
Citation: Ares, G.; Castañón

Fernández, C.; Álvarez, I.D. Ultimate

Pit-Limit Optimization Algorithm

Enhancement Using Structured

Query Language. Minerals 2023, 13,

966. https://doi.org/10.3390/

min13070966

Academic Editor: José António

de Almeida

Received: 31 May 2023

Revised: 28 June 2023

Accepted: 29 June 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Ultimate Pit-Limit Optimization Algorithm Enhancement Using
Structured Query Language
Gonzalo Ares , César Castañón Fernández and Isidro Diego Álvarez *

School of Mining, Energy and Materials Engineering, University of Oviedo, 33004 Oviedo, Spain;
gonzaloaresasensio@gmail.com (G.A.); castanoncesar@uniovi.es (C.C.F.)
* Correspondence: diegoisidro@uniovi.es

Abstract: Three-dimensional block models are the most widely used tool for the study and evaluation
of ore deposits, the calculation and design of economical pits, mine production planning, and physical
and numerical simulations of ore deposits. The way these algorithms and computational techniques
are programmed is usually through complex C++, C# or Python libraries. Database programming
languages such as SQL (Structured Query Language) have traditionally been restricted to drillhole
sample data operation. However, major advances in the management and processing of large
databases have opened up the possibility of changing the way in which block model calculations
are related to the database. Thanks to programming languages designed to manage databases, such
as SQL, the traditional recursive traversal of database records is replaced by a system of database
queries. In this way, with a simple SQL, numerous lines of code are eliminated from the different
loops, thus achieving a greater calculation speed. In this paper, a floating cone optimization algorithm
is adapted to SQL, describing how economical cones can be generated, related and calculated, all in a
simple way and with few lines of code. Finally, to test this methodology, a case study is developed
and shown.

Keywords: SQL; mineral deposit; optimization; floating cone; mining; deposit modelization

1. Introduction

Most of the algorithms used in the study and evaluation of ore deposits [1–3], in the
calculation and design of economical pits [4,5], in mine production planning [6] and in phys-
ical and numerical simulations of ore deposits [7–10] work with three-dimensional block
models. A three-dimensional block model is a database in which each record represents a
terrain block, i.e., a discrete rock element where the fields define its location (in an X, Y, Z
coordinate system) and properties (density, lithology, ore grade, etc.). The information used
to calculate the three-dimensional block model is obtained from the drillhole database. The
different properties of the blocks can be estimated using various methods, such as nearest
neighbor search, inverse distance weighting and geostatistical methods (simple kriging,
ordinary kriging, cokriging or stochastic simulations).

In recent years, the computation of economical pits has undergone an important evolu-
tion to obtain better results and faster computational speeds. However, these improvements
have traditionally been associated with the way in which the problem is attacked, either
by means of the floating cone algorithm [11,12] and its corrections [13–16], the Korobov
algorithm [17] and its corrected form [18], the Lerchs–Grossmann algorithm based on graph
theory [19], pseudoflow [20], dynamic programming [21–23] or the genetic algorithm [24],
rather than in the implementation of these techniques. It is important to note that the
calculation times in economical pit design processes depend not only on the approach to
the problem itself, but also on other factors regarding how the pit calculation method is
implemented or the number of blocks that make up the block model.

The most commonly used programming languages for implementing three-dimensional
block model computation techniques are usually through complex C++ [25], C# [26] or

Minerals 2023, 13, 966. https://doi.org/10.3390/min13070966 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13070966
https://doi.org/10.3390/min13070966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0001-6614-1867
https://orcid.org/0000-0001-6592-670X
https://orcid.org/0000-0003-1554-4679
https://doi.org/10.3390/min13070966
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13070966?type=check_update&version=2

Minerals 2023, 13, 966 2 of 20

Python [27] libraries. It is important to note that commercial software works as a black box,
preventing the user from knowing how the calculation methods are implemented. How-
ever, great advances in the management and processing of large databases have opened up
the possibility of changing the way in which calculations with block models are related to
the database. In 2013, the first open-pit optimization through a database was presented [28].
In that approach, an adaptation of the Lerchs–Grossmann algorithm was used.

Throughout this paper, we will show how to generate numerous open pits, relate them
and calculate whether they are economical using structured query language (SQL). This
new approach replaces the recursive path of traditional programming with a system of
database queries. The aim is to reduce both the number of lines and the calculation time.
To explain this methodology, the floating cone IV algorithm [16] will be used. It is a more
complex floating cone algorithm and, as will be demonstrated, is able to take full advantage
of the SQL JOIN clauses described below.

SQL is a domain-specific language designed to manage and retrieve information from
relational database management systems. SQL is a declarative language, that is, you only
have to tell the database system what you want to obtain, and the system will decide how
to obtain it [29]. One of its main characteristics is the use of algebra and relational calculus
to perform queries in order to retrieve, in a simple way, the information from the database,
as well as to make changes in them. It is a database access language that exploits the
flexibility and power of relational systems, thus allowing a wide variety of operations.

A relational database is a type of database that complies with the relational model [30],
that is, it organizes data in one or more tables. Generally, each table represents an “entity
type” (e.g., the block model or the set of economical cones that form the ultimate pit limit).
The tables are composed of tuples (rows) that represent instances of that entity type (each
of the blocks that make up the model). Each tuple (row) has a set of attributes for that
instance (column names, also known as fields), for example, the lithology or ore grade of
each block. Each tuple (row) is uniquely identified by an attribute called a primary key.
Two tables can be related by a foreign key.

The main characteristic of the relational database is that it avoids the duplication of
records, and at the same time, guarantees referential integrity; that is, if one of the records
is deleted, the integrity of the remaining records will not be affected. In addition, thanks
to the keys, the information can be easily accessed and retrieved at any time. SQL makes
it possible to perform an endless number of queries to the database (join, delete, creation
of new tables, calculation, etc.), which will be the basis on which the calculation method
herein explained is founded.

Among all the relational database management systems (RDBMS) that use SQL to
administer, define, manage and manipulate information (Oracle, Microsoft SQL Server,
MySQL, SQLite), one of the most used and best cataloged today is PostgreSQL, as it is
open source and has great stability, power, robustness, and ease of administration and
implementation. Additionally, it uses a client/server system with threads for the correct
processing of queries to the database [31,32].

2. Methodology for Applying SQL to a Three-Dimensional Block Model

The following section will describe the fundamental steps followed in implementing a
floating cone algorithm using SQL. To be able to use the SQL database query language, and
after much testing and improvement, the process has been divided into two parts:

1. Gain an understanding of SQL in depth along with the different clauses that allow the
generation of an open pit, relate them and calculate if they are economical. This point
is dealt with in Section 2.1.

2. Generate in PostgreSQL the tables to perform the necessary calculations and queries.
This point is of great importance since the calculation times that are ultimately obtained
will largely be dependent on it. This point is described in detail in Section 2.2.

Minerals 2023, 13, 966 3 of 20

Although this methodology is applied throughout this paper to a floating-cone-style
algorithm, it could also be applied to many other algorithms whose objective is to search a
database for records that meet certain conditions.

2.1. SQL JOINS

Before explaining the different tables generated to implement the floating cone algo-
rithm, it is important to understand the SQL JOIN clause in detail. The SQL JOIN clause is
one of the most powerful and interesting tools that SQL presents and is the fundamental
basis on which the implementation explained throughout this paper is based. SQL JOIN
clauses are used to combine rows from two or more tables based on a common field between
them, thus returning data from different tables. For algorithms working with 3D block
models, it is a quick way to relate blocks and cones (Figure 1). This point will be expanded
as the implementation of the algorithm for the ultimate pit limit calculation is explained.

Minerals 2023, 13, x FOR PEER REVIEW 3 of 21

1. Gain an understanding of SQL in depth along with the different clauses that allow
the generation of an open pit, relate them and calculate if they are economical. This
point is dealt with in Section 2.1.

2. Generate in PostgreSQL the tables to perform the necessary calculations and queries.
This point is of great importance since the calculation times that are ultimately ob-
tained will largely be dependent on it. This point is described in detail in Section 2.2.
Although this methodology is applied throughout this paper to a floating-cone-style

algorithm, it could also be applied to many other algorithms whose objective is to search
a database for records that meet certain conditions.

2.1. SQL JOINS
Before explaining the different tables generated to implement the floating cone al-

gorithm, it is important to understand the SQL JOIN clause in detail. The SQL JOIN
clause is one of the most powerful and interesting tools that SQL presents and is the
fundamental basis on which the implementation explained throughout this paper is
based. SQL JOIN clauses are used to combine rows from two or more tables based on a
common field between them, thus returning data from different tables. For algorithms
working with 3D block models, it is a quick way to relate blocks and cones (Figure 1).
This point will be expanded as the implementation of the algorithm for the ultimate pit
limit calculation is explained.

Although SQL JOIN clauses are divided into different types, they all work in a sim-
ilar way. The SQL JOIN works with two selections, one of the selections called A or LEFT
and the other B or RIGHT, which are joined with a logical condition. The ones that fulfill
the union are common to both selections. On the other hand, there will be a part of se-
lection A that does not fulfill the condition, and a part of selection B that does not fulfill it
either. These three parts into which the union is divided can be selected in various ways
using INNER, LEFT or RIGHT JOIN sentences, as can be seen in Figure 1 in which two
cones (A and B) that share blocks are represented.

Figure 1. Graphical representation of how two cones that share blocks are related as a consequence
of SQL JOIN clauses. Figure 1. Graphical representation of how two cones that share blocks are related as a consequence

of SQL JOIN clauses.

Although SQL JOIN clauses are divided into different types, they all work in a similar
way. The SQL JOIN works with two selections, one of the selections called A or LEFT and
the other B or RIGHT, which are joined with a logical condition. The ones that fulfill the
union are common to both selections. On the other hand, there will be a part of selection
A that does not fulfill the condition, and a part of selection B that does not fulfill it either.
These three parts into which the union is divided can be selected in various ways using
INNER, LEFT or RIGHT JOIN sentences, as can be seen in Figure 1 in which two cones (A
and B) that share blocks are represented.

2.2. Generation of the Tables

When generating tables, it is important to consider that they can have tens of millions
of tuples (rows), and a simple query to the database that relates several tables and has
several selection conditions can take a long time to process, hence the importance of
choosing a table structure that meets the following conditions:

1. Tables with the minimum number of attributes are to be as simple and small as possible.

Minerals 2023, 13, 966 4 of 20

2. Delete tuples from tables when they are no longer needed, thus also reducing the size
of the tables.

The initial block model used for the calculation of economical pits will consist of a
database managed by any database management system (DBMS). It will contain at least
three attributes: a unique indicator or id for each block, and the weight and grade of the
element to be evaluated. It is also necessary to know beforehand the size of the block in
its three dimensions (sizeX, sizeY, sizeZ). From this initial database and with the different
calculation parameters (recovery, sale price, slope angle, etc.), as well as considering the
above conditions, three tables will be generated in PostgreSQL, which will be used in the
calculation process: blks, blks2 and cones.

2.2.1. Blks Table

The blks table (Figure 2) will contain all the blocks to be entered into the calculation of
the optimal pit. Table 1 shows in detail the different attributes that make up the blks table.

Minerals 2023, 13, x FOR PEER REVIEW 4 of 21

2.2. Generation of the Tables
When generating tables, it is important to consider that they can have tens of mil-

lions of tuples (rows), and a simple query to the database that relates several tables and
has several selection conditions can take a long time to process, hence the importance of
choosing a table structure that meets the following conditions:
1. Tables with the minimum number of attributes are to be as simple and small as

possible.
2. Delete tuples from tables when they are no longer needed, thus also reducing the

size of the tables.
The initial block model used for the calculation of economical pits will consist of a

database managed by any database management system (DBMS). It will contain at least
three attributes: a unique indicator or id for each block, and the weight and grade of the
element to be evaluated. It is also necessary to know beforehand the size of the block in
its three dimensions (sizeX, sizeY, sizeZ). From this initial database and with the different
calculation parameters (recovery, sale price, slope angle, etc.), as well as considering the
above conditions, three tables will be generated in PostgreSQL, which will be used in the
calculation process: blks, blks2 and cones.

2.2.1. Blks Table
The blks table (Figure 2) will contain all the blocks to be entered into the calculation

of the optimal pit. Table 1 shows in detail the different attributes that make up the blks
table.

Figure 2. Table blks generated in PostgreSQL.

Table 1. Parameters and variables of the blks table depicted in Figure 2.

Symbol Description
id Unique identifier of each block that is generated incrementally when adding the blocks for calculation to

the blks table. The blocks must be ordered from higher z to lower z, as we will use this id to order them
and identify them in position. The lower id values correspond to those that are higher in z and the higher
ones to those of a lower position

idblk Id of the block of the original block model, to be used at the end of the calculation to put the results
obtained in the original table

idx Coordinates of the center of the block on the x-axis
idy Coordinates of the center of the block on the y-axis
idz Coordinates of the center of the block on the z-axis
rec Percentage by weight of metal or ore recovered in the processing plant

Figure 2. Table blks generated in PostgreSQL.

Table 1. Parameters and variables of the blks table depicted in Figure 2.

Symbol Description

id

Unique identifier of each block that is generated incrementally when
adding the blocks for calculation to the blks table. The blocks must be
ordered from higher z to lower z, as we will use this id to order them and
identify them in position. The lower id values correspond to those that are
higher in z and the higher ones to those of a lower position

idblk Id of the block of the original block model, to be used at the end of the
calculation to put the results obtained in the original table

idx Coordinates of the center of the block on the x-axis

idy Coordinates of the center of the block on the y-axis

idz Coordinates of the center of the block on the z-axis

rec Percentage by weight of metal or ore recovered in the processing plant

G
Average concentration of the chemical element of interest in the reservoir
in the block. Usually expressed as a percentage, or as grams per tonne (g/t)
(equivalent to parts per million, ppm) or ounces per tonne (oz/t)

metal The metal or chemical element content of interest in the block. Calculated
by multiplying the weight of the block by the grade

Minerals 2023, 13, 966 5 of 20

Table 1. Cont.

Symbol Description

Co

Mining cost of ore: drilling, blasting, loading and transportation, and grade
control; this cost is usually given on a per tonne or per cubic meter basis. It
tends to be slightly higher than waste rock due to grade control costs, and
the height of the mining benches is generally smaller. The cost is generally
calculated per tonne or per cubic meter

Cw
Mining cost of waste rock: drilling, blasting, loading, hauling and
dumping of material at the waste dump; the cost is generally calculated per
tonne or per cubic meter

Cp
Ore processing cost: crushing, milling, processing, handling of
concentrates, and administrative costs and other costs. This cost is usually
calculated per tonne of ore processed

Vb Represents the value of each of the blocks. It is important to note that the
value of each block should be calculated assuming that the block is
uncovered; i.e., the cost required to access the block should not be
considered in the total costs [33]. Equation (1) is used to perform the
valuation for each block

ore Indicates which blocks are considered to be minerals

pout
Field indicating whether a block is outside the calculation already or not;
i.e., if that block is inside an economical cone, its initial value will be = 0 (it
is not inside the economical pit) or = 1 (it is inside the economical pit)

pit Value of the selling price calculated in the optimization process

T Tonnes of the block

Ps Final selling price of the metal or ore. It is equal to the market price minus
the costs of transport, freight, fines, smelting and royalties

The value of the block Vb shown in Figure 2 and Table 1 is calculated via the
following equation:

Vb =

{
T·(G·rec·Ps − Co − Cp) , i f G ≥ Co + Cp−Cw

Ps·rec
T·(−Cw) , f or the rest

(1)

2.2.2. Blks2 Table

The second table generated is called blks2 (Figure 3). Initially, it will have the same
tuples as the blks table, but will only contain the attributes strictly necessary to calculate
the economical cones, i.e., the attributes idx, idy, idz and the value of block Vb. This table
is related to the blks table by the “id” field. From this table, any blocks that are in an
economical cone will be removed during the process to leave only the records that follow
in the SQL resolution.

To reduce the SQL response time, it is important to use the blks2 table instead of the
source table blks, because, as mentioned before, this table, filled with only four selected
attributes, will reduce in size as we delete the blocks that are already in an economical cone.

2.2.3. Cones Table

This last table (Figure 4) will contain the cones, both economical and non-economical,
that are calculated per each and every block of ore, so the number of records in this table will
be greatly increased. This is why the number of fields has to be reduced to the minimum
possible so that the processing of the SQL is as fast as possible. Table 2 details each of the
attributes that make up the cones table.

Minerals 2023, 13, 966 6 of 20

Minerals 2023, 13, x FOR PEER REVIEW 5 of 21

G Average concentration of the chemical element of interest in the reservoir in the block. Usually expressed
as a percentage, or as grams per tonne (g/t) (equivalent to parts per million, ppm) or ounces per tonne
(oz/t)

metal The metal or chemical element content of interest in the block. Calculated by multiplying the weight of
the block by the grade

Co Mining cost of ore: drilling, blasting, loading and transportation, and grade control; this cost is usually
given on a per tonne or per cubic meter basis. It tends to be slightly higher than waste rock due to grade
control costs, and the height of the mining benches is generally smaller. The cost is generally calculated
per tonne or per cubic meter

Cw Mining cost of waste rock: drilling, blasting, loading, hauling and dumping of material at the waste
dump; the cost is generally calculated per tonne or per cubic meter

Cp Ore processing cost: crushing, milling, processing, handling of concentrates, and administrative costs
and other costs. This cost is usually calculated per tonne of ore processed

Vb Represents the value of each of the blocks. It is important to note that the value of each block should be
calculated assuming that the block is uncovered; i.e., the cost required to access the block should not be
considered in the total costs [33]. Equation (1) is used to perform the valuation for each block

ore Indicates which blocks are considered to be minerals
pout Field indicating whether a block is outside the calculation already or not; i.e., if that block is inside an

economical cone, its initial value will be = 0 (it is not inside the economical pit) or = 1 (it is inside the
economical pit)

pit Value of the selling price calculated in the optimization process
T Tonnes of the block
Ps Final selling price of the metal or ore. It is equal to the market price minus the costs of transport, freight,

fines, smelting and royalties

The value of the block Vb shown in Figure 2 and Table 1 is calculated via the fol-
lowing equation: 𝑉𝑏 ൌ ቐ 𝑇 ∙ ሺ𝐺 ∙ 𝑟𝑒𝑐 ∙ 𝑃𝑠 െ 𝐶𝑜 െ 𝐶𝑝ሻ, 𝑖𝑓 𝐺 ൒ 𝐶𝑜 ൅ 𝐶𝑝 െ 𝐶𝑤𝑃𝑠 ൉ 𝑟𝑒𝑐 𝑇 ∙ ሺെ𝐶𝑤ሻ , 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 (1)

2.2.2. Blks2 Table
The second table generated is called blks2 (Figure 3). Initially, it will have the same

tuples as the blks table, but will only contain the attributes strictly necessary to calculate
the economical cones, i.e., the attributes idx, idy, idz and the value of block Vb. This table
is related to the blks table by the “id” field. From this table, any blocks that are in an
economical cone will be removed during the process to leave only the records that follow
in the SQL resolution.

Figure 3. Table blks and blks2 and how they relate to each other.

Minerals 2023, 13, x FOR PEER REVIEW 6 of 21

Figure 3. Table blks and blks2 and how they relate to each other.

To reduce the SQL response time, it is important to use the blks2 table instead of the
source table blks, because, as mentioned before, this table, filled with only four selected
attributes, will reduce in size as we delete the blocks that are already in an economical
cone.

2.2.3. Cones Table
This last table (Figure 4) will contain the cones, both economical and

non-economical, that are calculated per each and every block of ore, so the number of
records in this table will be greatly increased. This is why the number of fields has to be
reduced to the minimum possible so that the processing of the SQL is as fast as possible.
Table 2 details each of the attributes that make up the cones table.

Figure 4. Cones table generated in PostgreSQL.

Table 2. Parameters and variables of the cones table depicted in Figure 4.

Symbol Description
bki Id of the ore block generating the cone
bkx Id of each block that is in the cone generated by the block bki
value Value of the bkx block

Therefore, if a new cone is formed by 100 blocks, 100 new records will be added to
the cones table. For example, in the two-dimensional block model in Figure 5, the ore
blocks would have an id 6 and id 7. The first cone generated would be in block id 6, and
this cone would contain the blocks id 1, id 2, id 3 and id 6 itself. The next ore block would
be id 7, and its cone would contain the blocks id 2, id 3, id 4 and id 7. Therefore, the cones
table would consist of eight records (Table 3) in the case of the example in Figure 5.

Figure 5. Two-dimensional block model.

Figure 4. Cones table generated in PostgreSQL.

Table 2. Parameters and variables of the cones table depicted in Figure 4.

Symbol Description

bki Id of the ore block generating the cone
bkx Id of each block that is in the cone generated by the block bki
value Value of the bkx block

Therefore, if a new cone is formed by 100 blocks, 100 new records will be added to the
cones table. For example, in the two-dimensional block model in Figure 5, the ore blocks
would have an id 6 and id 7. The first cone generated would be in block id 6, and this cone
would contain the blocks id 1, id 2, id 3 and id 6 itself. The next ore block would be id 7,
and its cone would contain the blocks id 2, id 3, id 4 and id 7. Therefore, the cones table
would consist of eight records (Table 3) in the case of the example in Figure 5.

Minerals 2023, 13, x FOR PEER REVIEW 6 of 21

Figure 3. Table blks and blks2 and how they relate to each other.

To reduce the SQL response time, it is important to use the blks2 table instead of the
source table blks, because, as mentioned before, this table, filled with only four selected
attributes, will reduce in size as we delete the blocks that are already in an economical
cone.

2.2.3. Cones Table
This last table (Figure 4) will contain the cones, both economical and

non-economical, that are calculated per each and every block of ore, so the number of
records in this table will be greatly increased. This is why the number of fields has to be
reduced to the minimum possible so that the processing of the SQL is as fast as possible.
Table 2 details each of the attributes that make up the cones table.

Figure 4. Cones table generated in PostgreSQL.

Table 2. Parameters and variables of the cones table depicted in Figure 4.

Symbol Description
bki Id of the ore block generating the cone
bkx Id of each block that is in the cone generated by the block bki
value Value of the bkx block

Therefore, if a new cone is formed by 100 blocks, 100 new records will be added to
the cones table. For example, in the two-dimensional block model in Figure 5, the ore
blocks would have an id 6 and id 7. The first cone generated would be in block id 6, and
this cone would contain the blocks id 1, id 2, id 3 and id 6 itself. The next ore block would
be id 7, and its cone would contain the blocks id 2, id 3, id 4 and id 7. Therefore, the cones
table would consist of eight records (Table 3) in the case of the example in Figure 5.

Figure 5. Two-dimensional block model.

Figure 5. Two-dimensional block model.

Minerals 2023, 13, 966 7 of 20

Table 3. Example of the cones table with the two-dimensional block model in Figure 5.

bki bkx Value

6 1 Vb1
6 2 Vb2
6 3 Vb3
6 6 Vb6
7 2 Vb2
7 3 Vb3
7 4 Vb4
7 7 Vb7

Thus, a cone in the cones table is identified by the attribute bki, which is the identifier
of the ore block that generates that cone. In this way, and with some simple SQL statements,
you can select the cone generated by an ore block and query the value of that cone.

3. Implementation in PostgreSQL of the Floating Cone IV Algorithm

As mentioned above, the floating cone IV algorithm [16] will be used to explain this
methodology. The floating cone IV algorithm is a more complex floating cone algorithm
(Figure 6) and, as will be demonstrated, is able to take full advantage of the SQL JOIN
clauses described above (Figure 1).

The floating cone IV algorithm (Figure 6) is characterized by presenting two main
well-differentiated parts. In the first part of the algorithm (in Figure 6 represented with red
arrows), those cones that are positive are removed from the block model, that is, it works
like a regular floating cone algorithm. The implementation of the first part of the algorithm
will be explained in Section 3.1. The second part of the algorithm (Figure 6, shown in blue
arrows) searches for cones that, although individually not positive, comply in that the
combination of two or more overlapping cones can generate positive values (Figure 7). The
implementation of the first part of the algorithm is explained in Section 3.2.

While it could be said that the floating cone method is outdated compared with the
Lerschs–Grossmann or pseudoflow methods, this is not entirely correct, as the floating
cone method has many advantages over these latter ones. Floating cone methods are
widely regarded as robust algorithms that always provide a solution and are capable of
being quickly verified in a simple way. Furthermore, floating cone methods can be easily
programmed from scratch without the need to use external optimization libraries, as is
often the case with other methods. It is important to note that, while the Lersch–Grossmann
or pseudoflow methods provide a mathematically correct solution, sometimes it is not a
viable solution from a mining operation point of view. On the other hand, although floating
cone methods do not guarantee an optimal solution, they actually give one very close to
it, with a difference within 2% [16]. Ramp and access design, or operational constraints,
among many other factors, mean that the small differences obtained using the different
methods of calculating economical open pits are not as important in the end. It is also
important to note that the geological uncertainty far exceeds the differences obtained using
the different methods, as the acceptable precision ranges of the geological modelization
when estimating economical results vary between ±30% (conceptual study) and ±10%
(feasibility study), according to [34].

In addition, floating cone methods have greater flexibility in designing algorithms
to meet operational constraints (e.g., cones with minimum widths). For all these reasons,
floating cone methods are a valid method for use in open-pit optimization.

Minerals 2023, 13, 966 8 of 20Minerals 2023, 13, x FOR PEER REVIEW 8 of 21

Figure 6. Flowchart of the floating cone IV algorithm [16]. The first part of the algorithm is repre-
sented by the red arrows. The second part of the algorithm is denoted by the blue arrows. Figure 6. Flowchart of the floating cone IV algorithm [16]. The first part of the algorithm is represented

by the red arrows. The second part of the algorithm is denoted by the blue arrows.

Minerals 2023, 13, 966 9 of 20Minerals 2023, 13, x FOR PEER REVIEW 9 of 21

Figure 7. Example of a two-dimensional block model where two negative cones give a positive
cone if studied together. While the classical floating cone algorithm does not find a positive result,
the floating cone IV algorithm obtains a final cone with a positive value.

3.1. First Part of the Algorithm
The algorithm searches for economical cones in descending order, i.e., starting from

the top level (the level with the lowest Z value) to the last level of the block model (the
level with the lowest Z value). As detailed above, the cones that are generated, whether
economical or not, are initially stored in the cones table, for which the following SQL is
executed (Algorithm 1 and Table 4):

Algorithm 1: PostgreSQL code of the first part of the floating cone IV
1: “INSERT INTO cones (bki,bkx,value)
2: (SELECT B.id as bid, A.id as aid, A.Vb FROM
3: (SELECT * FROM blks2 WHERE idz ≥ Zs) A
4: INNER JOIN (SELECT * FROM blks2 WHERE Vb > 0 AND idz = Zs) B

5: ON (ATAN(SQRT(POWER(((A.idx-B.idx) * sicex),2) + POWER(((A.idy-B.idy) * sicey),2))/((A.idz-B.idz) *
sicez + plusz)) * 180 / pi() < α))”

Table 4. Parameters and variables of the cones table depicted in Algorithm 1.

Symbol Description
A.id Id of block A, block that can be part of a cone
A.Vb Value of block A, to be stored in the cones table as value
A.idx Coordinates of the center of block A on the x-axis
A.idy Coordinates of the center of block A on the y-axis
A.idz Coordinates of the center of block A on the z-axis
B.id Id of block B, ore block that generates a cone
B.idx Coordinates of the center of block B on the x-axis
B.idy Coordinates of the center of block B on the y-axis
B.idz Coordinates of the center of block B on the z-axis
sizeX Block sizes on the x-axis
sizeY Block sizes on the y-axis
sizeZ Block sizes on the z-axis
Zs Level under study
plusz Value that allows the cone to be moved downwards (Figure 8)
α α = 90° − γ
γ Overall slope angle

An important point when generating the floating cone is where the apex of the cone
is located. This issue is rarely mentioned in the literature. For this implementation, the
variable “plusz” has been created. This variable allows for the movement of the cone
down a distance with respect to the center of the block to take into account that, if the

Figure 7. Example of a two-dimensional block model where two negative cones give a positive cone
if studied together. While the classical floating cone algorithm does not find a positive result, the
floating cone IV algorithm obtains a final cone with a positive value.

3.1. First Part of the Algorithm

The algorithm searches for economical cones in descending order, i.e., starting from
the top level (the level with the lowest Z value) to the last level of the block model (the
level with the lowest Z value). As detailed above, the cones that are generated, whether
economical or not, are initially stored in the cones table, for which the following SQL is
executed (Algorithm 1 and Table 4):

Algorithm 1: PostgreSQL code of the first part of the floating cone IV

Minerals 2023, 13, x FOR PEER REVIEW 9 of 21

Figure 7. Example of a two-dimensional block model where two negative cones give a positive

cone if studied together. While the classical floating cone algorithm does not find a positive result,

the floating cone IV algorithm obtains a final cone with a positive value.

3.1. First Part of the Algorithm

The algorithm searches for economical cones in descending order, i.e., starting from

the top level (the level with the lowest Z value) to the last level of the block model (the

level with the lowest Z value). As detailed above, the cones that are generated, whether

economical or not, are initially stored in the cones table, for which the following SQL is

executed (Algorithm 1 and Table 4):

1: “INSERT INTO cones (bki,bkx,value)

2: (SELECT B.id as bid, A.id as aid, A.Vb FROM

3: (SELECT * FROM blks2 WHERE idz ≥ Zs) A

4: INNER JOIN (SELECT * FROM blks2 WHERE Vb > 0 AND idz = Zs) B

5:
ON (ATAN(SQRT(POWER(((A.idx-B.idx) * sicex),2) + POWER(((A.idy-B.idy) * sicey),2))/((A.idz-B.idz) *

sicez + plusz)) * 180 / pi() < α))”

Table 4. Parameters and variables of the cones table depicted in Algorithm 1.

Symbol Description

A.id Id of block A, block that can be part of a cone

A.Vb Value of block A, to be stored in the cones table as value

A.idx Coordinates of the center of block A on the x-axis

A.idy Coordinates of the center of block A on the y-axis

A.idz Coordinates of the center of block A on the z-axis

B.id Id of block B, ore block that generates a cone

B.idx Coordinates of the center of block B on the x-axis

B.idy Coordinates of the center of block B on the y-axis

B.idz Coordinates of the center of block B on the z-axis

sizeX Block sizes on the x-axis

sizeY Block sizes on the y-axis

sizeZ Block sizes on the z-axis

Zs Level under study

plusz Value that allows the cone to be moved downwards (Figure 8)

α α = 90° − γ

γ Overall slope angle

An important point when generating the floating cone is where the apex of the cone

is located. This issue is rarely mentioned in the literature. For this implementation, the

variable “plusz” has been created. This variable allows for the movement of the cone

down a distance with respect to the center of the block to take into account that, if the

Table 4. Parameters and variables of the cones table depicted in Algorithm 1.

Symbol Description

A.id Id of block A, block that can be part of a cone
A.Vb Value of block A, to be stored in the cones table as value
A.idx Coordinates of the center of block A on the x-axis
A.idy Coordinates of the center of block A on the y-axis
A.idz Coordinates of the center of block A on the z-axis
B.id Id of block B, ore block that generates a cone
B.idx Coordinates of the center of block B on the x-axis
B.idy Coordinates of the center of block B on the y-axis
B.idz Coordinates of the center of block B on the z-axis
sizeX Block sizes on the x-axis
sizeY Block sizes on the y-axis
sizeZ Block sizes on the z-axis
Zs Level under study
plusz Value that allows the cone to be moved downwards (Figure 8)
α α = 90◦ − γ

γ Overall slope angle

An important point when generating the floating cone is where the apex of the cone
is located. This issue is rarely mentioned in the literature. For this implementation, the
variable “plusz” has been created. This variable allows for the movement of the cone down
a distance with respect to the center of the block to take into account that, if the center of

Minerals 2023, 13, 966 10 of 20

the block is considered the cone apex, the whole ore block could not be mined; an option to
do so would be to consider plusz = sizeZ/2 (Figure 8) as the new apex position.

Minerals 2023, 13, x FOR PEER REVIEW 10 of 21

center of the block is considered the cone apex, the whole ore block could not be mined;
an option to do so would be to consider plusz = sizeZ/2 (Figure 8) as the new apex posi-
tion.

Figure 8. Two-dimensional graphical representation of the cone generation described in Algorithm
1. The parameters used for the calculation of the cone are explained in Table 4 and in Equations (2)–
(4).

The first selection (referred to as LEFT or A) will select all blocks in the blks2 table
(Figure 3) that are at the same level or higher than the level under study (Zs) (Figure 9A),
for this purpose: A = (SELECT * FROM blks2 WHERE idz >= Zs), line 3 of Algorithm 1.
The second selection (termed RIGHT or B) will select the ore blocks (Vb >0) from the
blks2 table that are at the study level (Figure 9B), i.e., B = (SELECT * FROM blk2 WHERE
Vb >0 AND idz = Zs), line 4 of Algorithm 1.

Figure 8. Two-dimensional graphical representation of the cone generation described in Algorithm 1.
The parameters used for the calculation of the cone are explained in Table 4 and in Equations (2)–(4).

The first selection (referred to as LEFT or A) will select all blocks in the blks2 table
(Figure 3) that are at the same level or higher than the level under study (Zs) (Figure 9A),
for this purpose: A = (SELECT * FROM blks2 WHERE idz >= Zs), line 3 of Algorithm 1.
The second selection (termed RIGHT or B) will select the ore blocks (Vb >0) from the blks2
table that are at the study level (Figure 9B), i.e., B = (SELECT * FROM blk2 WHERE Vb > 0
AND idz = Zs), line 4 of Algorithm 1.

The logical condition for the union of A and B is the selection of the blocks of A that
belong to the cones of the blocks of B (Figure 9C). To determine the blocks that are located
inside a cone, two angles are taken into account; on one hand, an angle complementary to
the overall slope angle γ. This angle is called α. The second angle β is the angle shaped
by the segment formed by joining the centers of the block that creates the cone (block B)
and any block (block A) with respect to the z-axis, i.e., the vertical (Figures 8 and 10). In
such a way, those blocks of selection A that form an angle β ≤ α belong to the cone. The
calculation of angle β can be expressed as follows:

β = atan
(

H
V

)
(2)

where:
H =

2
√
((A.idx − B.idx) ∗ sizex)2 + ((A.idy − B.idy) ∗ sizey)2 (3)

V = (A.idz − B.idz) ∗ sizez + plusz (4)

Minerals 2023, 13, 966 11 of 20Minerals 2023, 13, x FOR PEER REVIEW 11 of 21

Figure 9. Two-dimensional block model: (A) graphical representation of the LEFT or A selection,
selects all the blocks of the blks2 table that are at the same level or higher than the level under study
(Zs); (B) graphical representation of the RIGHT or B selection, selects the mineral blocks (Vb > 0) of
the blks2 table that are at the level Zs; (C) graphical representation of the final result of SQL.

The logical condition for the union of A and B is the selection of the blocks of A that
belong to the cones of the blocks of B (Figure 9C). To determine the blocks that are lo-
cated inside a cone, two angles are taken into account; on one hand, an angle comple-
mentary to the overall slope angle γ. This angle is called α. The second angle β is the an-
gle shaped by the segment formed by joining the centers of the block that creates the cone
(block B) and any block (block A) with respect to the z-axis, i.e., the vertical (Figures 8 and
10). In such a way, those blocks of selection A that form an angle β ≤ α belong to the cone.
The calculation of angle β can be expressed as follows: 𝛽 ൌ 𝑎𝑡𝑎𝑛 ൬𝐻𝑉൰ (2)

where: 𝐻 ൌ ට൫ሺ𝐴. 𝑖𝑑𝑥 െ 𝐵. 𝑖𝑑𝑥ሻ ∗ 𝑠𝑖𝑧𝑒𝑥൯ଶ ൅ ൫ሺ𝐴. 𝑖𝑑𝑦 െ 𝐵. 𝑖𝑑𝑦ሻ ∗ 𝑠𝑖𝑧𝑒𝑦൯ଶమ
 (3) 𝑉 ൌ ሺ𝐴. 𝑖𝑑𝑧 െ 𝐵. 𝑖𝑑𝑧ሻ ∗ 𝑠𝑖𝑧𝑒𝑧 ൅ 𝑝𝑙𝑢𝑠𝑧 (4)

Equations (2)–(4) are defined graphically in Figures 8 and 10. This equation is
transformed into the code of line 5 of Algorithm 1, which expresses the logical condition
of belonging to the cone and transforming the angle to degrees.

Figure 9. Two-dimensional block model: (A) graphical representation of the LEFT or A selection,
selects all the blocks of the blks2 table that are at the same level or higher than the level under study
(Zs); (B) graphical representation of the RIGHT or B selection, selects the mineral blocks (Vb > 0) of
the blks2 table that are at the level Zs; (C) graphical representation of the final result of SQL.

Equations (2)–(4) are defined graphically in Figures 8 and 10. This equation is trans-
formed into the code of line 5 of Algorithm 1, which expresses the logical condition of
belonging to the cone and transforming the angle to degrees.

In this way, each mineral block of the selection RIGHT or B takes from the selection
LEFT or A the blocks that are inside its cone. The id of B, the ore block that generates the
cone, is stored in the cones table in the field bki, which is repeated in all the block records
in that cone. The id and value of the blocks of the A selection are stored in the cones table
in the fields bkx and Vb, respectively.

Once all the cones of a level have been added to the cones table, and before moving
to the next level, the cones are evaluated for a positive value. Thanks to the bki field, the
blocks that make up a cone can be quickly selected. Those blocks that are a part of an
economical cone will be removed from the cones table and from the blks2 table and will be
marked in the blks table with the value pout = 1. If any cone is detected at this stage as
economical, the algorithm will start again at the first level looking for economical cones,
since, as explained by the floating cone IV method, by removing blocks, some previously
uneconomical cones may now be economical.

Once a level has been completed, the next level down is passed, repeating the process
until the last level of the block model is reached. At this point, the first part of the floating
cone IV algorithm is finished, i.e., all the blocks that are in any economical cone have been
removed from the block model.

Minerals 2023, 13, 966 12 of 20Minerals 2023, 13, x FOR PEER REVIEW 12 of 21

Figure 10. Three-dimensional graphical representation of the algorithm’s cone generation.

In this way, each mineral block of the selection RIGHT or B takes from the selection
LEFT or A the blocks that are inside its cone. The id of B, the ore block that generates the
cone, is stored in the cones table in the field bki, which is repeated in all the block records
in that cone. The id and value of the blocks of the A selection are stored in the cones table
in the fields bkx and Vb, respectively.

Once all the cones of a level have been added to the cones table, and before moving
to the next level, the cones are evaluated for a positive value. Thanks to the bki field, the
blocks that make up a cone can be quickly selected. Those blocks that are a part of an
economical cone will be removed from the cones table and from the blks2 table and will
be marked in the blks table with the value pout = 1. If any cone is detected at this stage as
economical, the algorithm will start again at the first level looking for economical cones,
since, as explained by the floating cone IV method, by removing blocks, some previously
uneconomical cones may now be economical.

Once a level has been completed, the next level down is passed, repeating the pro-
cess until the last level of the block model is reached. At this point, the first part of the
floating cone IV algorithm is finished, i.e., all the blocks that are in any economical cone
have been removed from the block model.

Figure 10. Three-dimensional graphical representation of the algorithm’s cone generation.

3.2. Second Part of the Algorithm

At this stage of the algorithm, only the cones with a negative value will remain in the
cones table. The second part of the algorithm searches for combinations of two or more
cones that share blocks and can generate a positive value. Following a strict descending
order, the algorithm looks for, at the same level or higher, all the cones that share blocks with
the “cone under study” and that fulfill the condition that the value of the cone, removing
the blocks it shares with the “cone under study”, is ≥0 (as explained in Figure 1, this can be
carried out with the LEFT JOIN statement where b.blks is null). Those cones that contribute
with a positive value to the “cone under study” will be joined to it, and if the value of
the “cone under study” becomes positive, it will be removed from the cones table and the
process will be repeated again from the beginning. If the cone is still negative, the algorithm
continues with the next cone until the end. When all the cones have been studied without
removing any more cones from the set, the process is finished. All the blocks that have
been removed from the block model will form the ultimate pit limit. The SQL syntax of
this second part is presented in Algorithm 2 and Table 5.

Minerals 2023, 13, 966 13 of 20

Algorithm 2: PostgreSQL code of the second part of the floating cone IV

Minerals 2023, 13, x FOR PEER REVIEW 13 of 21

3.2. Second Part of the Algorithm

At this stage of the algorithm, only the cones with a negative value will remain in the

cones table. The second part of the algorithm searches for combinations of two or more

cones that share blocks and can generate a positive value. Following a strict descending

order, the algorithm looks for, at the same level or higher, all the cones that share blocks

with the “cone under study” and that fulfill the condition that the value of the cone, re-

moving the blocks it shares with the “cone under study”, is ≥0 (as explained in Figure 1,

this can be carried out with the LEFT JOIN statement where b.blks is null). Those cones

that contribute with a positive value to the “cone under study” will be joined to it, and if

the value of the “cone under study” becomes positive, it will be removed from the cones

table and the process will be repeated again from the beginning. If the cone is still nega-

tive, the algorithm continues with the next cone until the end. When all the cones have

been studied without removing any more cones from the set, the process is finished. All

the blocks that have been removed from the block model will form the ultimate pit limit.

The SQL syntax of this second part is presented in Algorithm 2 and Table 5.

Algorithm 2: PostgreSQL code of the second part of the floating cone IV

1: “SELECT SUM(value) AS vvalue

2: FROM (SELECT DISTINCT blx, valor FROM conos WHERE bki = i OR bki

3: IN (SELECT conos.bki FROM conos WHERE bki ≤ idzmax and bki <> i) A

4 LEFT JOIN (SELECT * FROM conos WHERE bki = i) B

5: ON conos.bkx = b.bkx WHERE b.bkx IS null

6: GROUP BY cones.bki HAVING SUM(cones.value) ≥ 0)) c;”

Table 5. Parameters and variables of the cones table depicted in Algorithm 2.

Symbol Description

vvale Value of the cone

Bki = i Block forming the “cone under study”

bkx Id of each block that is in that economical cone

idzmax
Maximum id value of the level under study. Allows for the selection of the blocks that are at that level or

higher in the SQL

Algorithm 2 is explained in Figure 11, where Figure 11A represents all cones re-

maining in the cones table above the idzmax level (the blocks colored with stripes belong

to two cones at a time). The red-colored blocks build the “cone under study”. The mineral

block forming the “cone under study” is defined as bki = i.

Table 5. Parameters and variables of the cones table depicted in Algorithm 2.

Symbol Description

vvale Value of the cone
Bki = i Block forming the “cone under study”
bkx Id of each block that is in that economical cone

idzmax Maximum id value of the level under study. Allows for the selection of the blocks
that are at that level or higher in the SQL

Algorithm 2 is explained in Figure 11, where Figure 11A represents all cones remaining
in the cones table above the idzmax level (the blocks colored with stripes belong to two
cones at a time). The red-colored blocks build the “cone under study”. The mineral block
forming the “cone under study” is defined as bki = i.

The LEFT or A selection of the LEFT JOIN clause, A = (SELECT cones.bki FROM cones
WHERE bki < idzmax AND bkx < > i), expressed in line 3 of Algorithm 2, selects all blocks
in the cones table above idzmax without selecting the “cone under study” (Figure 11B). It
selects only the bki field and not all fields in the cones table to perform the calculations as
quickly as possible. The selection RIGHT or B selects the blocks that form the “cone under
study”, i.e., the cone formed by the mineral block i (Figure 11C): B = (SELECT * FROM
cones WHERE bki = i), expressed in line 4 of Algorithm 2.

Thanks to the join condition, LOGICAL_CODE = (cones.blks = b.blks) WHERE b.blks
IS null, expressed in line 5 of Algorithm 2, only the blocks that are not in common with
the “cone under study” and that are in a cone that does share blocks with the “cone under
study” are selected (Figure 10D). That is, the “cone under study” (red color in Figure 11C)
shares blocks with two cones (blue and green colors in Figure 11B); therefore, the result of
the LEFT JOIN will be the blocks of the blue and green cones that are not shared with the
red “cone under study” and that are presented in Figure 11D.

These blocks are grouped by the field bki, expressed in line 6 of Algorithm 2; that is,
by the cone to which they belong, namely the blue ones on one side and the green ones on
the other, and the condition is added that the sum of the values of the blocks of each group
is: ≥0, GROUP BY cones.bki HAVING SUM(cones.value) ≥ 0. This way, the identifiers of
the blocks that add value to the “cone under study” are obtained. In other words, if the
sum of the values of the green blocks in Figure 11D is ≥0, they join the “cone under study”.
It is the same with the blue blocks, if the sum is ≥0, they join the “cone under study”.

Finally, we have to evaluate if the “cone under study” with the new blocks added is
positive. If it is positive, as in the first part of the algorithm, their blocks will be removed
from the cones table and from the blks2 table and will be marked in the blks table with the
value pout = 1. If it is negative, the algorithm continues with the next cone as the “cone
under study”, as marked in the algorithm in Figure 6.

When the algorithm has run through all the cones from the top to the bottom without
finding any cone junctions with a positive value, the process is finished. All the cones that
were removed from the set, marked in the blks table as pout = 1, will be the ones that shape
the ultimate pit.

Minerals 2023, 13, 966 14 of 20Minerals 2023, 13, x FOR PEER REVIEW 14 of 21

Figure 11. Two-dimensional block model where the steps of Algorithm 2 are graphically illustrated:
(A) The colored blocks represent the cones remaining in the cones table above the idzmax level (the
blocks colored with stripes belong to two cones at a time). The red-colored blocks form the “cone
under study”. The mineral block forming the “cone under study” is defined as bki = i. (B) Colored
blocks are selected by the LEFT selection clause of the LEFT JOIN clause, i.e., the cones above or at
the same level of idzmax and with bki other than i. (C) RIGHT selection, cone formed by ore block i.
(D) Blocks not in common with the “cone under study” but belonging to a cone sharing blocks with
the cone under study. If either of these block groupings, green or blue, gives a positive value, it will
join the “cone under study”.

The LEFT or A selection of the LEFT JOIN clause, A = (SELECT cones.bki FROM
cones WHERE bki < idzmax AND bkx < > i), expressed in line 3 of Algorithm 2, selects all
blocks in the cones table above idzmax without selecting the “cone under study” (Figure
11B). It selects only the bki field and not all fields in the cones table to perform the cal-
culations as quickly as possible. The selection RIGHT or B selects the blocks that form the
“cone under study”, i.e., the cone formed by the mineral block i (Figure 11C): B = (SE-
LECT * FROM cones WHERE bki = i), expressed in line 4 of Algorithm 2.

Figure 11. Two-dimensional block model where the steps of Algorithm 2 are graphically illustrated:
(A) The colored blocks represent the cones remaining in the cones table above the idzmax level (the
blocks colored with stripes belong to two cones at a time). The red-colored blocks form the “cone
under study”. The mineral block forming the “cone under study” is defined as bki = i. (B) Colored
blocks are selected by the LEFT selection clause of the LEFT JOIN clause, i.e., the cones above or at
the same level of idzmax and with bki other than i. (C) RIGHT selection, cone formed by ore block i.
(D) Blocks not in common with the “cone under study” but belonging to a cone sharing blocks with
the cone under study. If either of these block groupings, green or blue, gives a positive value, it will
join the “cone under study”.

4. Case Study

The deposit used to study the implementation described above is the Carles Au-Cu-
Mo Skarn, located in the northwest of the Iberian Peninsula, approximately 45 km from
Oviedo (Spain). The study area is located in the Río Narcea gold belt, one of the most
important gold mining districts in the northwest of the Iberian Peninsula (Figure 12).

Minerals 2023, 13, 966 15 of 20

Minerals 2023, 13, x FOR PEER REVIEW 15 of 21

Thanks to the join condition, LOGICAL_CODE = (cones.blks = b.blks) WHERE
b.blks IS null, expressed in line 5 of Algorithm 2, only the blocks that are not in common
with the “cone under study” and that are in a cone that does share blocks with the “cone
under study” are selected (Figure 10D). That is, the “cone under study” (red color in
Figure 11C) shares blocks with two cones (blue and green colors in Figure 11B); therefore,
the result of the LEFT JOIN will be the blocks of the blue and green cones that are not
shared with the red “cone under study” and that are presented in Figure 11D.

These blocks are grouped by the field bki, expressed in line 6 of Algorithm 2; that is,
by the cone to which they belong, namely the blue ones on one side and the green ones on
the other, and the condition is added that the sum of the values of the blocks of each
group is: ≥0, GROUP BY cones.bki HAVING SUM(cones.value) ≥ 0. This way, the iden-
tifiers of the blocks that add value to the “cone under study” are obtained. In other
words, if the sum of the values of the green blocks in Figure 11D is ≥0, they join the “cone
under study”. It is the same with the blue blocks, if the sum is ≥0, they join the “cone
under study”.

Finally, we have to evaluate if the “cone under study” with the new blocks added is
positive. If it is positive, as in the first part of the algorithm, their blocks will be removed
from the cones table and from the blks2 table and will be marked in the blks table with
the value pout = 1. If it is negative, the algorithm continues with the next cone as the
“cone under study”, as marked in the algorithm in Figure 6.

When the algorithm has run through all the cones from the top to the bottom with-
out finding any cone junctions with a positive value, the process is finished. All the cones
that were removed from the set, marked in the blks table as pout = 1, will be the ones that
shape the ultimate pit.

4. Case Study
The deposit used to study the implementation described above is the Carles

Au-Cu-Mo Skarn, located in the northwest of the Iberian Peninsula, approximately 45 km
from Oviedo (Spain). The study area is located in the Río Narcea gold belt, one of the
most important gold mining districts in the northwest of the Iberian Peninsula (Figure
12).

Figure 12. Geographical location of the Carles deposit. Figure 12. Geographical location of the Carles deposit.

The Carles deposit consists of a series of mineralizations associated with a granodiorite
intrusion [35] that fits into the lithological contact of ferruginous sandstones and carbon-
ate materials (Figure 13). The mineralizations are mainly developed as well-developed
exoskarn exploiting tectonic and stratigraphic controls [36,37]; although endoskarn has
been recorded, it is in the minority [38]. The maximum thickness of the mineralizations is
approximately 50 m, but they can decrease sharply and even disappear completely, giving
way to unmineralized marble (Figure 13) [38]. The main metallic minerals found in the
deposit are magnetite, chalcopyrite, bornite, arsenopyrite, loellingite, pyrite, pyrrhotite
and molybdenite. Gold is found as free gold and electrum, and occasionally as petzite and
calaverite [37]. The Carles deposit (Carles N and Carles E, Figure 13) was exploited by Río
Narcea Gold Mines S.A. by open-pit mining from 1998 to 2003, and from 2003 to 2006 by
underground mining. Mining activity was resumed as underground mining in 2011, and
continues to the present day by Orvana Minerals Corp.

For the case study, the Carles N orebody was modeled in three-dimensional form
prior to mining (Figure 14). The orebody modeled is a quasi-tabular body with a southeast–
northwest direction following the contact between the graniodiorite and the carbonate unit
and dipping between 55◦ and 60◦ to the north. The orebody has a lateral continuity of
approximately 425 m; vertically, it is much more irregular, with vertical continuity ranging
from 370 m to 80 m. The body thickness decreases in depth from 25 to 30 m at surface
height to 8 m in the lower levels. This modelization was developed from a database with a
total of 87 drillholes (11,712.68 m). All drillhole information used in this study is available
for free download at https://www.recmin.com/. Both the orebody modeling and the
three-dimensional block model calculation were performed using freeware RecMin Free.

The mining domain is discretized using (Figure 15) 10 × 10 × 10 m blocks, totaling
75,138 blocks. The interpolation method is anisotropic inverse distance weighting with a
quadratic exponent (IDW2). When generating the three-dimensional block model, neither
space nor geological constraints were considered in order to have a large block model
for comparative testing. Similarly, in the case of the calculation of the ultimate pit limit,
ideal conditions of Au price, costs and recoveries were considered; i.e., they were not the
actual conditions and their only purpose was to obtain comparable results using both
methods. The entire area used for the calculations is currently mined by both open-pit
and underground mining. In other words, although this study was carried out using
actual drillhole data, and the three-dimensional block model was calculated with the

https://www.recmin.com/

Minerals 2023, 13, 966 16 of 20

utmost rigor, it is only an academic exercise and should not be considered as a study for
economical purposes.

Minerals 2023, 13, x FOR PEER REVIEW 16 of 21

The Carles deposit consists of a series of mineralizations associated with a granodi-
orite intrusion [35] that fits into the lithological contact of ferruginous sandstones and
carbonate materials (Figure 13). The mineralizations are mainly developed as
well-developed exoskarn exploiting tectonic and stratigraphic controls [36,37]; although
endoskarn has been recorded, it is in the minority [38]. The maximum thickness of the
mineralizations is approximately 50 m, but they can decrease sharply and even disappear
completely, giving way to unmineralized marble (Figure 13) [38]. The main metallic
minerals found in the deposit are magnetite, chalcopyrite, bornite, arsenopyrite,
loellingite, pyrite, pyrrhotite and molybdenite. Gold is found as free gold and electrum,
and occasionally as petzite and calaverite [37]. The Carles deposit (Carles N and Carles E,
Figure 13) was exploited by Río Narcea Gold Mines S.A. by open-pit mining from 1998 to
2003, and from 2003 to 2006 by underground mining. Mining activity was resumed as
underground mining in 2011, and continues to the present day by Orvana Minerals Corp.

Figure 13. Geological map of the Carles deposit. Source: Río Narcea Gold Mines S.A.

For the case study, the Carles N orebody was modeled in three-dimensional form
prior to mining (Figure 14). The orebody modeled is a quasi-tabular body with a south-
east–northwest direction following the contact between the graniodiorite and the car-
bonate unit and dipping between 55° and 60° to the north. The orebody has a lateral
continuity of approximately 425 m; vertically, it is much more irregular, with vertical
continuity ranging from 370 m to 80 m. The body thickness decreases in depth from 25 to
30 m at surface height to 8 m in the lower levels. This modelization was developed from a
database with a total of 87 drillholes (11,712.68 m). All drillhole information used in this
study is available for free download at https://www.recmin.com/. Both the orebody
modeling and the three-dimensional block model calculation were performed using
freeware RecMin Free.

Figure 13. Geological map of the Carles deposit. Source: Río Narcea Gold Mines S.A.
Minerals 2023, 13, x FOR PEER REVIEW 17 of 21

Figure 14. Three-dimensional model of the Carles N orebody before exploitation. The information
on drillholes was provided by Río Narcea Gold Mines S.A.

The mining domain is discretized using (Figure 15) 10 × 10 × 10 m blocks, totaling
75,138 blocks. The interpolation method is anisotropic inverse distance weighting with a
quadratic exponent (IDW2). When generating the three-dimensional block model, neither
space nor geological constraints were considered in order to have a large block model for
comparative testing. Similarly, in the case of the calculation of the ultimate pit limit, ideal
conditions of Au price, costs and recoveries were considered; i.e., they were not the actual
conditions and their only purpose was to obtain comparable results using both methods.
The entire area used for the calculations is currently mined by both open-pit and under-
ground mining. In other words, although this study was carried out using actual drillhole
data, and the three-dimensional block model was calculated with the utmost rigor, it is
only an academic exercise and should not be considered as a study for economical pur-
poses.

Figure 14. Three-dimensional model of the Carles N orebody before exploitation. The information on
drillholes was provided by Río Narcea Gold Mines S.A.

Minerals 2023, 13, 966 17 of 20Minerals 2023, 13, x FOR PEER REVIEW 18 of 21

Figure 15. Three-dimensional representation of the ultimate pit calculated with RecMin Pro soft-
ware. The parameters for the calculation of the ultimate pit limit are shown in Table 5. The size of
the blocks is 10 × 10 × 10 m.

Two calculations were carried out for the comparison: the first calculation was per-
formed using RecMin Free software using the floating cone algorithm programmed in
VisualStudio.Net. The second calculation employed the floating cone IV method using.
ProsgresSQL, as seen in this paper. The software utilized for the implementation and
calculations was RecMin Pro, the evolution of RecMin Free currently under development.
The same block model has been used for both calculations. The parameters used in the
calculation of the economical open pit were as follows: 50° slope, mining cost USD 2/t,
plant cost USD 10/t, recovery 95% and selling price USD 60/g, so the internal cut-off
grade was 0.164 g/t and the cut-off breakeven was 0.211 g/t.

As can be seen in Table 6, the floating cone IV algorithm, when executed using SQL,
shows a huge improvement from hours to minutes in computation time. For the calcula-
tions, we used an MSI computer with an i7 processor, 32 GB RAM, SSD solid disk, 4 GB

Figure 15. Three-dimensional representation of the ultimate pit calculated with RecMin Pro software.
The parameters for the calculation of the ultimate pit limit are shown in Table 5. The size of the blocks
is 10 × 10 × 10 m.

Two calculations were carried out for the comparison: the first calculation was per-
formed using RecMin Free software using the floating cone algorithm programmed in
VisualStudio.Net. The second calculation employed the floating cone IV method using.
ProsgresSQL, as seen in this paper. The software utilized for the implementation and
calculations was RecMin Pro, the evolution of RecMin Free currently under development.
The same block model has been used for both calculations. The parameters used in the
calculation of the economical open pit were as follows: 50◦ slope, mining cost USD 2/t,
plant cost USD 10/t, recovery 95% and selling price USD 60/g, so the internal cut-off grade
was 0.164 g/t and the cut-off breakeven was 0.211 g/t.

As can be seen in Table 6, the floating cone IV algorithm, when executed using
SQL, shows a huge improvement from hours to minutes in computation time. For the
calculations, we used an MSI computer with an i7 processor, 32 GB RAM, SSD solid disk,
4 GB graphics card and PostgreSQL 14 installed in local mode, which is a relatively common
computer setup.

Minerals 2023, 13, 966 18 of 20

Table 6. Results obtained using the different methods.

Data Floating Cone Floating Cone IV (SQL)

Total no. of blocks 75,138 75,138
No. of pit blocks 36,782 37,078

Pit weight (t) 92,308,600.00 92,941,800.00
Ore weight (t) 33,336,000.00 33,519,000.00

Waste weight (t) 58,97,600.00 59,422,800.00
Ratio 1.769 1.773

Average ore grade (g/t) 0.983 0.981
Metal (g) 32,771,288.00 32,883,815.00

Calculation time 14 min 24 s 9 min 16 s

As can be seen in Table 6, the computation time obtained using the SQL method is
significantly lower than that obtained with the classical programming method (approxi-
mately 35% lower). It is important to keep in mind that the floating cone IV algorithm is
a much more complex algorithm than the traditional floating cone algorithm. As shown
above, the floating cone IV algorithm comprises two major parts or loops. The first part is
the classic floating cone algorithm, while the second part consists of a thorough search for
negative-valued cones to obtain a positive-valued cone. That is, by using SQL, significantly
more complex algorithms can be executed with better computation times.

5. Conclusions

Throughout this paper, we have shown how the floating cone optimization algorithm
adapts to SQL. In this new methodology, the recursive path of traditional programming is
replaced with a system of queries to the database using SQL. This novel approach in the
industry allows numerous lines of code to be eliminated from the various loops, resulting
in higher computational speed, as shown above in the case study.

The great advances in the management and processing of large databases have opened
up not only the possibility of changing the method of relating calculations with block
models to the database, but also the possibility of developing new work schemes, for
example, implementing the methodology proposed in this paper in a client/server model.
The client/server architecture would allow the calculations to be carried out on an external
server; in this scheme, only the work orders would circulate through the network, but not
the transit of data between tables. In this case, the capacity and speed of the server would
be mainly responsible for the calculation speed.

SQL is often seen as an inflexible and unfriendly programming language and is quickly
dismissed in favor of other programming languages. While this may seem true at first, after
a thorough and detailed study of SQL, one can see that it is a very flexible and powerful
tool. It is important to bear in mind that, although the SQL syntax is relatively similar
among the main RDBMS, each one has characteristics that are important to consider in
terms of optimizing the calculation times, especially in calculations that may contain tables
with tens of millions of tuples (rows).

In conclusion, we have demonstrated how SQL works as a very powerful tool allowing
the execution of complex algorithms that work with databases of three-dimensional block
models obtaining great results. Although, in this paper, this methodology has been applied
to a floating-cone-style algorithm, it can also be applied to many other algorithms whose
objective is to search a database for records that meet certain conditions.

Author Contributions: Conceptualization, C.C.F., I.D.Á. and G.A.; software, C.C.F. and I.D.Á.;
investigation, G.A.; writing—original draft preparation, G.A.; writing—review and editing, G.A.,
C.C.F. and I.D.Á. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Minerals 2023, 13, 966 19 of 20

Acknowledgments: Our sincere thanks to Río Narcea Gold Mines S.A. for providing us with the
drillhole information to be able to make the 3-D model of the deposit and the pit calculation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krzemień, A.; Fernández, P.R.; Sánchez, A.S.; Álvarez, I.D. Beyond the pan-european standard for reporting of exploration results,

mineral resources and reserves. Resour. Policy 2016, 49, 81–91. [CrossRef]
2. Rossi, M.E.; Deutsch, C.V. Mineral Resource Estimation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.

[CrossRef]
3. Glacken, I.M.; Snowden, D.V.; Edwards, A.C. Mineral resource estimation. In Mineral Resource and Ore Reserve Estimation—

The AusIMM Guide to Good Practice; Edwards, A.C., Ed.; The Australasian Institute of Mining and Metallurgy: Melbourne,
Australia, 2001; pp. 189–198.

4. Hustrulid, W.; Kuchta, M. Open Pit Mine Planning and Design. Volume 1—Fundamentals. Taylor & Francis Group: Rotterdam,
The Netherlands, 1995.

5. Armstrong, D. Planning and design of surface mines–definition of mining parameters and ultimate pit definition. In Surface
Mining, 2nd ed.; Kennedy, B.A., Ed.; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 1990; pp. 459–469.

6. Osanloo, M.; Gholamnejad, J.; Karimi, B. Long-term open pit mine production planning: A review of models and algorithms.
Int. J. Min. Reclam. Environ. 2008, 22, 3–35. [CrossRef]

7. Liu, S.; Xiao, K.; Wang, X. Three-dimensional geological property model and its visualization. Geol. Bull. China 2010, 29,
1554–1557.

8. Yao, L. Research on Three-Dimensional Property Modeling Method Based on Geostatistics; Peking University: Beijing, China, 2008.
9. Bye, A. The strategic and tactical value of a 3D geotechnical model for mining optimization, Anglo Platinum, Sandsloot open pit.

J. S. Afr. Inst. Min. Metall. 2006, 106, 97–104.
10. Bowell, R.J.; Clarkson, B.; Prestia, A.; Thorne, S.; Donkervoort, L.; Smith, J.; Gear, J.; Pennington, J.; Griffiths, R.; Kiel, C.; et al.

Sulfide Variation in the Coeur Rochester Silver Deposit: Use of Geologic Block Modeling in the Prediction and Management of
Mine Waste. Econ. Geol. 2022, 118, 527–547. [CrossRef]

11. Pana, M.T. The simulation approach to open pit design. In Proceedings of the 5th Symposium on the Application of Computers
and Operations Research in the Mineral Industries (APCOM), Tucson, AZ, USA, 10–11 March 1965; pp. ZZ1–ZZ24.

12. Carlson, T.R.; Erickson, J.D.; O’Brain, D.T.; Pana, M.T. Computer techniques in mine planning. Min. Eng. 1966, 18, 53–56.
13. Wright, A. MOVING CONE II-A simple algorithm for optimum pit limits design. In Proceedings of the 28th Symposium on the

Application of Computers and Operations Research in the Mineral Industries (APCOM), Golden, CO, USA, 20–22 October 1999;
pp. 367–374.

14. Khalou, K.R. Optimum Open Pit Design with Modified Moving Cone II Methods. J. Fac. Eng. 2007, 41, 297–307.
15. Elahi, E.; Kakaie, R.; Yusefi, A. A new algorithm for optimum open pit design: Floating cone method III. J. Min. Environ. 2012, 2,

118–125. [CrossRef]
16. Ares, G.; Castañón Fernández, C.; Álvarez, I.D.; Arias, D.; Díaz, A.B. Open Pit Optimization Using the Floating Cone Method:

A New Algorithm. Minerals 2022, 12, 495. [CrossRef]
17. David, M.; Dowd, P.A.; Korobov, S. Forecasting departure from planning in open pit design and grade control. In Proceedings of

the 12th Symposium on the Application of Computers and Operations Research in the Mineral Industries (APCOM), Boulder,
CO, USA, 7–11 April 1974; pp. F131–F142.

18. Dowd, P.A.; Onur, A.H. Open-pit optimization. 1. Optimal open-pit design. Trans. Inst. Min. Metall. 1993, 102, A95–A104.
19. Lerchs, H. Optimum design of open-pit mines. Trans CIM 1965, 68, 17–24.
20. Bai, X.; Turczynski, G.; Baxter, N.; Place, D.; Sinclair-Ross, H. Pseudoflow method for pit optimization. In Whitepaper Geovia

Whittle Dassault Systems; Dassault Systemes: Waltham, MA, USA, 2017.
21. Koenigsberg, E. The optimum contours of an open pit mine: An application of dynamic programming. In Proceedings of the 17th

Application of Computers and Operations Research in the Mineral Industry (APCOM), New York, NY, USA, 19–22 April 1982;
pp. 274–287.

22. Wilke, F.L. Determining the Optimal Untimate Pit Design for Hard Rock Open Pit Mines Using Dynamic Programming. Erzmetal
1984, 37, 139–144.

23. Yamatomi, J.; Mogi, G.; Akaike, A.; Yamaguchi, U. Selective extraction dynamic cone algorithm for three-dimensional open pit
designs. Proceedings of 25th Symposium on the Application of Computers and Operations Research in the Mineral Industries
(APCOM), Brisbane, Australia, 9–14 July 1995; Australasian Institute of Mining and Metallurgy: Carlton, VIC, Australia, 1995; pp.
267–274.

24. Denby, B.; Schofield, D. Open-pit design and scheduling by use of genetic algorithms. Trans. Inst. Min. Metall. 1994, 103, A21–A26.
25. Deutsch, M.; Dağdelen, K.; Johnson, T. An Open-Source Program for Efficiently Computing Ultimate Pit Limits: MineFlow.

Nat. Resour. Res. 2022, 31, 1175–1187. [CrossRef]
26. Nikbin, V.; Ataee-Pour, M.; Shahriar, K.; Pourrahimian, Y. A 3D approximate hybrid algorithm for stope boundary optimization.

Comput. Oper. Res. 2020, 115, 104475. [CrossRef]

https://doi.org/10.1016/j.resourpol.2016.04.008
https://doi.org/10.1007/978-1-4020-5717-5
https://doi.org/10.1080/17480930601118947
https://doi.org/10.5382/econgeo.4934
https://doi.org/10.22044/jme.2012.63
https://doi.org/10.3390/min12040495
https://doi.org/10.1007/s11053-022-10035-w
https://doi.org/10.1016/j.cor.2018.05.012

Minerals 2023, 13, 966 20 of 20

27. Yarmuch, J.L.; Brazil, M.; Rubinstein, H.; Thomas, D.A. Optimum ramp design in open pit mines. Comput. Oper. Res. 2020,
115, 104739. [CrossRef]

28. Benito, R. Open pit limit optimization through databases: An open source for data analysis and reporting services. Min. Eng.
2013, 65, 11.

29. Date, C.J. A Guide to the SQL Standard; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989.
30. Codd, E.F. A relational model of data for large shared data banks. Commun. ACM 1970, 13, 377–387. [CrossRef]
31. Ordóñez, M.P.Z.; Ríos, J.R.M.; Castillo, F.F.R. Administración de Bases de Datos con PostgreSQL; 3Ciencias: Alcoy, Spain, 2017;

Volume 19. [CrossRef]
32. Momjian, B. PostgreSQL: Introduction and Concepts; Addison-Wesley: New York, NY, USA, 2001; Volume 192.
33. Lane, K.F. The Economic Definition of Ore: Cut-off Grades in Theory and Practice; Mining Journal Books Limited: London, UK, 1988.
34. Lee, T.D. Planning and mine feasibility study—An owner perspective. In Proceedings of the 1984 NWMA Short Course “Mine

Feasibility–Concept to Completion”, Northwest Mining Association, Spokane, WA, USA, 15–17 April 1984.
35. Corretge, L.G.; Suarez, O.; Galan, G. Igneous Rocks. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Garcia, E.M., Eds.;

IGCP-Project 233; Springer: Berlin/Heidelberg, Germany, 1990; pp. 115–128. [CrossRef]
36. Boixet, L. Morfología y Mineralogía del Skarn de Carlés, Asturias. Ph.D. Thesis, University of Oviedo, Oviedo, Spain, 1993; p. 84.
37. Martín-Izard, A.; Boixet, L.; Maldonado, C. Geology and Mineralogy of the Carlés Gold-bearing Skarn. In Current Research Geology

Applied to Ore Deposits; Fenoll Hach-Ali, P., Torres-Ruiz, J., Gervilla, F., Eds.; Univerisity of Granada: Granada, Spain, 1993; pp.
499–502.

38. Martin-Izard, A.; Paniagua, A.; Garcıa-Iglesias, J.; Fuertes, M.; Boixet, L.; Maldonado, C.; Varela, A. The Carlés copper–gold–
molybdenum skarn (Asturias, Spain): Geometry, mineral associations and metasomatic evolution. J. Geochem. Explor. 2000, 71,
153–175. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cor.2019.06.013
https://doi.org/10.1145/362384.362685
https://doi.org/10.17993/IngyTec.2017.18
https://doi.org/10.1007/978-3-642-83980-1_10
https://doi.org/10.1016/S0375-6742(00)00150-3

	Introduction
	Methodology for Applying SQL to a Three-Dimensional Block Model
	SQL JOINS
	Generation of the Tables
	Blks Table
	Blks2 Table
	Cones Table

	Implementation in PostgreSQL of the Floating Cone IV Algorithm
	First Part of the Algorithm
	Second Part of the Algorithm

	Case Study
	Conclusions
	References

