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Abstract: Spatial prediction of orebody characteristics can often be challenging given the commonly
complex geological structure of mineral deposits. For example, a high nugget effect can strongly
impact variogram modelling. Geological complexity can be caused by the presence of structural
geological discontinuities combined with numerous lithotypes, which may lead to underperformance
of grade estimation with traditional kriging. Deep learning algorithms can be a practical alternative
in addressing these issues since, in the neural network, calculation of experimental variograms is not
necessary and nonlinearity can be captured globally by learning the underlying interrelationships
present in the dataset. Five different methods are used to estimate an unsampled 2D dataset. The
methods include the machine learning techniques Support Vector Regression (SVR) and Multi-Layer
Perceptron (MLP) neural network; the conventional geostatistical methods Simple Kriging (SK) and
Nearest Neighbourhood (NN); and a deep learning technique, Convolutional Neural Network (CNN).
A comparison of geologic features such as discontinuities, faults, and domain boundaries present in
the results from the different methods shows that the CNN technique leads in terms of capturing the
inherent geological characteristics of given data and possesses high potential to outperform other
techniques for various datasets. The CNN model learns from training images and captures important
features of each training image based on thousands of calculations and analyses and has good ability
to define the borders of domains and to construct its discontinuities.

Keywords: deep learning; machine learning; convolutional neural network; image reconstruction;
geostatistics; support vector regression

1. Introduction

In mining projects, in both open-pit and underground mines, 3D modelling of the
mineral deposit plays a key role that may result in both positive or negative consequences
on downstream activities such as production schedules; mine design and optimization;
resource estimation; grade-control classification; and ultimately, management of cash flows
depending on the reliability and accuracy of the model [1]. The mining steps mentioned
above are very sensitive to the resource block model, which is commonly the main source
of deviation between actual and estimated ore tonnages. The orebody evaluation of a
deposit is performed firstly by modelling geo-domains and estimating the grade in each
geo-domain [2,3]. In geo-domains, the areas of interest are first split into subdomains
according to their geological definition or sometimes grade domaining. Then, the grade is
estimated within each geo-domain. Various geostatistical techniques, including from the
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beginning of the 1970s, such as traditional interpolation approaches (e.g., kriging methods),
to more recent simulation methodologies, have been used and improved to provide more
accurate estimation of grades [4]. Although conventional methods, such as kriging or
simulation methodologies (e.g., Sequential Gaussian Simulation [5–8], joint simulation
approaches [9], and Turning Bands Simulation [10,11]) or other methods, are widely used
due to their flexibility [12], the main challenge is still addressing geological complexity in a
way that increases the accuracy of the estimation procedure. In the last two decades, the
exploration of new mineral deposits has become more challenging as new deposits are
being discovered in deeper [13–16] and more constrained geological settings.

In order to increase the knowledge of mineral systems discovered in difficult geological
settings, new tools for collecting geochemical, geophysical, and geological information
are being developed and implemented. For instance, according to Antoine Cate and
others [17], in the near future, rock physical properties will be further used as standard
data in drilling campaigns and can be collected using downhole sensors in logging tools
(DET-CRC program, Australia). These kinds of new mining tools will integrate more
data-driven procedures with the traditional exploration methods, which can be useful for
decision-making for modelling the deposit [18]. However, current traditional interpretation
tools and techniques are commonly difficult to implement with the enormous amounts
and diversity of data now being collected [17]. For this reason, newly developed machine
learning algorithms can be one of the solutions that can be beneficial in the prediction of
grades or classification of resources in complex nonlinear structured data.

In recent years, artificial neural networks (ANNs) have gained popularity for resource
estimation due to their ability to model complex relationships in sample data [19–22].
For example, Wu and Zhou [23] successfully applied the Multi-Layer Perceptron (MLP)
approach to capture the spatial distribution of ore grade. Guo [24] used trained MLP neural
networks for instant iron-ore grade estimation. Nezamolhosseini et al. [25] examined the
impact of the parameters of MLP and used the optimized network for the prediction of iron
grade. Based on a comparative study of Multi-Layer Perceptron and Ordinary Kriging [26]
to estimate the grade of the Itakpe iron ore deposit, it was observed that both methods
exhibited similar distribution patterns closely resembling the sample data. However, the
study concluded that OK proved to be a more efficient technique for re-examining the
deposit. The main challenge associated with MLP can be determining the optimal network
structure [27], which is discussed in further sections.

Unlike artificial neural networks, Support Vector Machine (SVM) has a relatively
simpler implementation, and thus, it can overcome the shortage of ANNs, defining the
network structure [27]. Much research has been conducted on the application of SVM
in the spatial prediction of grade [20,27–30]. For example, Dutta et al. [20] conducted a
comparative analysis to assess the generalization capability of neural networks, Support
Vector Machines (SVMs), and the geostatistical Ordinary Kriging (OK) method, where the
SVM-based method outperformed the other two methods in terms of accuracy. Another
comparative study [31] was conducted to estimate highly skewed gold data in the vein-type
region by using five different machine learning algorithms including SVM and geostatistical
Indicator and Ordinary Kriging. The study shows that machine learning techniques, namely
Gaussian Process Regression (GPR), followed by SVM, perform better than geostatistical
approaches [31].

In this research, five different methods, including the machine learning techniques
Support Vector Regression (SVR) and Multi-Layer Perceptron (MLP) neural network; the
conventional geostatistical methods Simple Kriging (SK) and Nearest Neighbourhood
(NN); and the proposed deep learning technique, Convolutional Neural Network (CNN),
are used in the estimation of an unsampled 2D dataset. It is important to note that this
implementation of the DL technique is an attempt, serving as a first step of a research
project in leveraging the CNN’s ability to learn from available training data. The emphasis
is on highlighting the potential of the CNN application, particularly in ongoing projects
where training data are accessible. The next sections include a methodology explanation,
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covering parameter optimization of ML techniques, training process, data preparation,
and the U-net architecture of the CNN approach. The subsequent section presents the
estimation results using different techniques, accompanied by visual representations. The
Section 4 analyses and interprets the results, highlighting the strengths, limitations, and
potential solutions of the proposed methodology.

2. Materials and Methods

An image is a visual representation of information, and technically, it is a two-
dimensional array of pixels (numbers from 0 to 255) with x and y coordinates. In this
case, a micro-X-ray fluorescence (µXRF) image of an ore sample from the George Fisher
Zn-Pb-Ag (NW Queensland, Australia) was used, as seen in Figure 1. There are several rea-
sons why µXRF images are used. First, as collected µXRF images from whole-rock samples
produce 2D maps of the elemental composition and mineralogy, different quantification
methods can be applied [32]. Moreover, the µXRF image shows similar characteristics to
a real-size geological structure by representing the vein-type shapes and the faults across
the veins, as shown in Figure 1 below. Finally, and most importantly, knowing the ground
truth (all pixels) allows for validation of the machine learning, deep learning, and other
techniques by comparing the predicted or estimated results with the actual numbers.
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Figure 1. µXRF image of an ore slab from the George Fisher mine showing potassium composition
(4096 × 1517 pixels).

In this research, one part of the potassium map was taken, as shown in Figure 2 (left),
with a 256 × 256 size; the rest of the data were used to train the CNN model. The specific
size was selected to strike a balance between capturing sufficient geological characteristics
and ensuring an adequate amount of training data for the proposed CNN method, which
is discussed more in further paragraphs. To simulate unknown samples between drillholes,
90% of the pixels were masked by removing each of the 9 columns of pixels iteratively,
as shown in Figure 2 (right). In order to ensure consistency and fair comparison of the
techniques, the dataset (imitating the drillhole samples) was split into the same training
and test subsets (80% and 20%, respectively) for SVR, MLP, and NN methods, as illustrated
in Figure 3. A fixed random seed was set before performing the split to ensure that the
same random splitting was repeated for each method. The training set was used to train
the model, while the test set was used to evaluate its performance. After the model was
validated using different parameters, the parameters corresponding to results with the least
mean squared error were obtained and used for the prediction of the whole 2D map. In the
case of the CNN, the training images were used and split similarly, with 80% for training
and 20% for testing. The complete sample data were utilized for predicting the 2D map
in the case of SK. The statistical analysis of ground truth and sample data from the input
image including the train and test subsets of input data are presented in Table 1.
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Table 1. Summary of statistical data of potassium composition.

Parameters Ground Truth Sample Data Train Subset
(80%)

Test Subset
(20%)

Number of samples 65,536 6656 5324 1332
Mean 33.50 32.57 32.82 31.55

Standard Deviation 53.75 53.02 53.41 51.42
Min 0.00 0.00 0.00 0.00
Max 255.00 255.00 255.00 255.00

2.1. Support Vector Machine

Support Vector Machines (SVMs) are broadly used in engineering disciplines, as well
as in mining and petroleum projects for reservoir characterization, permeability estimation,
rock mass classification (RMR), and estimation of other important properties of rocks like
uniaxial compressive strength (UCS) [33]. Support Vector Machines are supervised machine
learning techniques used in regression, classification tasks, and the detection of outliers.

The main principle of SVM is to define a decision boundary between different classes
or groups of variables that allows for the predictions of new labels according to the feature
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vector [34]. The decision boundaries, called hyperplanes, are located as far as possible
between different classes and the closest samples or points of the classes to the hyperplane
are called support vectors, as shown in Figure 4 [35]. In this case, a classifier is a linear
straight line that can be defined as follows:

WTx + b = −1 (1)

where W is the weight vector, b is the bias term, and x is the input feature vector. The
hyperplane must follow two main properties: (i) it is required to have the least error in the
separation of the data, and (ii) the distance between the hyperplane and the closest data
should be a maximum [33]. To address situations where data with similar features cannot
be linearly separated, margins were employed to regulate the separability between classes.
These margins were categorized as hard or soft, depending on whether the data points
were allowed to enter the margin.
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In the case of nonlinearity, the SVM used the kernel function, the objective of which was
to map input data into a higher dimensional space called Hilbert or feature space for better
generalization [36]. After mapping input data into a higher dimension, a support vector
classifier or hyperplane was created to separate the data, as demonstrated in Figure 5 [33].
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Support Vector Regression models are defined as mathematical models and several
parameters need to be determined based on the data used. However, the specific number
of parameters that highly impact the performance of the model, named as hyperparam-
eters, cannot be learned straight from the data. Generally, hyperparameters are chosen
by users based on their experience and trials. Depending on the used methods, many
hyperparameters may need to be tuned and searching for the best combination is a key
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problem. SVM algorithms may use different types of kernels that attempt to transform
the required data into the desired form. The most popular kernel functions are a linear
kernel for simple classification problems; a polynomial kernel, which is a generalized
representation of the linear kernel; a Gaussian Radial Basis Function (RBF) kernel that is
mostly used for nonlinear data; and a sigmoid kernel used mainly for neural networks.
In this experiment, the RBF was used due to its higher accuracy relative to the others,
although it is more time-consuming. In the case of the RBF SVM, the important parameters
C and Gamma were tuned to obtain the desired outcome.

The function of the C parameter is to control the error or margin of the hyperplane.
When C is small, a decision boundary with a bigger margin is set, allowing more misclas-
sifications. In contrast, a large C results in a smaller margin in the decision boundary by
minimizing the number of misclassifications.

The Gamma parameter determines how the level of influence of each training example
affects the result, with high values resulting in higher influence and low values leading to
less influence. In order to visualize the influence of these parameters, Figure 6 illustrates the
impact of the C and Gamma parameters on the decision function for a simple classification
task on the Iris flower dataset [37]. As can be observed from Figure 6, the model was
overly sensitive to the Gamma parameter. A large Gamma resulted in a small area of
influence of support vectors that includes only itself, and the C parameter had no effect,
consequently leading to overfitting. While Gamma was small, the large area of influence of
the support vectors took into consideration the whole training sample, resulting in building
constrained models that were not able to capture the complex relationship of the data [38].
Consequently, obtaining the optimal combination of the C and Gamma parameters is a
computationally intensive task that requires multiple trials and a long time.
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Optimal parameters were obtained via iterative computation using a grid search. The
parameter range was continuous and unbound; thus, the range for the C and Gamma
parameters were set manually between 0.1 and 20 and between 100 and 900, respectively.
The determination of these ranges followed an iterative process involving experimentation
with higher values of the C and Gamma parameters, leading to a reduction in the mean
squared error observed between the test and train datasets. The data was split into train
and test subsets (80% and 20%, respectively). The heatmap illustrated in Figure 7 shows
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the values of the mean squared error (MSE) between the test and training samples for a
range of C and Gamma parameters. The heatmap highlights that the lowest MSE occurred
when Gamma was around 300 and C was in the range of 9–10, as indicated by the yellow
boxes. However, when utilizing these selected parameters, the predicted values exhibited
a broader range of values that extend beyond the expected range (normalized values of
0 to 1). This can be explained by the fact that increasing the C parameter at a certain
point of Gamma does not change the set of support vectors. As the MSE does not change
significantly, decreasing the value of C was suggested since increasing the C value leads to a
longer fitting time [38]. Moreover, when Gamma was too small, the model was constrained
and did not capture the features or complexities of data. So, Gamma and C were decidedly
selected as 1000 and 1, respectively, which resulted in a relatively good MSE.

Minerals 2023, 13, x FOR PEER REVIEW 7 of 29 
 

 

Figure 6. Visualization of the influence of the C and Gamma parameters on a classification problem 

[38] (red & blue points are two classes of Iris dataset). 

Optimal parameters were obtained via iterative computation using a grid search. The 

parameter range was continuous and unbound; thus, the range for the C and Gamma pa-

rameters were set manually between 0.1 and 20 and between 100 and 900, respectively. 

The determination of these ranges followed an iterative process involving experimenta-

tion with higher values of the C and Gamma parameters, leading to a reduction in the 

mean squared error observed between the test and train datasets. The data was split into 

train and test subsets (80% and 20%, respectively). The heatmap illustrated in Figure 7 

shows the values of the mean squared error (MSE) between the test and training samples 

for a range of C and Gamma parameters. The heatmap highlights that the lowest MSE 

occurred when Gamma was around 300 and C was in the range of 9–10, as indicated by 

the yellow boxes. However, when utilizing these selected parameters, the predicted values 

exhibited a broader range of values that extend beyond the expected range (normalized 

values of 0 to 1). This can be explained by the fact that increasing the C parameter at a 

certain point of Gamma does not change the set of support vectors. As the MSE does not 

change significantly, decreasing the value of C was suggested since increasing the C value 

leads to a longer fitting time [38]. Moreover, when Gamma was too small, the model was 

constrained and did not capture the features or complexities of data. So, Gamma and C 

were decidedly selected as 1000 and 1, respectively, which resulted in a relatively good 

MSE. 

 

Figure 7. Heatmap of MSE values for different C and Gamma parameters (Yellow zones show low-

est MSE values, red zone is selected parameter). 

2.2. Multi-Layer Perceptron 

Multi-Layer Perceptron is one of the most popular and versatile supervised neural 

network algorithms and is widely used for classification and regression tasks. A common 

MLP structure consists of at least three layers of nodes: input layers that obtain inputs or 

features, hidden layers, and output layers that generate the output results, as shown in 

Figure 8. The main principle of a neural network is as follows: after input variables are 

received, all calculations are carried out by hidden layers at each node. Each node includes 

Figure 7. Heatmap of MSE values for different C and Gamma parameters (Yellow zones show lowest
MSE values, red zone is selected parameter).

2.2. Multi-Layer Perceptron

Multi-Layer Perceptron is one of the most popular and versatile supervised neural
network algorithms and is widely used for classification and regression tasks. A common
MLP structure consists of at least three layers of nodes: input layers that obtain inputs or
features, hidden layers, and output layers that generate the output results, as shown in
Figure 8. The main principle of a neural network is as follows: after input variables are
received, all calculations are carried out by hidden layers at each node. Each node includes
a processing unit, called a neuron, that computes the sum of connection weights of inputs
and passes through the nonlinear activation function to output nodes (Figure 9) [39–41].
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A neural network consists of two phases: testing and training phases. In the training
phase, the MLP is trained by supervised learning methods called back-propagation (BP)
algorithms. Back-propagation is used to update the connection weights of the neural
networks. In the testing phase, the results of the output are computed using a neural
network and the error between the calculated and desired output is then used by the back-
propagation (BP) algorithm to update the connection weights between nodes [39,42].

Multi-Layer Perceptron is a powerful feed-forward neural network that can predict
unseen data (output) based on training data (input) by using a number of fully connected
layers of nodes. The output (neuron) result is a weighted sum of inputs computed using
an activation function. Tuning the hyperparameters of a neural network is more complex
than for other machine learning algorithms. It can be divided into two parts. The first part
is similar to the search grid as it was performed in the SVR method by trying different
activation functions, optimizers, learning rates, and batch sizes. However, the second part,
tuning the architecture of the neural network, is a challenging task as it is not straightfor-
ward. The depth of the algorithm is determined by the number of hidden layers, which is
typically increased when dealing with complex data relationships. The number of neurons
in each layer defines the width of the neural network and impacts the latent space, which
is a representation of compressed data in which clusters of similar data are closer to each
other in a space [43].

The selected hyperparameters presented in Table 2 were determined based on em-
pirical evaluation and consideration of their impact on the model’s performance. The
hyperparameter alpha, which helps to control overfitting by penalizing the weights with
larger values, was selected through trials on different values starting from 0.001 to 1, and
the least MSE was observed with a 0.005 value for the alpha parameter. The rectified linear
unit (ReLU) activation function, most commonly used due to its fast performance and
simplicity on different tasks including prediction, was preferred. Moreover, this function
discards all negative values by setting related activations as 0. In the case of the solver
function, there are three options: optimizers such as “LBFGS” (limited-memory Broyden–
Fletcher–Goldgarb–Shanno algorithm), “SGD” (stochastic gradient descent), and “ADAM”
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(stochastic gradient-based optimizer). It should be noted that “ADAM” works relatively
well with big datasets; however, the number of training samples is around 5300, and the
optimizer “LBFGS” performs better and faster in this case [38]. The learning rate was set
to its default value, employing a “constant” learning rate schedule. Alternative options
such as “inverse scaling” or “adaptive” were not chosen. In “inverse scaling,” the learning
rate gradually decreases at each time step, while in “adaptive” scaling, the learning rate
remains constant until the validation score fails to improve.

Table 2. Hyperparameters of Multi-Layer Perceptron neural network.

Hidden layer size 200, 75, 50
Maximum number of iterations 40,000

Activation function RELU
Solver function LBFGS

Alpha 0.005
Learning rate Constant

The architecture of MLP used for this specific task includes three layers. Determining
the number of layers is essential, and at least 3 layers should be considered to learn a
complex representation [44]. However, selecting the number of layers is a minor part of
the larger problem as the user also needs to determine the number of neurons on each
layer. This process was performed in the same way as the SVM procedure but with a
different number of nodes in each layer, as shown in Figure 10, where the 3D heatmap
shows squared mean errors computed between the test and predicted values. The least
mean squared error was obtained when the architecture of the neural network had three
layers with 200, 75, and 50 nodes.
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2.3. Convolutional Neural Network

Deep learning technologies are becoming a hot topic in medical imaging due to the
vast range of applications, from the detection of diseases and cancer screening to specific
treatment suggestions, by replacing time-consuming manual activities [45]. Some examples
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of the application of medical image processing include the detection of diabetic retinopa-
thy [46–49], microscopical and histological elements [50,51], gastrointestinal diseases [52],
quantification of calcium in cardiac images [53], tumour detection [54,55] and detection of
Alzheimer’s and Parkinson’s disease [56–58].

In geoscience, deep learning technologies have started to be used in recent decades
in weather forecasting, detection of effects of natural disasters, predicting soil moisture,
classification of lithology, and resource estimation [59]. However, there is a lack of research
on deep learning applications in resource estimation. Several studies were performed
by combining deep learning techniques with multiple-point-statistics (MLS) simulation
methods for modelling of spatial variables, as demonstrated by Avalos and Ortiz [60,61],
where they used recursive Convolutional Neural Networks (CNN) in a MPS framework.
Another similar study was completed by Tao and Pejman with a hybrid algorithm of CNN
and MPS [62]. These pattern-based algorithms show improvements by using a CNN to fill
the gap in missing regions. In addition, Generative Adversarial Neural Network (GAN)
was used to mimic the global distribution in the case of categorical variables [63].

Among other deep learning techniques, Convolutional Neural Networks (CNN) are
used increasingly in the geoscience field due to their outstanding performance in image pro-
cessing; analyses such as segmentation, classification, and labelling; and most importantly,
image reconstruction [64–67].

In this research, CNN is used for image reconstruction tasks, and it is important to
investigate the structure of CNN. The structure of CNN consists of four parts: an input layer,
a feature extraction zone, an inference zone, and an output layer, as shown in Figure 11. The
input layer receives the image as a tensor, which is multi-dimensional data with different
structures such as vectors, scalars, and matrices. In this case, the input image dimensions
are nx, ny, nz, and nd, where x, y, and z are the spatial coordinates and d refers to the depth
or number of channels in the image. For example, a colour image would have a depth of 3,
due to its three channels: red, green, and blue.
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The feature extraction zone is a combination of convolutional and pooling layers. In
a convolutional layer, a set of convolutional filters or (learnable) kernels passes along an
input matrix, as shown in Figure 12. In this example, the 3 × 3 convolutional filter has
9 convolutional operations that are involved in a 5 × 5 input matrix. It should be noted
that the convolutional operation works separately on a different set of the 3 × 3 input
matrix and the results include 9 different values in a 3 × 3 matrix on the 1st hidden layer,
as shown in Figure 12 (right). The convolutional operation is a process of a kernel (filter)
passing over an input matrix while executing the summation of an element-wise product
of the corresponding convolutional filter (matrix 1) and input matrix (matrix 2). This kind
of process can be applied again to the 1st hidden layer and again to the last hidden layer.
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Figure 12. Convolutional layer. Example of 3 × 3 filter with (1,1) convolutional stride and without
spatial padding.

It should be noted that the CNN architecture processes an input image with a fixed size
and the practitioner defines the size of the output volume by tuning the hyperparameters
such as the filter size, convolutional stride, and spatial padding. The convolutional stride
controls the number of nodes moved in each dimension of the next input slices. For instance,
if the convolutional stride is (1,1), then the next convolutional operations starts one position
or pixel to the right, as shown in Figure 12. After moving until the right edge of the matrix,
convolutional operations start from left again but from second row. As noted in Figure 12,
the convolved feature map is reduced in size on the 1st layer. Depending on the decision to
keep the same size or to avoid a fast reduction in size, spatial padding is used. In the case
of maintaining the same size between the hidden layers, spatial padding is used, where it
pads the input with zeros around the border of the input to extend its size to 7 × 7, so that
when the convolutional kernel is performed, the output matrix has the same size as shown
in Figure 13.
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Figure 13. Convolutional layer. Example of 3 × 3 filter with (1,1) convolutional stride and with
spatial padding.

Another important function of CNN is the pooling function, which is also called
downsampling. A pooling operation partitions the input image into sub-regions and
takes either the average or maximum values from sub-regions. There are several pooling
functions, but the most widely used functions are average and max pooling [68].

Similar to the convolutional operation, the pooling operation divides the matrix in
the same way and passes along an input matrix via convolutional strides. A max pooling
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example is given in Figure 14, where the pooling operation is performed using 2 × 2 slices
and with 1 × 1 convolutional stride. As illustrated above, the pooling operation takes
the maximum value out of four given values in a 2 × 2 slice. It is very common to insert
pooling layers between convolutional layers in the CNN architecture to reduce the number
of computations and thus memory footprint. Moreover, pooling layers helps to control
overfitting of the model [69].
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After extracting the features from an input image in the extraction zone, vector repre-
sentation of the last hidden layer is used by the fully connected layers in the inference zone.
So, the output of the last hidden layer is converted to a suitable format and fed to a multi-
layer feedforward network and backpropagation is applied repeatedly on each iteration by
performing gradient descent. Gradient descent is a technique used for minimization of loss,
where it adjusts the parameters for each iteration to find the best or optimal combination of
weights and biases.

The idea of applying a CNN in resource estimation is based on the ability of the CNN
to reconstruct the missing data. It should be noted that the problem of missing data can
be divided into two classes: irregularly and regularly missing data. The former problem
means that data are missing irregularly or randomly and the later means that data are
missing periodically with the same missing gap between given samples. In this case, the
regularly missing problem is considered to imitate the drillhole samples.

2.3.1. Training Images

Before starting to work with the Convolutional Neural Network, training images
need to be prepared. There is widespread agreement that the successful application of a
deep neural network requires a large number of training images [70]. In this research, a
whole µXRF image of Zn-Pb-Ag ore from the George Fisher deposit showing the potassium
concentration was used and split into hundreds of images, with a size of 256 × 256 pixels. To
teach the CNN acceptable robustness and invariance, data augmentation was needed due
to the small number of training images. The images were rotated 90, 180, and 270 degrees
and the total number of training images after augmentation reached 1276. The input and
output of the training images are shown in Figure 15, where 90% of the pixels were masked
by removing each of the 9 columns of pixels iteratively. It should be mentioned that the
training images were used to feed the CNN model, so the target images (target maps) to be
predicted were removed from the training dataset. In other words, the CNN model did not
receive target maps as input in advance.
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2.3.2. U-Net Architecture

There is no rule about how many layers or what combination of convolutional and
pooling layers are/is required to constitute the neural network; however, the generally
accepted rule by many researchers is no less than 3 layers [71]. Specific to a given re-
construction task, a well-established group of neural networks, the U-net architecture, is
used [67]. The scheme of U-net architecture is composed of contracting and expanding
paths interpreted as encoders and decoders, as illustrated in Figure 16. As it can be seen
from the illustration, in the encoding part, an image with missing data is taken as the input
and convolutional layers continuously compute feature maps at different decreasing scales,
resulting in multi-channel feature representation. In the decoder part, the layers synthesize
or project discriminative features learned at a low resolution by the encoder onto a higher
resolution (Figure 16). The loss function is based on the mean squared error (MSE), and a
summary of the model can be seen in Table 3.
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Table 3. Model summary of the U-net structure.

Layer (Type) Output Shape Parameters

input_1 (InputLayer) [(None, 256, 256, 1)] 0
conv2d (Conv2D) (None, 256, 256, 32) 320

conv2d_1 (Conv2D) (None, 256, 256, 32) 9248
average_pooling2d (AveragePooling) (None, 128, 128, 32) 0

conv2d_2 (Conv2D) (None, 128, 128, 32) 9248
conv2d_3 (Conv2D) (None, 128, 128, 32) 9248

average_pooling2d_1 (AveragePooling) (None, 64, 64, 32) 0
up_sampling2d (UpSampling2D) (None, 128, 128, 32) 0

conv2d_4 (Conv2D) (None, 128, 128, 32) 9248
conv2d_5 (Conv2D) (None, 128, 128, 32) 9248

up_sampling2d_1 (UpSampling2) (None, 256, 256, 32) 0
conv2d_6 (Conv2D) (None, 256, 256, 32) 9248
conv2d_7 (Conv2D) (None, 256, 256, 32) 9248
conv2d_8 (Conv2D) (None, 256, 256, 1) 289

Total number of parameters 65,345
Number of trainable parameters 63,345

In a 2D CNN, the shape of the input image is typically represented as a 2-dimensional
array, commonly referred to as a matrix or tensor. The dimensions of this matrix correspond
to the height and width of the image, while the depth dimension represents the number of
channels. The batch size is the number of training images fed to the model in one iteration.
As the network does not know the batch size in advance, it is represented as None in the
model summary (Table 3). The other three numbers represent the image dimensions with
height, width, and depth. Depth of the image is the amount of colour information in each
pixel, as mentioned before. In this case, the depth of the image is one, meaning only one
channel (black and white). For instance, RGB images have 3 channels and greyscale images
have 1 channel.

The total number of parameters learnt is 63,345. The input layer has a shape of
[(None, 256, 256, 1)] and the parameter is 0, as the input layer has no learnable parameters.
In the first convolutional layer, there are 32 filters, the kernel size through the whole
network is 3 × 3, and the stride is 1. The number of parameters in the first convolutional
layer is 320 from the equation below:

Number of parameters of 1st Conv layer = ((kernel size) × stride + 1) × (number of filters) (2)

where 1 is added due to the bias term for each learned filter from the previous layer, so that

Number of parameters of 1st Conv Layer = ((3 × 3) × 1 + 1) × 32 = 320 (3)

The next convolutional layer has 9248 parameters as follows:

Number of parameters of 2nd Conv layer = ((kernel size) × stride × (number of filters from previous

layer) + 1) × (number of filters)
(4)

Number of parameters of 2nd Conv Layer = ((3 × 3) × 1 × 32 + 1) × 32 = 9248 (5)

and so on. In the second part of the U-net structure, the decoder, upsampling takes place,
which expands upon the feature dimensions to meet the size of the corresponding layers in
the first part of the U-net structure, in the encoder. So, during upsampling, simple scaling
of the image using Nearest Neighbourhood is performed with 2 × 2 scaling. In the last
convolutional layer (conv2d_8), the number of parameters is equal to 289, as follows:

Number of parameters in the last Conv layer = ((kernel size) × stride × (number of filters from previous

layer) + 1) × (number of filters)
(6)
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Number of parameters in the last Conv Layer = ((3 × 3) × 1 × 32 + 1) × 1 = 289 (7)

where the number of filters is equal to 1, so the shape of the output is [(None, 256, 256, 1)]
and the total number of all parameters is 63,345.

3. Results

The results shown are estimated or predicted maps of K (potassium) using Support
Vector Regression (SVR) (Radial Basis Function), Multi-Layer Perceptron (MLP), Nearest
Neighbourhood (NN), Convolutional Neural Network (CNN), and Simple Kriging (SK). It
should be noted that the data were normalized (0,1) and fed into the ML techniques (SVR
and MLP) as it is an important step in machine learning [68]. In the cases of Simple Kriging,
Nearest Neighbourhood, and CNN, the estimated variables and images were normalized after
the results were obtained in order to compare the techniques under the same conditions. The
sizes of all predicted maps are 256 × 256 pixels.

Simple Kriging was computed using Stanford Geostatistical Modelling Software (SGeMS),
which is an open-source computer package [72]. Nearest Neighbourhood was computed using
the Python package for Nearest Neighbourhood by Scikit Learn [38].

In Simple Kriging, the grid size is the same as the number of pixels (X: 256, Y: 256, Z: 1)
and the cell dimensions are 1 × 1 × 1. Spatial data are determined as isotropic since the
nugget effect and the range are the same for all directions. Therefore, the omni-directional
variogram was considered, as shown in Figure 17. The range of the search ellipsoid was taken
as 50 × 50 × 50, which is a little bit less than the maximum range of variogram model [73].
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Figure 17. Omnidirectional variogram for potassium (P) (red crosses are experimental
variogram data).

In the case of the Nearest Neighbourhood, the unsampled location was estimated via local
interpolation of the nearest neighbours in the training set. The optimal number of neighbours is
between 12 and 15, as accuracies between the training and test results are higher in this range.

Figure 18 illustrates the predicted map obtained using all techniques mentioned above. As
it can be inspected visually, the MLP technique produced the worst result in terms of following
the geological features (shape and structure). In the cases of SVR, NN, and SK, the results show
a smoothing effect that took place because of estimates based on the average weighted formula
of Kriging [74]. The main reasons why MLP results in a poor reinstitution of the 2D maps can
be due to a lack of consideration for the spatial structure [75] and reliance on manual feature
engineering [76]. Moreover, fully connected architectures, like MLPs, have a greater risk of
overfitting than the CNN architecture [77].
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The produced images were displaced with intervals of 0.2 (0–0.2, 0.2–0.4, 0.6–0.8, and
0.8–1.0). This classification was performed to highlight the differences and to identify areas of
high differences that are difficult to visualize in the case of regression results. Other intervals
were also considered; however, more than five classes showed less difference with the regres-
sion map. Figure 19 illustrates the classified map constructed using all techniques, where CNN
shows some fault structures represented in the original map of K.

In order to better identify the difference between the actual and predicted maps, an image
differencing technique was computed by calculating the pairwise difference between pixels of
predicted and actual classified maps. The least difference was shown in the results of Simple
Kriging and Convolutional Neural Network, as shown in Figure 20. The results shown using
MLP have about 20% difference in the region of waste, as expected. The rest of the results are
relatively satisfactory and represent the orebody region with some noise (differences) on the
map. CNN and SK show fewer relative differences that are noticeable in other methods.
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The statistical comparison of results shown in Table 4 is based on the mean squared
errors (MSE) and the regression score function (R2 score). The regression score function
is the proportion of variance in the dependent variable that is predictable from the inde-
pendent variable. The best possible regression score is 1.0, and Table 4 provides the results
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of MSE and the regression score between the predicted and actual results for SVR, MLP,
and NN. The lowest mean squared errors were obtained via CNN and SK with 0.01240
and 0.01118 values, respectively, as well as with higher regression scores, with 72.08% and
74.84%, respectively. The accuracies of the other results are lower. Despite the importance
of statistical findings, they do not accurately reflect the authentic comparison due to the
potential influence of a substantial portion of the map classified as waste, which has the
potential to yield pseudo-positive or negative results. In this case, it is important to compare
the results in ore zones, as in Figure 21, which is discussed in the next paragraph.

Table 4. Comparison table of different methods.

Methods MSE R2 Score

SVR 0.01600 0.63990
MLP 0.01518 0.65835
NN 0.01396 0.68570

CNN 0.01240 0.72084
SK 0.01118 0.74837

The results obtained in the zone of the orebody shows a slight change in the regression
score and MSE results, as shown in Table 5. As the waste zone was removed, MLP showed
the lowest accuracy, as expected, followed by NN and SVR. SK and CNN showed similar
accuracies, with 74.705% and 74.141%, respectively. In order to measure the detailed
difference between the ground truth and predicted maps, the class of each cell (or pixel cell,
1 × 1 × 1) was subtracted from the corresponding class in the original map. The subtraction
results were then summed in Table 6, where CNN showed the least difference, followed by
Simple Kriging.

Table 5. Comparison table of different methods in ore region.

Methods MSE R2 Score

SVR 0.02531 0.66323
MLP 0.02735 0.63620
NN 0.02564 0.65886

CNN 0.01944 0.74141
SK 0.01901 0.74705

Table 6. Comparison of difference between predicted and actual class maps.

SVM MLP NN CNN KRIG

2218.6 2253.0 2272.4 1884.4 1906

In order to properly validate all these techniques, 10 different maps were predicted in
the same way in different regions of the whole image, as shown in Figure 22. For the rest of
the results, the MLP technique was removed considering its inability to produce proper
estimations, as discussed above.
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Figure 21. Predicted map of K in the cut region via Simple Kriging (top right), Support Vector
Regression (Radial Basis Function) (middle left), MLP (middle right), Nearest Neighbourhood
(bottom left), and CNN (bottom right). Original cut map of K is given on top left.

By investigating all results using four different techniques, we observed that, statisti-
cally, Simple Kriging and Convolutional Neural Network performed better by showing
higher accuracy and lower mean squared errors. The Nearest Neighbourhood and Support
Vector Regression techniques returned lower accuracies and higher errors, as shown in
Figure 23, which is a summary of all the results in the different regions. Regions 4 and
9 have additional results where the waste zone was removed (named as 4 cut and 9 cut,
respectively). This was carried out to see how the performance change when a big portion
of waste zone is removed.
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Figure 23. Summary of results for different regions.

Further investigation of the estimated images shows that one of the main limitations of
CNN that is noticed within almost all regions is that the frequency distribution of predicted
values shown in the histogram results are not well reproduced. In this case, the CNN
results show frequency distributions with less range, indicating that distribution is not
reproduced well as the maximum and minimum values are squeezed. Figure 24 shows
the histograms with 10 intervals of original data, training data, and produced results from
SVM, NN, CNN, and SK in zone 1. The original data have a count of about 45,000 and
5000 samples within the first (0–0.1) and second (0.1–0.2) bins, respectively; however, CNN
has about 30,000 and 16,000 samples within the respective bins. This kind of behaviour
can be noticed in almost all examples. Consequently, this issue might lead to less accuracy
than expected.
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Figure 24. Histogram of original data (top left), train data (top right), SVM (middle left), NN
(middle right), CNN (bottom left), and SK (bottom right) from zone 1.

4. Discussion

A comparison of geologic features such as discontinuities, faults, and domain bound-
aries produced via Convolutional Neural Network (CNN), Simple Kriging (SK), Support
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Vector Regression (SVR), and Nearest Neighbourhood (NN) in different zones is shown in
Figure 25, which displays magnified sections of the predicted maps for all ten regions. In
every zone, the CNN technique leads by constructing a better representation of geology
by effectively defining domain borders and constructing discontinuities, specifically faults
within veins. Fed by the training images, the CNN is capable of capturing important
features of each training image based on thousands of calculations and analyses and has
a good ability to define borders of domains and to construct discontinuities. From all the
results from Figure 25, it can be seen that the CNN demonstrates the capability to effectively
reproduce the intrinsic characteristics of given data and shows potential superiority over
other techniques.

The main advantage of a CNN is its capability to learn local features from the input
data. A CNN is a powerful tool in image processing tasks and can capture relevant features
such as edges, corners, or textures of the image. In this case, during the training of the
model, the convolutional filters (learnable kernels) successfully captured patterns of the
data such as geological shapes including veins and faults, as it can be seen in Figure 25.
Based on the quantitative comparison of the performance from Table 6, the CNN shows the
least difference compared with the ground truth, followed by SK.

It is important to note that CNNs benefit from utilizing available training data, which
may introduce bias when comparing them with interpolation techniques and ML ap-
proaches that solely rely on sample data. However, the focus of this research is to emphasize
the potential of CNN application, particularly in ongoing projects where the training data
are accessible. Consequently, the dependence on high-quality training data is the main
challenge in the effective implementation of CNNs. Moreover, it is necessary to further
investigate the impact of different CNN architectures on their prediction ability.

Another significant challenge is the application of CNN in 3D datasets since the ulti-
mate objective of the research is to enable prediction in the 3D spatial data. For this purpose,
the research project is currently working on designing a 3D CNN architecture that will
allow 3D datasets to be used. However, the construction of an optimal 3D CNN architec-
ture that will result in the best performance is a very tedious and challenging task due to
thousands of different parameters that can be changed in the design of the architecture.
Consequently, another aim of the research is to provide a guideline to implement the CNN
approach in 3D spatial predictions.

Minerals 2023, 13, x FOR PEER REVIEW 23 of 29 
 

 

  
CNN SK 

Figure 24. Histogram of original data (top left), train data (top right), SVM (middle left), NN (mid-

dle right), CNN (bottom left), and SK (bottom right) from zone 1. 

4. Discussion 

A comparison of geologic features such as discontinuities, faults, and domain bound-

aries produced via Convolutional Neural Network (CNN), Simple Kriging (SK), Support 

Vector Regression (SVR), and Nearest Neighbourhood (NN) in different zones is shown 

in Figure 25, which displays magnified sections of the predicted maps for all ten regions. 

In every zone, the CNN technique leads by constructing a better representation of geology 

by effectively defining domain borders and constructing discontinuities, specifically faults 

within veins. Fed by the training images, the CNN is capable of capturing important fea-

tures of each training image based on thousands of calculations and analyses and has a 

good ability to define borders of domains and to construct discontinuities. From all the 

results from Figure 25, it can be seen that the CNN demonstrates the capability to effec-

tively reproduce the intrinsic characteristics of given data and shows potential superiority 

over other techniques. 

 Original CNN SK SVR NN 

Z

o

n

e 

1 
     

Z

o

n

e 

2 
     

Figure 25. Cont.



Minerals 2023, 13, 982 24 of 29Minerals 2023, 13, x FOR PEER REVIEW 24 of 29 
 

 

Z

o

n

e 

3 
     

Z

o

n

e 

4 
     

Z

o

n

e 

5 
     

Z

o

n

e 

6 
     

Z

o

n

e 

7 
     

Z

o

n

e 

8 
     

Figure 25. Cont.



Minerals 2023, 13, 982 25 of 29Minerals 2023, 13, x FOR PEER REVIEW 25 of 29 
 

 

Z

o

n

e 

9 
     

Z

o

n

e 

10 
     

Figure 25. Comparison of some random geologic features (discontinuities, faults, and domain 

boundaries) in different zones produced via Convolutional Neural Network (CNN), Simple Kriging 

(SK), Support Vector Regression (SVR), and Nearest Neighbourhood (NN). 

The main advantage of a CNN is its capability to learn local features from the input 

data. A CNN is a powerful tool in image processing tasks and can capture relevant fea-

tures such as edges, corners, or textures of the image. In this case, during the training of 

the model, the convolutional filters (learnable kernels) successfully captured patterns of 

the data such as geological shapes including veins and faults, as it can be seen in Figure 

25. Based on the quantitative comparison of the performance from Table 6, the CNN 

shows the least difference compared with the ground truth, followed by SK. 

It is important to note that CNNs benefit from utilizing available training data, which 

may introduce bias when comparing them with interpolation techniques and ML ap-

proaches that solely rely on sample data. However, the focus of this research is to empha-

size the potential of CNN application, particularly in ongoing projects where the training 

data are accessible. Consequently, the dependence on high-quality training data is the 

main challenge in the effective implementation of CNNs. Moreover, it is necessary to fur-

ther investigate the impact of different CNN architectures on their prediction ability.  

Another significant challenge is the application of CNN in 3D datasets since the ulti-

mate objective of the research is to enable prediction in the 3D spatial data. For this pur-

pose, the research project is currently working on designing a 3D CNN architecture that 

will allow 3D datasets to be used. However, the construction of an optimal 3D CNN ar-

chitecture that will result in the best performance is a very tedious and challenging task 

due to thousands of different parameters that can be changed in the design of the archi-

tecture. Consequently, another aim of the research is to provide a guideline to implement 

the CNN approach in 3D spatial predictions. 

It should be noted that the required computational time of each technique varies 

based on their implementation steps. While the prediction of the trained DL technique is 

instant, the training phase of the DL technique is the most computationally intensive and 

the time required depends on user-defined parameters such as early stopping criteria. 

Moreover, the initial weights of the model can impact training time, as they can be either 

close to or far from optimal parameters. On the other hand, ML and interpolation tech-

niques using sample data have shorter computational time. 

Once the issue with the frequency distribution highlighted above is solved, it is likely 

that the CNN will show better results than other techniques, not only by following the 

intrinsic characteristics of the geology but also statistically. 

Figure 25. Comparison of some random geologic features (discontinuities, faults, and domain
boundaries) in different zones produced via Convolutional Neural Network (CNN), Simple Kriging
(SK), Support Vector Regression (SVR), and Nearest Neighbourhood (NN).

It should be noted that the required computational time of each technique varies based
on their implementation steps. While the prediction of the trained DL technique is instant,
the training phase of the DL technique is the most computationally intensive and the time
required depends on user-defined parameters such as early stopping criteria. Moreover,
the initial weights of the model can impact training time, as they can be either close to or
far from optimal parameters. On the other hand, ML and interpolation techniques using
sample data have shorter computational time.

Once the issue with the frequency distribution highlighted above is solved, it is likely
that the CNN will show better results than other techniques, not only by following the
intrinsic characteristics of the geology but also statistically.

Considering all the results and observations, future work should focus on solving the
distribution problem of the CNN results. The main steps that could possibly solve this
limitation are as follows:

- Investigation of the CNN layers and their combination to change the output results to
follow the statistics of the input;

- Optimization of the CNN structure and hyperparameters;
- Use of more training images to be fed into the CNN model. As suggested by the

literature review, more training images lead to better results. The training images
can be expanded more by editing, flipping, and adjusting the level of saturation
and brightness;

- Post-processing steps of the result to make the distribution of predicted data follow
the distribution of input data;

- Application of other validation techniques such as statistical significance tests.

Further future work includes other project steps that aim to integrate 3D CNN into
resource estimation by creating guidelines or instructions that will aid in the construction of
3D CNN structure based on dataset characteristics. Moreover, using additional information
such as structural data, lithology, and mineralization is considered in the project scope.

5. Conclusions

This study utilizes a deep learning framework based on an encoder–decoder U-net
CNN to predict unknown sample values of potassium on 2D maps. The evaluation of
results from different methods supports the effectiveness of CNN in prediction tasks by
leveraging intrinsic data characteristics such as faults and shapes. Convolutional Neural
Networks (CNNs) offer benefits such as the ability to define borders and to capture features
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such as discontinuities, specifically faults within veins. However, they also have weaknesses
including dependence on training data, complexity in architecture design and parameter
tuning, and limited interpretability. Further research is required to explore the impact of
different CNN architectures on prediction ability and to address the distribution problem
in CNN results. It should be emphasized that results may differ when working with 3D
data. Future research should address these considerations to enhance the understanding
and applicability of DL techniques.
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