and outer zones around the hypothesized core of surficial uplift (modified from [16,38]).
The dashed lines indicate the boundaries of the three Emeishan Large Igneous Province (ELIP) zones.
Bold italic text: names of the provinces; hollow circles: locations of the respective provincial capitals;
red circles: relevant sections taken from the literature and described in the paper; green circles
and purple polygons: the locations of studied regions of the manganese deposits reported by [31].
(b) Comparison of the sedimentary record across the G-L interval in the ELIP center to the periphery
(beyond ~100 km; corresponding to the red circles in the left panel). Standard international conodont
biozones [12] and the Guadalupian mass extinction is marked on the left side of the panel. Carbonate
carbon and strontium isotope curves for South China are from [11,17].
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As a result of the Emeishan volcanism, the carbonate platform formed inner, inter-
mediate, and outer sedimentary zones: (Figure 2a) [38]. Voluminous subaqueous mafic
hyaloclastite deposits from the early-stage ELIP eruption (~262 Ma) [13] are widespread
throughout this region (Figure 2b). Such large-scale volcanic activity may have perturbed
the paleo-environment through the massive release of magmatic gases, such as SO2 and
CO2, which could drive cooling on a timescale of years and trigger oceanic anoxia, respec-
tively [39]. These perturbations are possibly reflected by a deeply negative δ13C excursion
recorded in contemporaneous sedimentary rocks in South China (Figure 2b) [11]. Mean-
while, another highly distinct geochemical feature in the Permian is the progressive and
prominent decrease in 87Sr/86Sr ratios through the Early–Middle Permian that reaches
a Paleozoic minimum around the J. altudaensis and J. xuanhanensis zones of the late Capita-
nian (Figure 2b) [17].

2.2. Deposit Description

A drowning event in the Middle Permian resulted from the subsidence of the restricted
shallow-water carbonate platform on the Yangtze plate during the Emeishan volcanism [37].
Because the shallow water carbonate platform depressed unevenly, NE-direction deepwater
platform gullies were formed, such as the one from Zunyi to Nayong (Guizhou Province)
and Geyun (Yunnan Province) (Figure 3a). These depressions are ~25–35 km in width,
~300 km in length, and ~60 m deep, and likely controlled the formation and spatial distri-
bution of the Late Permian manganese ore-rich deposits in South China. Tellingly, a suite of
siliceous limestones developed along the bottom of the Mn beds in the platform gully [31].
These siliceous limestones clearly differ from the carbonates of the shallow-water platform
sedimentary facies that are present on either side of the gully.
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Figure 3. (a) Map showing lithofacies distribution and paleogeography during the late Maokou Stage
of the Middle Permian in central-western Guizhou (modified from [31]). (b) Regional geological map
of Permian sedimentary manganese deposits in the Zunyi region (modified from [31]). (c) Strati-
graphic section for the mafic tuffs and Mn-containing sequence in the Zunyi region [31]; stratigraphic
locations of samples for this study are given on the column for the Zunyi locality.
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The Zunyi Mn deposit in the northern Guizhou Province is located in the outer zone
of the ELIP and within the northeastern gully (Figure 3a). It contains Permian sediments of
the Maokou (P2m), Longtan (P3l), and Changshing (P3c) formations, in ascending order.
However, there is a lack of strata from the Lower Permian and, possibly, part of the Middle
Permian (Figure 3b). The Mn ore bodies are often distributed along the limbs of an anticline
that runs in an NNE direction, or occur in superposition to several anticlines (Figure 3b).
The Maokou Formation is composed of bioclastic limestones in the lower part and siliceous
limestones in the upper part, the latter of which record the lowest 87Sr/86Sr value in
the Permian (Figure 3c) [17]. The Longtan Formation can be subdivided into a lower
argillaceous limestone and a coal-bearing upper limestone with a thickness of ~110–120 m.
The Changshing Formation exceeds 65 m in thickness and is composed of limestone
beds. The Late Permian Zunyi Mn deposits are located between the Maokou and Longtan
Formations at the G-LB, stratigraphically equivalent to the regional claystone/mudstone
beds that characterize the outer ELIP zone. The mineral composition of the Mn ores is
relatively simple, with the main Mn-bearing minerals being rhodochrosite, followed by
Mn-rich calcite [32].

A typical Mn-ore-bearing section exposed in an inclined shaft at the Nancha Mn ore
mining district, ~12 km south of Zunyi City, is described in detail below. From base to top,
five layers were identified (Figure 3c), including:

Layer 1: Mostly siliceous limestones, the upper part of Maokou Formation, locally
referred to as the “Bainitang layer”, with a thickness over 10 m.

Layer 2: Lower mafic tuff, corresponding to the footwall of the Mn ore. This layer is
0–0.7 m (average ~0.5 m) thick.

Layer 3: The Zunyi Mn ores, which can be divided into three ore types: (i) massive Mn
ores, which occur as a 0.5–1 m thick layer in the middle of the Mn-bearing section. This is
the highest-grade (MnO ~38 wt.%) [31] ore and lacks clay materials and pyrites. (ii) Oolitic
Mn ore is presented both overlying and underlying the massive ore. The sizes of the oolites
are uniform, 1 mm in diameter, and the corresponding ore bodies are about 2 m thick. Rare
clay materials, pyrites, and carbonates are also present. (iii) Clastic Mn ores are presented
in the lower and upper parts of the Mn-bearing section. These ore bodies are gray-black,
with a clastic-pisolitic structure, and have the lowest grade. The pisolites range from 5 mm
to 2 cm, and are dominated by Mn-bearing minerals, pyrites, and a variety of clay materials.
The pisolites are filled by calcite. The thickness of these ore bodies is about 2–3 m (Figure 4).
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Figure 4. Hand specimens of massive (a), oolitic (b), and clastic (c) Zunyi Mn ores, respectively.

Layer 4: The upper mafic tuff, containing pyrite in various abundance. This layer is
the hanging wall of the Mn ore; thickness ranges from ~0 to 5.0 m with an average of 2 m.

Layer 5: Argillaceous limestones, representing the lower part of the Longtan Formation.
A coal bed was occasionally observed at the base; thickness exceeds 5 m.
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3. Materials and Methods

A total of sixteen samples were collected from the No. 2 mine (27◦37′38.5′′ N,
106◦55′49.3′′ E) in the Nancha Mn ore mining district, Zunyi City, Guizhou Province,
South China, for this study. The samples include three siliceous limestones samples (NC-1,
NC-2, and NC-3) from the wall rocks of the upper Maokou Formation, two massive Mn
ores (NC-15 and NC-16), five oolitic Mn ores (NC-13, 14, and NC-17–19), and six clastic
Mn ores (NC-10–12 and NC-20–22), all collected from Mn ore bodies along a transect from
the base to the top. This new set of samples will be compared with the mafic tuffs that
represent the altered mafic eruptive rocks from the early stage of the ELIP [13].

The samples for whole-rock geochemical analyses were pulverized to a 200-mesh pow-
der using an agate mill. Major and trace elements were measured using X-ray fluorescence
spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS), respec-
tively, at the Testing Center of Shandong Bureau, China Metallurgical Geology Bureau.
Briefly, about 50 mg of powdered sample was dissolved in high-pressure Teflon bombs
using an HF + HNO3 mixture; Rh was used as an internal standard to monitor signal drift
during an analytical session for ICP-MS. The USGS rock standards GSP-1 were used for cal-
ibrating the element concentrations of the measured samples. The accuracy was estimated
to be within 5% for major elements and 10% for trace elements at a confidence level.

Strontium and Nd isotopic compositions were measured using a Finnigan Triton TI
thermal ionization mass spectrometer (TIMS) at the State Key Laboratory for Mineral
Deposit Research, Nanjing University, following the procedures of Pu et al. [40]. Samples
of about 50 mg were dissolved in the same manner as described above for trace element
analyses. Complete separation of Sr was achieved by a combination of cation-exchange
chromatography in H+ form and pyridinium form with the DCTA complex. Nd was
separated from the REE fractions by cation-exchange resin using HIBA as an eluent. After
purification, the separated Sr was dissolved in 1 µL of 1 N HCl and then loaded along with
a TaF5 solution onto tungsten filaments for 87Sr/86Sr analysis on TIMS. The separated Nd
was dissolved in 1 µL of 1 N HCl and then loaded with a H3PO4 solution onto Redouble
filaments for 143Nd/144Nd analysis on TIMS. The 87Sr/86Sr and 143Nd/144Nd ratios are
reported normalized to the natural 86Sr/88Sr ratio of 0.1194 and 146Nd/144Nd ratio of
0.7219, respectively. During the period of laboratory analysis, measurements of the Sr
standard NIST SRM-987 yielded an 87Sr/86Sr ratio of 0.710252 ± 16 (2σ, n = 12), similar to
the reference value, and measurements of the JNdi-1 Nd standard yielded a 143Nd/144Nd
ratio of 0.512121 ± 6 (2σ, n = 12), which is similar to the reference value of 0.512115 ± 7 [41].
The total analytical blanks were 50 pg for Sm and Nd and 0.2–0.5 ng for Rb and Sr.

4. Results
4.1. Major and Trace Elements

The major and trace element concentrations of the Zunyi Mn ores and the siliceous
limestones are presented in Supplementary Table S1. The concentrations of MnO in the
oolitic and massive Mn ore samples range from 45.09 to 72.35 wt.%, which are higher than
those of the clastic Mn ores (26.04 to 32.24 wt.%). Siliceous limestones, oolitic Mn ores, and
massive Mn ores have low Al2O3 (0.60 to 1.57 wt.%) and TiO2 contents (0.10 to 0.29 wt.%)
(Figure 5a). however, clastic Mn ores contain Al2O3 (6.28% to 9.80 wt.%) and TiO2 (0.34 to
0.84 wt.%) four times higher than the oolitic or massive Mn ores (Figure 5a).

All of the Zunyi Mn ore and siliceous limestone samples display a wide range of
contents for the immobile trace elements (e.g., Sc, Zr, Th, and Hf), which are reliable tracers
to evaluate the potential impact of detrital aluminosilicates (e.g., [18]). Siliceous limestone,
oolitic Mn ore, and massive Mn ore samples contain 0.72 to 1.69 ppm Sc, 16.50 to 37.00 ppm
Zr, 0.35 to 0.89 ppm Th, and 0.25 to 0.95 ppm Hf. These values are much lower than those
of the clastic Mn ore samples (Table S1, Figure 5b,c).
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Figure 5. Bivariate plots of (a) TiO2 (wt.%) and Al2O3 (wt.%), (b) Sc (ppm) and Zr (ppm), (c) Th
(ppm) and Hf (ppm), and (d) (86Sr/87Sr)I for the massive, oolitic, and clastic Mn ores and siliceous
limestones from the upper Maokou Formation in the Nancha section, northern Guizhou Province,
South China. Data for the mafic tuffs (claystone) from the foot and hanging wall of the Nancha Mn
ores are from [13]. 86Sr/87SrI composition for the Late Permian global ocean from [17]. Clastic Mn
ore samples are characterized by lower 86Sr/87SrI, higher Al2O3, TiO2, Th, Hf, and Sc concentrations
and positive correlations.

The post-Archean Australian shale (PAAS)-normalized (‘SN’ suffix) REY (REYSN)
distribution patterns in all of our samples display two distinct trends coupling with their
Al2O3 contents (Table S2; Figure 6). The siliceous limestone, oolitic Mn, and massive
Mn ore samples, which are characterized by low Al2O3 contents, all exhibit depletions
in light REE (LREESN,) relative to heavy REE (HREESN) (LaSN/YbSN = 0.69–0.90), pos-
itive La (LaSN/LaSN* = 1.12–3.80; asterisk refers to concentration expected from neigh-
boring elements; La/La* = LaSN/(3PrSN-2NdSN)) and Gd (GdSN/GdSN* = 1.03–1.10;
Gd/Gd* = GdSN/(0.33SmSN-0.67TbSN)) anomalies, negative Ce (CeSN/CeSN* = 0.38–0.48;
CeSN/CeSN* = CeSN/(0.5LaSN + 0.5PrSN)) anomalies, and elevated Y/Ho ratios (38.93–58.11).
In striking contrast, the clastic Mn ore samples characterized by relatively high Al2O3 con-
tents show positive Ce anomalies (CeSN/CeSN* = 1.07–1.42) and sub-chondritic Y/Ho
ratios (20.63–25.12). All samples show the negative Eu (EuSN/EuSN* = EuSN/(0.5SmSN +
0.5GdSN)) anomalies.
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Figure 6. (a) Examples of typical REE + YSN patterns of high-temperature hydrothermal (black-
smoker) fluids [42] and seawater [43]. (b) Examples of typical REE + YSN patterns of marine
hydrothermal Fe-Mn deposits and hydrogenetic Fe-Mn nodules (data from [20]). Post-Archean
Australian shale (PAAS)-normalized REE + Y patterns of (c) siliceous limestones, (d) massive and
oolitic Mn ores, (e) clastic Mn ores, and (f) mafic tuff from the upper Maokou Formation in the Nancha
section, northern Guizhou Province, South China. Mafic tuff data are from [13]. The REE + YSN

patterns of clastic Mn ore samples are similar to the tuffs and display positive Ce anomalies and
negative Y anomalies. The REE + YSN patterns for the massive and oolitic Mn ores and siliceous
limestones of the Maokou Formation show LREE depletions, negative Ce, and positive La, Gd, and Y
anomalies that are similar to those observed in modern seawater.

4.2. Sr-Nd Isotopes

The strontium and Nd isotopic compositions are listed in Tables S3 and S4, respectively.
The siliceous limestone, oolitic Mn ore, and massive Mn ore samples have a similar and
narrow range of 87Sr/86Sri from 0.706950 to 0.706995 (Figure 5d), but the 87Sr/86Sri values
of the clastic Mn ore samples are lower (0.706769–0.706890) (Figure 5d). Neodymium
isotopes were only measured on siliceous limestone, oolitic Mn ore, and massive Mn ore
samples with low Al2O3 contents. The εNd(t) values across these lithologies are consistently
low with a narrow range from −2.4 to −3.2 (Figure 7a).
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Figure 7. (a) Comparison of εNd(t) between different lithologies studied here and those charac-
teristic of the Yangtze Block [44,45], mafic tuff [13], and Emeishan flood basalts [3]. (b) A two-
component conservative mixing line between seawater and high-temperature hydrothermal fluids,
plotted on a Y/Ho versus Sm/Yb bivariate plot, showing that a 1% high-temperature hydrothermal
(>350 ◦C, [18]) fluid contribution to seawater [42] is sufficient to explain Sm/Yb ratios in the siliceous
limestones and massive and oolitic Mn ore samples from this study.

5. Discussion
5.1. Depositional Controls on REY in the Zunyi Mn Deposit

It is possible that the REY concentrations of the Zunyi Mn ores have been affected
by several processes, including: (1) syn- and post-depositional processes; (2) the degree
to which the REY were scavenged by particulate matter in the water column prior to
deposition; and (3) also by other inputs to the seawater from which the Mn ores precipitated.

5.1.1. Syn-Depositional Detrital Contamination

During the syn-depositional stage, REYSN patterns in chemical precipitates could
be modified from the signature of contemporaneous seawater due to contamination by
detrital aluminosilicates. The relative contribution of detrital input can be assessed by
examining the abundances of immobile high-field strength elements in aqueous solution,
such as Al, Ti, Zr, Hf, Th, and Sc (e.g., [46,47]). Elevated abundances of these elements
are unlikely to have derived from seawater, so they serve as indicators of clastic detrital
contamination in chemical sediments. In Figure 5a–c, the Al2O3, TiO2, Th, Hf, and Sc
contents of the clastic Mn ore samples are the highest among all of the samples analyzed
in this study, but lower than the mafic tuff analyzed by Yan et al. [13], which serves as
an aluminosilicate-rich end-member derived entirely from volcanic material. Positive
correlations between Al2O3 and TiO2, Sc and Zr, and Hf and Th were observed in the clastic
Mn ore samples, consistent with relatively high detrital input. In contrast, the massive
and oolitic Mn ore and siliceous limestone samples are characterized by lower abundances
of high-field strength elements. Positive correlations between these elements are either
weaker or absent. Such characteristics indicate that the massive and oolitic Mn ores are less
affected by detrital material.

REY concentrations in hydrothermal fluids and seawater are low, and any admixture
of detrital materials would significantly alter the REYSN patterns towards the compositions
of the detrital components. The REYSN patterns of the clastic Mn ore samples are similar
to those of the mafic tuff of the hanging and foot walls of the Mn ores [13] in displaying
distinctive positive Ce anomalies and negative Y anomalies (Figure 6e–f). Conversely,
REYSN patterns of massive and oolitic Mn ores and the underlying siliceous limestones
from the Maokou Formation show LREESN depletions, negative Ce anomalies, as well
as positive La, Gd, and Y anomalies (Figure 6c–d), which are similar to those of modern
seawater (Figure 6a).



Minerals 2023, 13, 965 10 of 18

The 87Sr/86Sri ratios of massive and oolitic Mn ore samples are indistinguishable from
the values of the siliceous limestones and the value of the Middle–Late Permian seawater
(Figure 5d; [17]). In contrast, the 87Sr/86Sri ratios of the clastic Mn ores samples (mean
0.706837) are much lower, approaching the very low values of the mafic tuff from the
hanging and foot walls of the Zunyi Mn ores (0.706729; [13]), which again indicates that
the detrital component has influenced the 87Sr/86Sr ratios of the clastic Mn ore samples
(Figure 5d). In light of the geochemical considerations presented above, we infer that only
the REY in the massive and oolitic Mn ores, along with the siliceous limestone samples,
are reliable archives of ancient marine geochemical signatures, whereas the clastic Mn ore
samples have been geochemically altered by the influx of detrital aluminosilicates.

5.1.2. Post-Depositional Alteration

The main Mn-bearing minerals in the Zunyi Mn deposit are rhodochrosite (MnCO3)
and kutnohorite (CaMn(CO3)2) [31]. Based on carbon isotope data and detailed pet-
rographic observations [30,32], the presence of Mn(II)-carbonates was attributed to the
reduction of primary Mn(III/IV) oxyhydroxides coupled to the oxidation of organic matter
in the anoxic sediment column during the diagenetic stage. Thus, during the process, the
REY accumulation can likely be controlled by two mechanisms: (i) absorption onto primary
Mn oxyhydroxides from the water column and (ii) post-depositional alteration, i.e., release
from organic matter.

Due to the lack of metamorphism records in the studied region, the potential post-
depositional mechanisms affecting REY distribution in the Zunyi Mn deposit are diagenetic
processes, where the REY accumulation may also be modified by the release from organic
matter in porewater. The REYSN patterns of the rocks and minerals, which are associ-
ated with organic matter decay during diagenesis, are characterized by the pronounced
enrichment of middle rare earth elements (MREESN), producing a “hat-shape” REYSN
distribution pattern, such as the Early Cambrian black shales of Guizhou province [48],
phosphorites hosted in the lower Cambrian Series of Yunnan province [49], phosphatic
nodules hosted in the Niutitang Formation of Western Hunan [50], phosphatic rocks hosted
in the Neoproterozoic Ediacaran Doushantuo Formation of Western Hubei [51], and some
fossil organisms [52]. However, the REYSN patterns of the massive and oolitic Mn ore
samples in this study are inconsistent with the “hat shape” patterns, suggesting a neg-
ligible contribution of REY from organic matter during the early diagenetic stage in the
Zunyi Mn ores. In addition, CeO2 produced by oxidation soluble Ce3+ in oxic marine
environments also tends to be rapidly removed from seawater via scavenging by organic
matter in suspension [53,54]. In suboxic/anoxic porewater environments, insoluble CeO2
would be reduced to soluble Ce3+ during the remineralization of organic matter, producing
positive Ce anomalies in REE distributions. However, the lack of positive Ce anomalies in
the massive and oolitic Mn ores could exclude the influence of organic matter.

In addition, though there is a lack of work on REY remobilization during the diagenesis
of Mn deposits, carbonates and iron phases have been assessed for diagenetic immobile of
REE patterns and no significant effect has been found [18]. Since Mn geochemistry closely
resembles that of Fe, REYSN patterns likely also stay relatively unmodified through Mn
diagenesis. In our study, this is supported by the presence of highly seawater-like REYSN
patterns in our Mn ores and siliceous limestones. However, dedicated studies of REY
partitioning through Mn diagenesis are necessary to fully establish Mn deposits as a robust
marine REY archive.

5.1.3. Scavenged by Mn Oxyhydroxides from Ambient Seawater

Previous studies have proposed that the absorption of REY from ambient seawater
by particulate matter (Mn/Fe oxyhydroxides) precipitated in the oxygenated water col-
umn would primarily dominate the REY origin of the ancient metalliferous sediments.
Experimental studies [55–58] as well as investigations of natural systems (e.g., [59], and
references therein) showed that the partitioning of REY during the precipitation of Mn
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oxyhydroxide particles from seawater is not only accompanied by strong fractionation
between the solid and the respective solution, but also by distinctive fractionation within
the REY group, related with the anomalies for redox-sensitive as well as non-redox sensitive
elements. Moreover, this model assumes that the reaction kinetics of adsorption/desorption
on REY are significantly faster than the Mn oxyhydroxide particle residence time in an oxic
water column. This assumption is supported by experimental evidence indicating that
particle-surface/solution REY exchange equilibrium occurs within minutes [42], suggesting
that most Mn oxyhydroxide particles settling through an oxic water column (of relatively
constant REY distribution) should be in equilibrium with the solution phase (seawater).

Natural systems that provide insight into such equilibrium exchange processes are
available in the form of modern marine hydrogenetic manganese crusts that precipitated
from seawater as initially colloidal particles within the water column and are characterized
by exceedingly slow growth rates and by strong REY enrichments that can exceed 1000 ppm
(Figure 6b; e.g., [20]). Patterns of REYSN partition coefficients between marine hydrogenetic
Mn crusts and seawater tends to decrease from La to Lu (e.g., [60]). Thus, Mn oxyhydroxide
colloidal particles usually preferentially absorb light rare earth elements. In addition, due
to the lower stability of surface complexes of Y relative to those of Ho during the redox
cycling of Mn, Mn oxyhydroxide particles exhibit the preferential sorption of Ho relative
to Y [23,60]. In addition, Ce is a redox-sensitive rare earth element [61]. In oxic marine
environments, soluble Ce3+ is oxidized into insoluble Ce4+ as CeO2 and tends to be rapidly
removed from seawater via scavenging by Mn oxyhydroxides [59]. Consequently, the
hydrogenetic Mn crusts and nodules representing the equilibrium between manganese
oxyhydroxides and seawater record prominent positive Ce anomalies and negative Y
anomalies (Figure 6b).

The existence of Mn oxyhydroxide during the sedimentary stage represents oxy-
genated bottom water. If scavenging Mn oxyhydroxide particles achieved exchange equilib-
rium with the surrounding seawater, the above observations would predict positive Ce and
negative Y anomalies in the Zunyi Mn deposit. On the contrary, the obvious negative Ce
and positive La, Gd, and Y anomalies strongly suggest that Mn oxyhydroxide particles that
scavenged REY could not be at or near exchange equilibria with respect to ambient seawa-
ter, but similar to the modern seawater pattern of REYSN. This feature is also presented in
hydrothermal Mn oxyhydroxide deposits precipitating from marine hydrothermal systems
(Figures 6b and 7b; e.g., [20]). When these reducing high-temperature hydrothermal fluids
containing substantial amounts of metal ions mix with cold seawater after exiting the
seafloor, low-valence manganese is oxidized and precipitated quickly [62–64]. Due to high
sedimentary rates, in marked contrast to hydrogenetic crusts, an exchange equilibrium
between manganese oxyhydroxides and ambient seawater had not yet been established for
those REY elements that form surface complexes on the metal oxyhydroxide surface [20].
Such similar features have also been proposed in the research on REY in manganese ores
and BIFs during Precambrian [26,65,66] and Cenozoic hydrothermal manganese ore [20],
which are all recognized as faithful proxies to reflect seawater composition. In addition,
the higher REY content of Mn ores than siliceous limestones is likely attributed to the con-
tinuous uptake of REY from seawater onto Mn oxyhydroxide, even after deposition, until
their burial. However, the striking similarity between REY patterns in siliceous limestones
and Zunyi Mn ores suggests that massive and oolitic Mn ores as pure chemical sediments
faithfully record the REY distributions of contemporaneous seawater. Thus, some general
constraints may be placed on the composition of Middle–Late Permian seawater.

5.2. Middle–Late Permian Seawater in South China
5.2.1. Sr Isotopes in the Middle–Late Permian Seawater

The strontium isotopic composition (87Sr/86Sr) of marine carbonates provides valuable
information about the relative importance of the sources contributing Sr to the seawater [16,17].
The marine Sr isotopic ratio is balanced by input fluxes from the continental crust with
radiogenic 87Sr (riverine flux) and Earth’s mantle (hydrothermal or other mafic igneous
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oceanic crust) [67,68]. 87Sr/86Sr ratios in marine biominerals appear to be uniform at
a global scale because the residence time (>1000 kyr) of Sr in the oceans is longer than
the average mixing time of the ocean [69–71]. The lowest 87Sr/86Sr ratios in the Paleozoic
have been reported from the G-LB in Japan, Russia, and South China [15,17,72–74]. Over
this period, the 87Sr/86Sr trend shows a monotonous decline from approximately 0.7080
in the earliest Permian to approximately 0.7069 in the late Capitanian J. altudaensis and
J. xuanhanensis zones, followed by a steeper increase from the latest Guadalupian towards
the Permian–Triassic boundary (~0.7071–0.7072) and into the Early Triassic (Figure 2). In
South China, compared to the cessation the input of terrigenous material enriched in radio-
genic Sr, this short-lived 87Sr/86Sr excursion is best interpreted to reflect an enhanced ELIP
mantle-derived hydrothermal flux into seawater with an additional minor contribution
from ELIP-related volcanism [16].

5.2.2. A Hydrothermal Input?

REYSN distribution patterns of the Zunyi Mn ores show relative LREEs enrichment
with higher SmSN/YbSN ratios (0.69–0.90) than those of modern shallow seawater (0.21–0.50),
likely suggesting that other sources of REY with enriched LREESN, such as hydrother-
mal fluid, could have added in the ambient seawater. REYSN patterns of marine high-
temperature hydrothermal fluids are characterized by relative LREESN enrichment and
notable positive Eu anomalies (Figure 6a; [42]). Most carbonates influenced by hydrother-
mal fluid show positive Eu anomalies. However, in this study, all samples show no positive
Eu anomaly, seemingly not supporting the influence by hydrothermal fluids. Because
Eu3+ reduces to Eu2+ under reducing conditions [61], under high temperatures (greater
than 250 ◦C) and high pressures, divalent Eu predominates, and hydrothermal fluids and
sediments of hydrothermal origin are usually characterized by their obvious positive Eu
anomalies [43,75]. When reducing, high-temperature hydrothermal fluids migrated from
the source far away, oxic, low-temperature seawaters will be mixed, leading to the sub-
stantial drop in temperature and changes in redox condition. Therefore, the positive Eu
anomaly from hydrothermal fluid is locally preserved, which could well be interpreted as
REYSN patterns of low-temperature hydrothermal fluids having no positive Eu anomalies.
Hence, sediments with no positive Eu anomalies are not absolutely excluded from the
influence of hydrothermal fluids. However, the presence of the higher Sm/Yb ratios and
slightly lower Y/Ho values does indeed tend to have at least some input from ‘black
smoker’ type hydrothermal fluids (Figure 7b). The Y/Ho ratio of modern seawater is
44–74 [42], and small admixtures of any contaminant would reduce the Y/Ho ratio of
seawater towards the value of the upper continental crust ~27.5. Generally, seawater has
high Y/Ho (~60) and low Sm/Yb (~0.8) ratios, while high-temperature hydrothermal
fluids have low Y/Ho (~27) and high Sm/Yb (~8) ratios [42]. A two-end member mix-
ing modeling based on the Sm/Yb and Y/Ho data yielded a lower contribution of ~1%
from high-temperature hydrothermal fluids to the Zunyi Mn ores and siliceous limestones
(Figure 7b). This calculation is comparable with the model of Klein and Beukes [76], who
noted that a 100:1 mixing ratio of typical North Atlantic seawater with deep-sea hydrother-
mal fluids produced REYSN patterns. Therefore, the contribution from hydrothermal fluids
to the Middle–Late Permian seawater appears minimal. Generally, the Sr isotope of riverine
inputs with radiogenic (high) 87Sr/86Sr ratios (average ~0.7119) and of mantle-derived
high-temperature hydrothermal inputs at the mid-ocean ridges with unradiogenic (low)
87Sr/86Sr ratios (average ~0.7035). Thus, hydrothermal fluids could be insufficient as a main
mechanism to result in the low 87Sr/86Sr ratios of our samples, even the contemporane-
ously negative Sr excursion record. In addition, we propose that Nd in Zunyi Mn ores and
siliceous limestone was mostly derived from ambient seawater rather than hydrothermal
input and would thus be expected to record the Nd isotopic composition of this seawater.
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5.2.3. Nd Isotopes in the Middle–Late Permian Seawater

The neodymium isotopic compositions of Earth’s crust and mantle have diverged
since the development of the earliest continental crust [77]. The fractionation of Sm-Nd by
partial melting triggered the retention of Sm in the residual mantle and the partitioning
of Nd into the melt. 143Nd/144Nd in marine sediments is also mass balanced by Nd
inputs from the continents via the riverine flux and the mantle via the hydrothermal
leaching or weathering/hydrolysis of mafic igneous oceanic crust [78]. Neodymium isotope
studies of Archean seawater have shown that the Nd originate almost combines between
continental sources and mantle sources, including black-smoker-type high-temperature
hydrothermal fluids (e.g., [78,79]). Unlike the Sr isotope system, however, the effect of local
hydrothermal venting of Nd on the Phanerozoic marine signal is not considered significant.
Although hydrothermal vent fluids have Nd concentrations more than 500 times greater
than seawater, the buoyant plume will be diluted quickly (within an hour) to 1/10,000th of
its initial concentration across a distance of less than 1 km when mixed with seawater [80]. In
addition, Nd sourced from hydrothermal vents is scavenged by hydrothermal polymetallic
oxyhydroxides particles very close to or even within the hydrothermal system, whereas
the scavenging is disproportionate and unpredictable [81]. Therefore, in generally oxic
Phanerozoic oceans, hydrothermal vent fluids have a negligible effect on the Nd isotopic
composition of seawater and distal Fe- and Mn- marine sediments. In general, an increasing
143Nd/144Nd trend indicates a higher contribution of mantle-derived Nd, and a decreasing
trend indicates an increased contribution from the continental crust. Finally, due to its
high ionic potential, Nd is a particle-reactive element and its residence time in modern
seawater is, therefore, relatively short (~500–1000 years; [82,83]), which is less than the
average mixing time of the ocean [78].

In the Middle Permian ocean, Nd likely had a similar residence time on the order of
103 years, suggesting that marine Nd isotope compositions would be spatially heteroge-
neous. Keto and Jacobsen [84] showed that Middle to Late Permian samples from Alaska
and Iran deposited in the Pacific/Panthalassa Ocean (PPO) have much higher εNd(t) values
of −3 to −6, compared to −12 in samples from the earlier Permian and −9 in the Early
Triassic (Figure 8). This is attributed to the changes in the rate of crustal additions or the
mafic volcanism. In contrast to the modern oceans, where information on the worldwide
distribution of seawater εNd(t) is readily available, such a database does not yet exist for
the end-Guadalupian ocean in South China.
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5.2.4. Nd Isotopes in the Zunyi Mn Deposit

The neodymium isotope composition of the Zunyi Mn deposit offers a way to assess
the magnitude and heterogeneity of mantle and crustal contribution to Late Permian marine
geochemistry. During the Permian, the upper/middle Yangtze crust was characterized by
εNd(t) values <−8 (Figure 7a; [44,45]). In contrast, the mafic tuff in the foot and hanging
walls of the Zunyi Mn ores displays values around 0, similar to the Nd isotope composition
of contemporaneous Emeishan basalts and consistent with the derivation of this material
from the mantle ([3], and references therein). The εNd(t) values of the massive and oolitic
Mn ores, as well as the associated siliceous limestones, all display seawater-like REYSN dis-
tribution patterns, approaching both the tuff rocks and Emeishan high-Ti flood basalts, but
are significantly different from the crustal basement rocks of the Yangtze Block (Figure 7a).
Assigning the continental flux an εNd value of −8, mass balance calculations suggest that
at least 50% of the Nd in these samples must have originated from a source possessing
a mantle signature.

The driving mechanism of the Late Permian Nd isotope evolution in South China re-
mains not well constrained. With the minimal contribution of Nd (REY) from hydrothermal
fluids to the seawater (discussed in Section 5.2.2), which would only result in insignificant
perturbations of the εNd(t) value, the high εNd(t) values for Late Permian seawater in South
China are more parsimoniously explained by a major contribution from the contempora-
neous Emeishan mafic volcanic rocks. Biostratigraphic and sedimentological constraints
suggest the early stage ELIP occurred as submarine eruptions of hyaloclastites [14,37,85]
beginning in the J. altudaensis conodont zone (~263 Ma; [37]). In subsequent stages, Emeis-
han flood basalts erupted in continental environments (~260 Ma; [37]) around the G-LB.
Therefore, the increase in the εNd(t) ratios of the seawater was likely caused by the release
of significant quantities of less radiogenic Nd from intensive hydrolysis of submarine mafic
volcaniclastic materials, the signal of which was transferred into the contemporaneous
Zunyi Mn deposits.

The neodymium isotopes in the massive/oolitic Mn ore and siliceous limestone sam-
ples also match the upper end for late Permian seawater εNd(t) values from the Panthalassic
Ocean (Figure 8; [84]), suggesting that a mantle/ELIP-derived component was also glob-
ally prevalent, not only in South China. Additionally, our Nd isotopes are a little bit
higher than usual for that time, meaning that the Zunyi Mn deposit was closer to the
mantle Nd source—e.g., the ELIP may be the driving mechanism of the Late Permian Nd
isotope evolution.

6. Potential Link between the Guadalupian Marine Environmental Perturbation and
the Early Stage of the ELIP

The widespread existence of voluminous subaqueous pillow basalts associated with
mafic submarine hyaloclastite deposits from the early-stage eruption of the ELIP at the
J. altudaensis biostratigraphic zone has drawn increasing attention as a potential cause of
the Guadalupian mass extinction (e.g., [6,13,14]). The submarine eruption of the ELIP may
have not only released significant amounts of volatiles (dominantly CO2 and SO2) into the
seawater to result in volcanogenic ocean warming and acidification [39], and then have
caused the Capitanian extinction, but also induced an intensive seawater–basalt interaction
to release mantle material, which may result in the chemical property change of seawater.

Our data support this hypothesis by highlighting a major increase in mantle con-
tribution to the seawater Nd isotope budget at ~262 Ma. It suggests that early-stage
submarine mafic ELIP eruptions were sufficient to affect the end-Guadalupian marine
environment. That high Nd isotope ratios are also common in other contemporaneous
Panthalassan sections [84] further hints that this was an event with global repercussions for
seawater chemistry.
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7. Conclusions

• The clastic Mn ore has been contaminated by mafic aluminosilicates, whereas the
massive and oolitic Mn ores, as well as associated siliceous limestones, have not been
altered and thus have preserved their pristine signature as chemical sediments.

• The REYSN patterns of the massive and oolitic Mn ores and siliceous limestones
are consistent with modern seawater-like patterns, further demonstrating that these
samples recorded the geochemical signatures of the end-Guadalupian seawater in
South China.

• The εNd(t) values for the massive and oolitic Mn ores and the siliceous limestones
(−2.4 to −3.2) are relatively high, lying at the high end of the range of global end-
Guadalupian seawater values.

• These high εNd(t) values result from the input of mantle-derived Nd into seawater by
the hydrolysis of contemporaneous subaqueous mafic volcaniclastic materials from
the early-stage eruption of the ELIP, which resulted in the chemical property change
of contemporaneous seawater in South China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13070965/s1, Table S1: Major oxide (wt.%) and trace ele-
ment (ppm) compositions of Zunyi samples; Table S2: The REE + Y compositions of Zunyi sam-
ples; Table S3: Sr isotope compositions for Zunyi samples; Table S4: Nd isotope compositions for
Zunyi samples.
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