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Abstract: The volcanic activity of the Xiong’er Group and its concomitant sedimentation are related
to the stretching–breakup of the Columbia supercontinent. The Dagushi Formation overlies the
Paleoproterozoic Shuangfang Formation with an angular unconformity. The Dagushi Formation, as
the earliest clastic strata of the Xiong’er Group and the first stable sedimentary cover overlying the
Archean crystalline basement in the southern margin of the North China Craton, provides tectonic
evolution information that predates Xiong’er volcanic activity. By distinguishing lithologic character-
istics and sedimentary structures, we identified that the sedimentary facies of the Dagushi Formation
were braided river delta lake facies from bottom to top. The U–Pb ages of the detrital zircons of
the Dagushi Formation can be divided into four groups: ~1905–1925, ~2154–2295, ~2529–2536, and
~2713–2720 Ma, indicating the provenance from the North China Craton basement. Based on the
geochemical characteristics of the Dagushi Formation, we suggest that the sediments accumulated
rapidly near the source, which were principally felsic in nature, and were supplemented by recycled
materials. The provenance area pointed to the underlying metamorphic crystalline basement of the
North China Craton as the main source area with an active tectonic background. The Chemical Index
of Alteration (CIA) values of the Dagushi Formation sandstone samples ranged from 60.8 to 76.7,
indicating that the source rocks suffered from slight to moderate chemic chemical weathering. The
Index of Composition Variability (ICV) values ranged from 0.8 to 1.3, which indicates the first cyclic
sediments. The vertical facies and provenance changes of the Dagushi Formation reflect a continuous
crust fracturing process that occurred in the North China Craton.

Keywords: North China Craton; Dagushi Formation; sedimentary facies; detrital zircon; geochemistry

1. Introduction

The North China Craton (NCC) is an ancient landmass with a long history covering
3.8 billion years, with evidence concerning many supercontinent events in geological his-
tory [1–6], including assembly and breakup records of the supercontinent Columbia [7–10].
Scholars think that the subduction between the eastern and western blocks occurred at
ca. 1850 Ma, thus forming a unified NCC [11–14]. After that, a volcanic sedimentary
succession, which is called the Xiong’er Group, was widely developed in the southern
margin of the NCC. The Xiong’er Group can be divided from bottom to top into the Da-
gushi Formation, Xushan Formation, Jidanping Formation, and Majiahe Formation, which
are a set of clastic rock and volcanic strata with low deformation and metamorphism. In
recent years, scholars have conducted extensive research on the Xiong’er Group in the
southern margin of the NCC using petrology, geochemistry, and chronology [6,9,12,15–35]
(Figure 1a). The chronological data of zircon uranium-lead (U–Pb) isotopes show that most
of the volcanic rocks of the Xiong’er Group were formed between 1800 and 1750 Ma [24,30].
However, the formation mechanism remains controversial [9,15–20]. To date, the main
viewpoints include an Andean-type continental margin [9,22], a passive continental margin
and rift [26–28,36,37], and an active continental margin and rift [22].
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However, research on the Xiong’er Group has focused on its volcanic lavas, while the
sedimentary rocks have not been a major subject of systematic research. Only a few scholars
have investigated the geochemical characteristics of the clastic rocks from the Dagushi
Formation [38]. Ref. [39] posited that the existence of primary glauconite in the sandstone
of the Majiahe Formation proved that the Xiong’er Group was in a marine environment
during its later stage. There is also controversy concerning the sedimentary source, which
limits the correlation between the Mesoproterozoic strata in the southern margin of the
NCC and other regions. Therefore, studies on the sedimentary environment, provenance
characteristics, and tectonic setting of early Mesoproterozoic strata in the southern margin
of the NCC are critical to reveal the evolution of paleogeography during the Proterozoic
eon (Figure 1b,c). schematic diagram of the geographical location of the Dagushi Formation
in the study area (modified from [40,41]).
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2. Geological Background

The total area of the NCC is approximately 1.6 million km2. Important components
include northern China, Bohai Bay, and Inner Mongolia [42,43]. The NCC has a long
history of geological evolution and has experienced several multi-stage tectonic evolution
events [5,26,44–49]. Furthermore, the formation of the NCC has experienced three impor-
tant geological events: the main continental crust growth at ~2.7 Ga, the cratonization event
at ~2.5 Ga, and the final formation of the NCC at ~2.0–1.8 Ga [42,50,51].

The Xiong’er Group is primarily exposed in the Zhongtiao, Xiao, Xiong’er, and Waifang
mountains [25,52]. The Xiong’er Group, as the cover of an ancient continental crust base-
ment, overlies the Archean crystalline basement or early Proterozoic strata with an un-
conformity [53]. They represent the most extensive magmatic activity that occurred after
the formation of the crystalline basement in the NCC [38,52]. The volcanic rocks are pri-
marily andesite and basaltic andesite, with a small amount of dacite, rhyolite, and minor
interlayered sedimentary rocks. Sedimentary rocks, sedimentary interbeds, and pyroclastic
rocks are limited, covering only 4.3% of the total thickness of the layer, and mainly dis-
tributed in the Dagushi Formation at the bottom and the Majiahe Formation at the top,
while only a small number of local intervals are exposed in the Xushan and Jidanping
Formations [24,38,54].

The outcrop range of sedimentary rocks in the Dagushi Formation is small, and
the thickness varies greatly. The representative section is located in Huangbeijiao and
Xiaogoubei in Shaoyuan Town, Jiyuan City, Henan Province. The Dagushi Formation in
this area overlays the biotite quartz schist of the late Neoarchean Shuangfang Formation
with an angular unconformity, and its distribution is continuous, and its largest thickness
is 189.5 m. The Dagushi Formation is also distributed in Moshigou, northern Luanchuan
County, with a maximum thickness of 92 m. The main lithology is as follows: conglomerate,
arkose sandstone, feldspathic quartz sandstone, and purple mudstone. Cross-bedding
is developed in sandstone strata. In addition, the Dagushi Formation in eastern Yuanqu
County of Shanxi Province and Luoning County of Henan Province outcrops sporadically.
In this study, the Dagushi Formation, which is completely exposed in Huangbeijiao and
Xiaogoubei north of Shaoyuan Town, Jiyuan City, was selected as the research object
(Figure 1c).

3. Analytical Methods

Two coarse- to medium-grained sandstone samples (approximately 4 kg) were col-
lected from the lowest and uppermost parts of the Dagushi Formation within the Huang-
beijiao section in Jiyuan City, southern North China, for zircon separation (Figures 1 and 2).
Zircon was separated using a heavy fluid and magnetic separator at the Hebei Institute
of Regional Geology and Mineral Resources, Langfang, China. Approximately 400 zir-
cons were hand-selected from each sample using a binocular microscope, and 177 zircons
were selected to analyze. Zircon particles were attached to adhesive tape with M257 stan-
dard [55], sealed with epoxy resin, and polished to half of their thickness. The images
of these zircons were taken using an optical microscope with transmitted and reflected
light. High-resolution cathodoluminescence imaging was performed by a scanning elec-
tron microscope using the Gatan monoCL 3 + cathodoluminescence system from Wuhan
SampleSolution Analytical Technology Co., Ltd. (Wuhan, China). Both imaging methods
were used to identify internal structures and select targets for further U–Pb analysis.

U–Pb dating and zircon trace element analysis were conducted simultaneously by
laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Detailed operat-
ing parameters and procedures for laser ablation systems, ICP-MS instruments (Wuhan
SampleSolution Analytical Technology Co., Ltd.), and data simplification can be found
in [56–58]. Laser sampling was performed using a GeoLas 2005 instrument, and an Agilent
7900 ICP-MS system (Agilent Technologies, Palo Alto, CA, USA) was used to obtain the ion
signal strength. A laser beam repetition rate of 5 Hz and an analysis point size of 24 µm
diameter were used for each analysis. Helium was used as a carrier gas, and argon was used
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as a supplementary gas. Before entering the ICP, the sample was mixed with the carrier gas
through a T-joint. The laser is equipped with an ablation system to smooth the signal, which
can produce a smooth signal even at very low temperatures and frequencies [59] (i.e., down
to 1 Hz). Each analysis consisted of approximately 20 s of background acquisition and
30 s of gas blank, followed by 50 s of sample data acquisition. The Excel-based software,
ICPMSDataCal (Ver. 10.0), performed the offline selection, unified background and signal
analysis, time trend correction of the records, quantitative element correction analysis, and
U–Pb dating [56,57,60].
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The standard zircon 91,500 was used for U–Pb dating, and two determinations were
analyzed for every five measurements. The variation of the U–Th–Pb isotope ratio with
time was corrected for every five analyses by linear interpolation [57,58]. The standard
preferred U–Th–Pb isotope ratio for 91,500 was taken from [61]. The 207Pb/206Pb age was
used for zircons greater than 1000 Ma [62]. For zircons less than 1000 Ma, the discordance
was defined as 100% × abs [1 − (206Pb/238U)/(207Pb/235U)], and for zircons greater than
1000 Ma, the discordance was defined as 100% × abs [1 − (206Pb/238Pb)/(207Pb/206Pb)].
Harmonic graphs were then generated, and the weighted average was determined using
Isoplot/Ex_ver3 software [63].

Samples were collected from sandstone and argillaceous rocks from the Dagushi
Formation in the Jiyuan area for geochemical analysis, and major elements in the sandstone
and trace elements in the argillaceous rocks were determined. After the sample was
naturally dried, it was crushed into a 200-mesh powder using a mortar. An Axiosmax X-ray
fluorescence (XRF) spectrometer (PANalytical BV, Almelo, the Netherlands) was used in
a laboratory at ALS Minerals-ALS Chemex (Guangzhou, China) Co., Ltd. in Guangdong
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Province. The whole rock major element described the detailed analysis procedure with
errors between ±1% and ±2% [64].

Trace elements, including rare earth elements (REE), were detected by an Agilent 7900
ICP-MS Inductively Coupled Plasma Mass Spectrometer in ALS Minerals-ALS Chemex
(Guangzhou, China) Co., Ltd. The analytical accuracy of trace elements exceeded 95%, and
the detection range was less than or equal to 2 ppm in most cases. The detection range of
Ba, Cr, Rb, Sr, and V was 5 ppm.

4. Results
4.1. Sedimentary Facies

We researched two sections of strata from the Mesoproterozoic Dagushi Formation
in the Jiyuan area, divided their sedimentary facies, and further analyzed their sedimen-
tary environment. Our measurements showed that the thickness of the Huangbeijiao
Section from the Dagushi Formation in the Jiyuan area was approximately 133.2 m, while
the thickness of the Xiaogoubei Section was 189.5 m (Figure 2). Our field observations
showed that the Dagushi Formation rested upon the Paleoproterozoic crystalline base-
ment unconformably and was the only sedimentary rock stratum in the Xiong’er Group.
The color, composition, and structural characteristics of sediments in this stratum had
distinct variations. In general, this stratum was a retrograding sequence which consisted
of three different sedimentary sequences from bottom to top (Figure 2). Each sequence is
summarized and described below.

Huangbeijiao Section (133.2 m).
Sequence I (71.4 m): the lithology of Sequence I in the Huangbeijiao Section was gray

and purple pebbly sandstone and medium- to coarse-grained sandstone. From bottom to
top, the grain size of sediments changed from coarse to fine with a positive rhythm, and
the roundness changed from subangular to subrounded. Sequence I had parallel bedding
formed by water ripple and large cross-bedding (Figure 3a–d) which occurred repeatedly
from bottom to top. Sandstone layers with different grain sizes constituted multiple
sedimentary cycles, and lenticular sand bodies were observed (Figure 3e). Based on the
lithologic characteristics and recognizable sedimentary structures, Sequence I exhibited
characteristics of a braided river deposit.

Sequence II (17.5 m): the lithology of Sequence II in the Huangbeijiao Section was
primarily interbedding formed by purple medium- to fine-grained sandstone, siltstone,
and mudstone (Figure 3f). The grain size was significantly smaller than that of Sequence
I, and the main bedding was small wedge-shaped cross-bedding (Figure 3g). Irregular
horizontal bedding was occasionally seen in the mudstone layers, and mud cracks were
developed in the bedding of the local mudstone layers (Figure 3h). Mud cracks were most
common in dry areas, and they were formed after silty or argillaceous sediments exposed
their water surface, lost water, became dry, and shrank, which indicated exposure to a dry
environment. Sequence II was thought to be a braided delta deposit.

Sequence III (44.3 m): the lithology of Sequence III in the Huangbeijiao Section was
purple argillaceous siltstone and mudstone, which were typical products of overbank
deposition. A significant amount of the rocks was severely weathered (Figure 3i), and there
was no sedimentary structure of fluvial origin. The lithology in this sequence began to
significantly change, and a great number of argillaceous sediments occurred. Compared to
Sequence II, the grain size continued to decrease. The roundness of the sediment grains
was mainly subrounded and occasionally subangular. Sequence III was thought to be a
shore shallow lake deposit with weak hydrokinetics and without stagnancy.

Xiaogoubei Section (189.5 m).
Sequence I (71.6 m): the lithology of Sequence I in the Xiaogoubei Section was an

interbedding of light purple medium- to thick-bedded, medium- to fine-grained sandstone
and brown thin-bedded argillaceous rock. The basal sandstone included gravel with
a diameter range from millimeters to centimeters which reflected a process in which
sediments accumulated rapidly after short-distance transportation. From bottom to top,
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this sequence demonstrated multiple normal cycle rhythmites that were thick at the bottom
and thin at the top. At the bottom of each cycle, there were pronounced scouring surfaces
and coarse-grained imbricated pebbly sandstone layers (Figure 4a). The sandstone layer
in the lower part of the cycle was characterized by large wedge- and trough-shaped cross-
bedding, graded bedding, and parallel bedding, and lenticular sand bodies were commonly
seen, which were flat at the top and convex at the bottom (Figure 4b–d). The siltstone
or argillaceous siltstone in the upper part of the cycle was primarily small cross-bedding
and wavy bedding, suggesting that it belonged to a braided river deposit with a strong
hydrodynamic force that was controlled by directional flow in shallow water.
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Sequence II (22 m): the lithology of Sequence II in the Xiaogoubei Section was a
shallow conglomerate with medium thickness and pebbly coarse sandstone at the bottom,
an interbedding of purple medium-grained sandstone and purple sandy mudstone in the
middle, and purple and gray–green silty mudstone at the top. The basal scouring surface
had a gentle slope, and the conglomerate, pebbled coarse sandstone, and sandstone all
exhibited low compositional and textural maturity with mixed sizing (Figure 4e). The
grain size of the sediments was significantly attenuated from bottom to top. Medium and
small cross-bedding, parallel bedding, and lateral accretion cross-bedding were developed
(Figure 4f,g). The sizes of various beds were smaller than those of Sequence I, suggesting
that the hydrodynamics shifted from strong to weak and the water turbulence increased.
Sequence II was determined to be a braided delta deposit.

Sequence III (95.9 m): the lithology included amaranth medium- to thick-bedded
argillaceous siltstone at the bottom, the interbedding of thick-bedded purple argillaceous
siltstone and mudstone in the middle, and gray–green coarse sandstone at the top. The
compositional maturity, sizing, and roundness of the clastic material were better than
those of Sequence II, and there was no sedimentary structure of fluvial origin; however,
there was irregular horizontal bedding in local areas (Figure 4h), which indicated weak
hydrodynamics. In addition to outcropped coarse sandstone at the top, the sediments of
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Sequence III were mostly fine-grained silty and argillaceous sediments, indicating that
the water gradually deepened. Thus, Sequence III was thought to be a shore shallow
lake deposit.
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4.2. Zircon U–Pb Geochronology

The CL images of representative zircons and their U–Pb ages are presented in
Figures 5 and 6a,c. Most zircons are polyhedral in shape. Ref. [65] introduced that the
calculation process of the age data. The analysis data are shown in Table S1, and the results
show that the confidence intervals of zircon ranged from 90% to 100%. The ICP-MS U–Pb
chronological test was performed on two sandstone samples collected from the top and
bottom of the Dagushi Formation in the Huangbeijiao section of the Jiyuan area. The
U–Pb age Concordia plot, age distribution histogram, and Th/U plot have the following
characteristics (Figure 6):

Sample DGS-02 was collected from the bottom of the Dagushi Formation in Jiyuan
(Figure 2). The age ranges of the 87 zircon grains were between 1784 and 2721 Ma. There
were two main age peaks (1905 and 2154 Ma) and three secondary peaks (2295, 2536, and
2720 Ma) (Figure 6a,b). The youngest zircon U–Pb age measured from this sample was
1784 ± 43 Ma (concordant 99%). The Th/U value was between 0.31 and 1.40. Sample
DGS-26 was collected from the top of the Dagushi Formation in Jiyuan (Figure 2). The
age ranges of the 90 zircon grains were between 1832 and 2850 Ma, with three main peaks
(2162, 2529, and 2713 Ma) and a secondary peak (1925 Ma) (Figure 6c,d). The youngest
zircon U–Pb age measured from this sample was 1832 ± 34 Ma (concordant 99%). The
Th/U value was between 0.07 and 1.22.
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4.3. Whole Rock Geochemistry

The major element compositions of the sandstones and trace element compositions
of the argillaceous rocks are listed in Table S2. The sandstone samples from the Dagushi
Formation were characterized by low SiO2 contents (45.5%–77.9%), high Fe2O3

T + MgO
contents (2.7%–12.4%), and low TiO2 contents (0.2%–0.8%). The Al2O3 and K2O contents
of the samples were 10.5%–20.4% and 1.7%–5.1%, respectively, while the MgO and Na2O
contents were 0.4%–4.1% and 0.2%–3.4%, respectively. We calculated the Chemical Index
of Alteration (CIA) = 100 [Al2O3/(Al2O3 + CaO* + Na2O + K2O)] (Table S2) [66], which
yielded values for the sandstone samples from the Dagushi Formation that varied between
60.8 and 76.7 (average value: 66.4) and are indicative of a slightly to moderately weath-
ered source [66–68] (Figure 7). We also calculated the Index of Compositional Variability
(ICV) = (Fe2O3 + K2O + Na2O + CaO + MgO+ TiO2)/Al2O3 (Table S2) in order to determine
the proportion of primary source material relative to the weathered minerals that occurred
in the sedimentary rocks [69,70]. Calculated ICV values for the Dagushi Formation sand-
stones generally varied between 0.8 and 1.3 (average value: 1). The ICV values of these
samples were greater than 1 or close to 1, which indicates the first cyclic sediments [70].
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which is the molar coefficient of oxide.

The REE test results (×10−6) and partial characteristic indices (Table S2) of the mud-
stones sample from the Dagushi Formation indicated that the total REE contents of the
mudstones ranged between 185 and 368 µg/g (average value: 258), which is greater than
the averages for the North America shale (173 µg/g). Similarly, the ΣLREE/ΣHREE values
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varied from 9 to 13 (average value: 11), which is indicative of LREE enrichment. According
to the chondrite-normalized REE patterns diagram [71] (Figure 8a), the LaN/YbN ratios
ranged from 9.32 to 15.44, and the GdN/YbN ratios ranged from 1.52 to 1.89, indicating
obvious fractionation of light and heavy REEs. δ Eu ranged from 0.56 to 0.74 (average value:
0.64), showing an obvious negative anomaly. δ Ce ranged from 0.99 to 1.12 (average value:
1.03), showing no obvious abnormality. Figure 8b shows that the LaA/YbA ratios ranged
from 1.34 to 2.22 (average value: 1.84). LREEs were slightly enriched, and the overall
content of REEs displayed a roughly synchronous change [72]. As shown in Figure 8c, the
contents of the large ion lithophile elements Ba, Nb, and Sr were depleted, and Rb, Th, La,
Ce, and Nd were enriched [71]. The contents of the transition elements, such as Ba, Rb, Y,
Sc, V, Cr, Co, and Ni, were higher than the average values of the trace elements in the UCC,
and the contents of terrigenous elements, such as Th, Zr, and Hf, were higher than their
average values in the UCC [73] (Figure 8d).
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5. Discussion
5.1. Sedimentary Provenance of the Dagushi Formation

The results of the detrital zircon from the sandstone samples (DGS-02 and DGS-26)
at the bottom of the Dagushi Formation in the Jiyuan area indicated that there were two
primary age peaks, 1908 and 2147 Ma, and three secondary peaks, 2291, 2517, and 2713 Ma
(Figure 9). This implied that the provenance was dominated by Paleoproterozoic geological
bodies, with a small number of Neoarchean ones. The age peak at 2713 Ma corresponded
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to the growth period of the Neoarchean crust [5,74–77]. In the Lushan area near Jiyuan,
Trondhjemite, Tonalite, and Granodiorite (TTG) gneiss, plagioclase amphibolite, garnet
two-pyroxene granulite, aluminum-rich and carbon-rich gneiss, marble, quartzite, etc. of
the Taihua Group (2800–2700 Ma) were widely distributed [46,49,78] (Figure 9). The age
peak at 2517 Ma corresponded to the tectonic–magmatic events of the late Neoarchean
era, which was an important stage of continental crust accretion and cratonization in the
NCC [79–83]. The detrital zircons between 2650 and 2500 Ma were likely derived from
the TTG gneiss and supracrustal rock of the Dengfeng complex [5,42,84–89] (Figure 9).
The age peaks of 2147 and 2291 Ma corresponded to multiple Paleoproterozoic active
tectonic zones which developed during 2350–1950 Ma in the NCC; for example, the Shanxi–
Henan active zone and the supracrustal rocks of the Songshan Group were formed between
2350–1960 Ma [28,51,90] (Figure 9). The age peak at 1908 Ma corresponded to tectonic–
thermal events of collision and suturing between the eastern and western blocks of North
China [2,4,91–95] (Figure 9). The ages of detrital zircons indicated that the provenance of
the Dagushi Formation was primarily the NCC basement.
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Dagushi Formation (this study); Taihua Group [46,49,78]; Dengfeng Group [86,88,89]; Songshan
Group [90]; Central Orogenic Belt [2,4,91–95].
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Based on the sandstone type discrimination diagram of log(SiO2/Al2O3)-log(Fe2O3/
K2O) [96], the sandstones of the Dagushi Formation were found to be low-maturity wacke,
litharenite sublitharenite, and arkose (Figure 10), which indicated that these sandstones in
the Jiyuan area had undergone rapid proximal accumulation.
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Figure 10. Discrimination plot of sandstone type for the Mesoproterozoic Dagushi Formation in
Jiyuan (modified after [96]).

Several trace elements and REEs of clastic sedimentary rocks were inherited from their
parent rocks and have been used to show their properties [97–100]. The discrimination
diagram of the argillaceous rock of La/Yb–Ce [101] (Figure 11a) shows that the distribution
of argillaceous rocks from the Dagushi Formation form a cluster located in the field for
intermediate and silicate rocks. The diagram of La/Sc–Co/Th [101] (Figure 11b) shows that
the argillaceous rock samples from the Dagushi Formation plot near felsic volcanic rocks.
The La/Yb–∑REE discrimination diagram of the source rock [102] (Figure 11c) reveals
that the scatter plot distribution of argillaceous rocks in the Dagushi Formation was con-
centrated in the granite field. The discrimination diagram of La/Th–Hf [103] (Figure 11d)
shows that the argillaceous rock samples of the Dagushi Formation were located near
the felsic provenance area, with only a few in the passive continental provenance and
mixed provenance areas of felsic and mafic rocks. The discrimination diagram of Zr/Sc–
Th/Sc [104] (Figure 11e) shows that the projective points of argillaceous rock samples from
the Dagushi Formation fell near the upper crust (felsic volcanic rocks). Based on regional
geological data, the felsic metamorphic crystalline basement and granitic rocks in the late
Archean–Paleoproterozoic era were widely distributed in the Wangwu Mountain area
where Jiyuan is located [24,25,105,106]. For this reason, the sources of argillaceous rocks
from the Dagushi Formation were primarily felsic in provenance. The provenance area
pointed to is the underlying metamorphic crystalline basement of the NCC.
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The diagrams of trace elements Th–Sc–Zr/10 and Th–Co–Zr/10 (Figure 12a,b) and
major elements wt(Fe2O3

T + MgO)%-wt(TiO2)% and wt(Fe2OT + MgO)%-wt(Al2O3)% /
wt(SiO2)% (Figure 12c,d) have been used to distinguish tectonic environments [98,107–112].
Based on the discrimination diagrams of Th–Sc–Zr/10 and Th–Co–Zr/10 (Figure 12a,b), the
argillaceous rock sample from the Dagushi Formation in the Jiyuan area primarily fell into
the continent island arc and active continental margin, with a few samples in the nearby
area. Based on discrimination diagrams of wt(Fe2O3

T + MgO)%-wt(TiO2)% (Figure 12c), the
sandstone samples from the Dagushi Formation in the Jiyuan area also primarily fell into the
continent island arc and active continental margin fields, with a few near the ocean island
arc field. The discrimination diagrams of wt(Fe2O3

T + MgO)%-wt(Al2O3)%/wt(SiO2)%
(Figure 12d) show that most samples fell into the active continental margin, ocean island
arc field, and nearby areas, with a few in the ocean island arc field. Thus, the above findings
indicated that the provenance area showed mixed provenance characteristics dominated by
the active tectonic setting, supplemented by the settings of an active continental margin and
island arc. The tectonic settings identified above only reflected that of the provenance area
and did not represent the tectonic settings for the formation of the Dagushi Formation. The
determination of the tectonic background during the sedimentary period of the Dagushi
Formation in the Xionger Group should refer to evidence of coeval magmatic rocks in the
Xionger Group. However, judgment of the tectonic background of the Dagushi Formation
and even the Xionger Group is still controversial. To date, the main viewpoints include an
Andean-type continental margin [9,22], passive continental margin and rift [26–28,36,37],
and active continental margin and rift [22]. Thus far, the above viewpoints have not been
unified to reach consensus.
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5.2. Tectonic and Sedimentary Implications of Dagushi Formation for the Southern NCC during
the Mesoproterozoic

The North China Craton underwent multiple periods of continuous rift development
from ~18 Ga to the Neoproterozoic. Among them, the Xiong’er Rift, located at the southern
margin of the North China Craton, represents a significant continental stretching and
fracturing event that developed in response to the rifting process of the Mesoproterozoic
Columbia supercontinent within the context of extensional tectonics. During this rift-
ing process, subsidence initially occurred in the regions of Yuanqu County—Jiyuan City,
Luoning City—Luanchuan County, and Ruzhou City, located at the southern margin of
the North China Craton (Figure 13a). Because of the difference in terrain elevation, the
felsic crystalline basement of the relatively uplifted NCC was denuded quickly, and the
product of basement denudation carried by rivers was removed from the basin margin
and deposited in the adjacent depression. The coarse clastic sediments at the bottom were
gradually superimposed and extended to the rift center, forming a set of clastic sedimentary
strata consisting of coarse clastic sandstone and argillaceous clastic rock, i.e., the Dagushi
Formation of the Xiong’er Group (Figure 13a). This was followed by large-scale and contin-
uous volcanism throughout the entire region, resulting in the formation of the giant thick
volcanic rocks of the Xiong’er Group. The clastic rock filling of the Dagushi Formation
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in the Xiong’er Rift Basin and the subsequent eruption of the Xiong’er Group volcanic
rocks originated from the tectonic setting of a continental margin rift [25,38,105,106] and
represented the beginning of multi-stage fracturing events in the NCC from the end of the
Paleoproterozoic era to the beginning of the Mesoproterozoic era, which was likely related
to the transition of the Columbia supercontinent from collage and aggregation to stretching
and fracturing.
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During the rapid sedimentary process of the Dagushi Formation in Jiyuan City, the
initial stage was characterized by braided river facies, which resulted in the formation of
sedimentary sandstones. As hydrodynamic conditions gradually weakened, the water
body became deeper, leading to the development of delta facies with sand–mud inter-
action layers. This subsequently transformed upward into mudstone-based lake facies,
and this vertical change marked the beginning of crustal fracturing and continuous sink-
ing (Figure 13b). The Dagushi Formation, located at the base of the Xiong’er Group, is
overlain by the unconformable Gaoshanhe Formation and Xiaogoubei Formation that
consist of conglomerate and mixed sandstone. These sediments indicate several regional
tectonic movements that occurred on the southern edge of North China before and after the
eruption of the Xiong’er Volcano. Meanwhile, the Dagushi Formation represents the first
regional subsidence since the Paleozoic era and distinguishes between the metamorphic
basement of the Lower Paleoproterozoic Shuangfang Formation complex and the upper
non-metamorphic Mesoproterozoic Xiong’er Group. It serves as a marker to delineate the
earliest, non-metamorphic stable sedimentary cover on the crystalline basement of the
North China Craton, which actually indicates the Paleoproterozoic and Mesoproterozoic
boundary. The age of this study boundary is ~17.84 Ga, which is ~1.84 Ga earlier than the
internationally recognized Paleoproterozoic and Mesoproterozoic boundary age.

6. Conclusions

By identifying the lithologic characteristics and sedimentary tectonics of the Dagushi
Formation in the field, we determined that from bottom to top, the sedimentary facies of
the Dagushi Formation are braided river, braid delta, and lake.

The CIA indicates a slightly to moderately weathered source, and ICV indicates the
first cyclic sediments. The U–Pb ages of the detrital zircons of the Dagushi Formation
indicate that the sediments were likely supplied by the Taihua, Dengfeng, and Songshan
Groups and the Central Orogenic Belt.

The vertical facies and provenance changes of the Dagushi Formation reflect a contin-
uous crust fracturing process that occurred in the North China Craton.
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https://www.mdpi.com/article/10.3390/min13070971/s1, Table S1: The ICP-MS U-Pb test data
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Formation in the Jiyuan area; Table S2: For the major element assemblage of sandstone and trace
element assemblage of argillaceous rock of Dagushi Formation in North China Craton.
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