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Abstract: The Middle–Lower Yangtze Metallogenic Belt (MLYMB) hosts abundant porphyry–skarn–
stratabound-type Cu–Au–Mo deposits. Despite extensive research, the origin of the stratabound-type
deposits, which developed at the unconformity interface between the Devonian and Carbonif-
erous strata in the MLYMB, remains controversial. The primary debate centers on whether these
deposits are the result of Carboniferous sedimentary exhalative mineralization or Mesozoic magmatic–
hydrothermal mineralization. In this paper, we examine three representative deposits in the Shizishan
orefield: the Chaoshan skarn-type Au deposit, the Hucun porphyry–skarn-type Cu–Mo deposit,
and the Dongguashan Cu–(Au) deposit, which has a disputed genesis of its stratiform orebodies.
Economically important ore minerals, such as chalcopyrite, molybdenite, and pyrrhotite, and their
associated quartz and calcite, were focused on, rather than the extensively studied pyrite in the
Tongling region. The ore genesis and sources of mineralized elements in the Shizishan orefield were
investigated using H, O, C, S, Pb, and Cu isotopes. The H–O isotopic compositions of hydrothermal
quartz from the Chaoshan, Dongguashan, and Hucun deposits indicate that the ore-forming fluids
were mainly magmatic water with some meteoric water input. The C–O isotopic compositions of
calcite show a large difference from the local sedimentary carbonates. The S isotopic compositions of
sulfides reveal a magmatic sulfur signature. The Pb isotopic compositions in the three deposits are
similar to those of the Shizishan intrusions, suggesting a magmatic source for Pb. The Cu isotopic
compositions of chalcopyrite and pyrrhotite demonstrate that Cu, the primary ore-forming element,
was mainly derived from magmatic–hydrothermal fluids. The stratiform orebodies display H–O–C–
S–Pb–Cu isotopes consistent with the porphyry orebodies in the Dongguashan deposit, as well as in
the Chaoshan and Hucun deposits, indicating a common ore genesis. From these, we conclude that
the porphyry–skarn–stratabound-type Cu–Au–Mo deposits in the Shizishan orefield can be classified
as a unified Mesozoic magmatic–hydrothermal metallogenic system. The stratabound-type copper
sulfide deposits and the porphyry–skarn-type copper deposits in the MLYMB have a strong similarity
in the source and genesis of their ore-forming elements.

Keywords: H–O–C–S–Pb–Cu isotopes; magmatic–hydrothermal mineralization; ore genesis; Shizishan
Cu–Au–Mo orefield; Middle–Lower Yangtze Metallogenic Belt

1. Introduction

The Middle–Lower Yangtze Metallogenic Belt (MLYMB), a significant metallic province
in China (Figure 1), is renowned for its abundance of porphyry–skarn–stratabound-type
Cu–Au–Mo deposits [1–3] and porphyrite-type Fe deposits [4–6]. Notably, stratabound
copper sulfide deposits, such as the Xinqiao, Dongguashan, and Wushan deposits, exhibit
layered or quasi-layered mineralization occurring at the unconformable interface between
Carboniferous carbonate strata and Devonian siliceous strata. The origin of these deposits
has been a subject of considerable debate with two main viewpoints. One proposes that
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the stratabound copper sulfide deposits primarily represent Carboniferous exhalative mas-
sive sulfide layers that have been modified and overprinted by Mesozoic magmas and
hydrothermal fluids [7–11], while the other suggests that a substantial deposition of pyrite
occurred during the Carboniferous, while Cu, Au, and Mo were supplied by Mesozoic
magmatic–hydrothermal processes [1,2,12–20].
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From the mineral assemblages, it can be observed that massive sulfides, tuffaceous
rocks, hydrothermal breccias, laminated pyrite, and argillaceous limestone at the bottom
of the Carboniferous strata are components of submarine sediments [21], confirming the
presence of exhalative sedimentation. Some scholars have compared the sulfur isotope
ratios of pyrite in the stratabound-type deposits and regional sulfates, which also support
the theory that their origin is exhalative sedimentation [22,23]. However, other researchers
have obtained sulfur isotope values of sulfides in the stratabound-type deposits that
indicate deep magmatic sources [13,17,20,24]. Based on the Rb–Sr and Re–Os isotope dating
of pyrite in the stratabound-type deposits, two sets of ages have been identified: one for the
Carboniferous period [10,22,25] and the other for the Mesozoic period [26–28], suggesting at
least two episodes of hydrothermal events for pyrite precipitation. Nevertheless, the Re–Os
isotope ages of molybdenite consistently show a Mesozoic mineralization age [29–31],
and U–Pb dating results of hydrothermal apatite and hematite also support the theory
of Mesozoic magmatic–hydrothermal mineralization [19]. Evidently, previous studies
on pyrite in the stratabound-type deposits have often yielded contradictory conclusions.
This may be attributed to the generation of pyrite during multiple geological events and
its potential modification by later magmatic–hydrothermal fluids. Hence, the main ore
minerals related to Cu, Au, and Mo, such as chalcopyrite, molybdenite, and pyrrhotite,
may offer more reliable insights into the mineralization processes.

The Tongling region is an important district of Cu–Au–Mo mineralization in the
MLYRMB. Situated in the western part of the Tongling region, the Shizishan orefield hosts
several porphyry–skarn–stratabound-type Cu–Au–Mo deposits (Figure 1). Our research
focuses on three representative deposits within the Shizishan orefield: the Chaoshan
deposit, characterized as a skarn-type Au deposit [32,33]; the Hucun deposit, recognized as
a porphyry–skarn-type Cu–Mo deposit [34,35]; and the Dongguashan deposit, which is a
Cu–(Au) deposit with a disputed genesis of its stratiform orebodies [24,36]. Stable isotopic
compositions have proven to be effective in identifying the sources of mineralized elements
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and elucidating ore genesis. In this study, instead of examining extensively studied pyrite
in the Tongling region, we concentrate on economically important ore minerals, including
chalcopyrite, molybdenite, and pyrrhotite, as well as their associated quartz and calcite.
We have utilized sulfur, carbon, oxygen, hydrogen, lead, and copper isotopic compositions
to investigate the ore genesis and sources of mineralized elements in the Shizishan orefield.
The newly obtained data significantly contribute to enhancing our understanding of the
genesis of stratabound copper sulfide deposits within the MLYMB.

2. Geology Background
2.1. Regional Geology

As shown in Figure 1, the MLYMB is positioned on the northern margin of the Yangtze
Block and to the east of the Qinling–Dabie orogenic belt and the North China Block. The
geodynamic evolution of the MLYMB can be attributed to several key events, including the
formation of a Precambrian metamorphic basement, the deposition of Paleozoic–Mesozoic
sedimentary rocks, and the Middle Triassic collision between the North China Block
and the Yangtze Block [1]. During the Late Jurassic to Early Cretaceous, post-collisional
extension caused lithospheric delamination and resulted in extensive magmatism [37,38].
Concurrently, the Paleo–Pacific plate subducted beneath eastern China [39,40]. These
large-scale Mesozoic magmatic–hydrothermal activities led to the formation of numerous
plutons with Cu, Au, Fe, and Mo mineralization.

The Shizishan orefield is located to the west of the Tongling region (Figure 1). In
this area, the main exposed strata consist of Triassic carbonates. The Mesozoic intrusions,
covering an outcrop area of approximately 3.0 km2, primarily consist of pyroxene diorite,
quartz diorite, and granodiorite [13]. The spatial distribution of several Au and Cu–(Mo)
deposits in close proximity to these intrusions indicates a significant relationship between
mineralization and magma intrusive activities (Figure 2).
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2.2. Chaoshan Au Deposit

Situated in the central part of the Shizishan orefield, the Chaoshan Au deposit is
classified as a skarn-type deposit [33,41]. The Au-mineralized intrusion in Chaoshan pre-
dominantly comprises pyroxene diorite, characterized by approximately 70% plagioclase,
10% pyroxene, 15% hornblende, and 5% biotite [32]. Skarns, exhibiting a typical prograde
mineralogy of garnet, diopside, and scapolite, are found in or near the contact zone between
the pyroxene diorite intrusions and the adjacent limestone sediments (Figure 3A). The
absence of magnetite and hematite, coupled with the abundance of pyrrhotite, indicates
the reducing type of the skarns [42].
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in the Shizishan orefield (modified from [14]).

The deposit includes ten orebodies that predominantly exhibit a lenticular and podi-
form shape, located along the intrusion–sedimentary contact zone. Gold mineralization
mainly occurred as native Au inclusions within pyrrhotite, pyrite, arsenopyrite, chalcopy-
rite, and sphalerite, with pyrrhotite being the prime carrier mineral (Figure 4A–C). The gold
grades range from 6 to 38 g/t, with an average of 18.4 g/t [14]. The Re–Os isochron age of
the Au-bearing pyrrhotite is determined to be 141.7 ± 9.9 Ma [41], which aligns with the
zircon U–Pb age of the associated pyroxene diorite (139.6 ± 2.1) [14]. These ages support a
close genetic relationship between the pyroxene diorite and the Au mineralization.
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Figure 4. Photomicrographs of the ore minerals in the Chaoshan deposit (A–C), the Dong-
guashan deposit (D–F), and the Hucun deposit (G–I). Abbreviations: Py = pyrite; Po = pyrrhotite;
Cp = chalcopyrite; Sp = sphalerite; Mt = magnetite; Mo = molybdenite; Q = quartz. (A) Pyrrhotite
replaced pyrite. (B) Native Au inclusion in chalcopyrite. (C) Native Au and chalcopyrite inclu-
sions in pyrrhotite. (D) Pyrite was dissolved and replaced by chalcopyrite–quartz vein. (E) Mag-
netite was replaced by chalcopyrite–pyrrhotite aggregate. (F) Chalcopyrite–sphalerite vein across
pyrite. (G) Chalcopyrite replaced pyrite. (H) Chalcopyrite distributed along cracks in quartz crystal.
(I) Chalcopyrite coexisted with molybdenite in quartz vein.

2.3. Hucun Cu–Mo Deposit

The Hucun Cu–Mo deposit is situated in the southern part of the Shizishan orefield.
The Hucun granodiorite (140.9 ± 1.2 Ma) [43], which intruded Carboniferous–Triassic
sedimentary strata (Figure 3B), is closely associated with the Cu–Mo mineralization. The
granodiorite comprises approximately 40% plagioclase, 25% quartz, 15% K-feldspar, 15%
hornblende, and 5% biotite [32].

The deposit is divided into two categories: shallow Cu orebodies and deep Cu–Mo
orebodies. The shallow orebodies, which are located in the contact zone between the
granodiorite and carbonate wall-rocks, exhibit characteristics indicative of skarn-type
mineralization [14]. The deep orebodies are distributed within the granodiorite and the
granodiorite–carbonate contact zone, occurring at a depth of more than 1000 m below
the current surface (Figure 3B), characterized as a mixture genesis of porphyry-type and
skarn-type. The Cu grade ranges from 0.4 to 0.8%, while the Mo grade ranges from 0.07
to 0.12% [34]. The main ore minerals include chalcopyrite, pyrite, molybdenite, and other
sulfides (Figure 4G–I). Molybdenite in the mineralized intrusion exhibits a Re–Os isochron
age of 139.5 ± 1.1 Ma [44], representing the ore-forming age.

2.4. Dongguashan Cu–(Au) Deposit

The Dongguashan Cu–(Au) deposit is located to the north of the Shizishan orefield.
The exposed strata in the mining area consist of Triassic carbonates. The ore-bearing se-
quence comprises Upper Devonian sandstone and shale, Middle–Upper Carboniferous
limestone (Figure 3C), and Lower Permian limestone, quartzite, and skarn. The Dong-
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guashan intrusion consists of medium- to coarse-grained quartz diorite, with approximately
60% plagioclase, 15% quartz, 15% hornblende, 5% biotite, and 5% K-feldspar [32]. The
zircon U–Pb age of the Dongguashan intrusion ranges from 136 to 142 Ma [11,14].

Based on mineral exploration findings, the deposit includes four types of orebodies:
stratiform type, porphyry type, skarn type, and vein-like type [45]. Among these, the
stratiform type is considered the most significant [24]. The stratiform orebodies occur in
the Middle–Upper Carboniferous limestone and the unconformity interface between the
Upper Devonian quartz sandstone and the Middle–Upper Carboniferous limestone. The
thickness of the orebodies near the intrusion is substantial, gradually thinning as they move
away from the intrusion until they are eventually pinched out (Figure 3C). The stratiform
orebodies contain pyrrhotite, pyrite, and chalcopyrite (Figure 4D), and very little native
gold [13]. There is no conclusive evidence to determine whether the stratiform orebodies
were formed during the Carboniferous or the Mesozoic. The porphyry orebodies occur in
the intrusion, primarily comprising pyrite, chalcopyrite, and pyrrhotite as the ore minerals
(Figure 4F). Skarn-type ore bodies are mainly distributed in the contact zone between the
intrusion and carbonate, and their primary ore minerals include chalcopyrite, magnetite,
pyrrhotite, and pyrite (Figure 4E) [24]. Besides the stratiform orebodies, the formation
ages of other types of ore bodies are consistent with the age of the Dongguashan intrusion,
occurring approximately around 140 Ma [13,36].

3. Sampling and Analytical Methods
3.1. Samples

Samples of the Chaoshan deposit were collected from the ZK-5 drill core and under-
ground adits of −120 m below sea level. For the Dongguashan deposit, samples were
obtained from the ZK-905 drill core and underground adits of −700 m, −750 m, and
−850 m below sea level. Regarding the Hucun deposit, samples were extracted from the
ZK-941 and ZK-945 drill cores. The collected hand specimens were crushed to a particle
size of 300 µm and then carefully handpicked under a binocular microscope. Chalcopy-
rite, pyrrhotite, molybdenite, quartz, and calcite were selected and ground to 60 µm size
for isotopic analysis. X-ray diffraction analysis was performed on the samples to ensure
>99% purity.

3.2. Analytical Methods

Hydrogen and oxygen isotope analyses of quartz were performed with a Thermo
Scientific Finnigan MAT-253 mass spectrometer at the Analytical Laboratory of Beijing
Research Institute of Uranium Geology, Beijing, China. Oxygen was liberated from quartz
through a reaction with BrF5 and subsequently reacted with graphite rods to produce
CO2 [46]. The water within the fluid inclusions in the quartz samples was released by
heating the samples to temperatures above 500 ◦C in an induction furnace. The fluid
inclusions were then reacted with zinc powder to generate H2 [47]. The H–O isotopic data
were reported in per mil units relative to V-SMOW. The precision values were ±0.2‰ (2σ)
for δ18O and ±2‰ (2σ) for δD.

Carbon and oxygen isotope analyses of calcite, as well as sulfur isotope analyses
of sulfides, were conducted using a Finnigan MAT-253 mass spectrometer at the State
Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences. The calcite
samples underwent a reaction with pure phosphoric acid to generate CO2 [48]. The results
were reported in per mil units relative to the V-PDB standard, with a precision of ±0.2‰
(2σ) for δ18O and ±0.1‰ (2σ) for δ13C. To obtain the sulfur isotopic ratios, the sulfides
were reacted with Cu2O powder to produce SO2 [49]. The sulfur isotopic ratios were given
in per mil units relative to the V-CDT standard with a precision of ±0.2‰ (2σ).

Lead isotope analyses of sulfides were analyzed with an MicroMass ISOPROBE-T
Thermal Ionization Mass Spectrometer (TIMS) at the State Key Laboratory of Geological
Process and Mineral Resources, China University of Geosciences, Beijing, China. The Pb
was separated and purified using a cation-exchange technique, following the procedure
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of [50], with diluted HBr used as the eluant. The analytical precision was better than
±0.005‰ for 208Pb/206Pb (2σ).

Copper isotope compositions of chalcopyrite and pyrrhotite were analyzed with a
Thermo Scientific Neptune Plus multiple collector inductively coupled plasma mass spec-
trometer (MC-ICP-MS) at the State Key Laboratory of Geological Process and Mineral
Resources, China University of Geosciences, Beijing, China. The samples were fully dis-
solved in HNO3, dried on a heating plate, and then redissolved using HCl and H2O2.
Copper was eluted and extracted using anion exchange resin. More details are shown
in [51,52]. The Cu isotope data were reported relative to the NIST976 standard, with a
precision of ±0.1‰ (2σ) for δ65Cu.

4. Results
4.1. Hydrogen and Oxygen Isotopes

The H–O isotope results are listed in Table 1. The isotope fractionation equation
utilized is δ18Ofluid = δ18Oquartz − (4.8 × 1,000,000/T2 − 4.77 × 1000/T + 1.71) for quartz
and fluid [53]. Here, T represents the absolute temperature at which quartz was formed.
The δ18O values of the fluid were calculated using the homogeneous temperature of fluid
inclusions from previous studies [24,34,54]. For the Chaoshan deposit, the δ18Ofluid values
range from 3.2 to 5.9‰. In the Dongguashan deposit, the range is from 0.75 to 8.48‰,
while in the Hucun deposit, the range extends from 5.7 to 10.3‰. As for the δDfluid values
of the same samples, they vary from −72.6 to −63.4‰, −70.1 to 58.5‰, and −88.1 to
−64.4‰, respectively.

Table 1. Hydrogen and oxygen isotopic compositions of the Chaoshan, Dongguashan, and Hucun deposits.

Deposit Sample Mineral Occurrence δDfluid (‰) δ18Oquartz (‰) δ18Ofluid (‰) Th (◦C)

Chaoshan Au
deposit

CS-1 Quartz

Quartz–sulfide vein

−68.3 12.5 5.50

330 [54]
CS-2 Quartz −72.6 10.8 3.80
CS-5 Quartz −63.4 10.2 3.20
CS-6 Quartz −65.7 12.9 5.90

Dongguashan
Cu–(Au)
deposit

DGS-1 Quartz Quartz–sulfide vein in
the stratiform orebody

−58.5 11.4 1.75
260 [24]DGS-2 Quartz −65.4 10.4 0.75

DGS-3 Quartz −59.5 12.9 3.25

DGS-10 Quartz Quartz–sulfide vein in
the porphyry orebody

−70.1 14.9 8.48
350 [24]DGS-11 Quartz −66.9 12.3 5.88

DGS-12 Quartz −62.1 13.5 7.08

Hucun
Cu–(Au)
deposit

HC-1 Quartz
Quartz–sulfide vein

−88.1 14.1 6.10
300 [34]HC-2 Quartz −64.4 13.7 5.70

HC-3 Quartz −69.5 15.4 7.40

HC-8 Quartz
Quartz–molybdenite

vein

−70.1 14.6 9.17
390 [34]HC-9 Quartz −82.6 15.7 10.27

HC-10 Quartz −83.3 12.5 7.07

4.2. Carbon and Oxygen Isotopes

The C and O isotopic compositions of the calcite samples are provided in Table 2. The
conversion equation used to calculate δ18OSMOW is 1.03086 × δ18OPDB + 30.86 [55]. The
C–O isotope ratios exhibit relatively uniform values. In the Chaoshan deposit, the values
of δ13CPDB range from −5.32 to −4.33‰, and the values of δ18OSMOW range from 12.45 to
14.62‰. In the Dongguashan deposit, the values of δ13CPDB range from −7.13 to −3.84‰,
and the values of δ18OSMOW range from 11.94 to 13.57‰. In the Hucun deposit, the values
of δ13CPDB range from −3.82 to −2.26‰, and the values of δ18OSMOW range from 11.86
to 12.76‰.



Minerals 2023, 13, 985 8 of 17

Table 2. Carbon and oxygen isotopic compositions of the Chaoshan, Dongguashan, and Hucun deposits.

Deposit Sample Mineral Occurrence δ13CPDB
(‰)

δ18OPDB
(‰)

δ18OSMOW
(‰)

Chaoshan
Au deposit

CS-9 Calcite Calcite–quartz–
pyrite vein

−4.33 12.5 12.46
CS-10 Calcite −5.32 10.8 13.11
CS-11 Calcite −5.01 10.2 14.62

Dongguashan
Cu–(Au)
deposit

DGS-4 Calcite Calcite–quartz–
pyrite vein

−6.86 11.4 12.74
DGS-5 Calcite −3.84 10.4 13.57
DGS-9 Calcite −7.13 12.9 11.94

DGS-18 Calcite
Calcite–quartz–

sulfide vein

−4.58 14.9 12.01
DGS-19 Calcite −6.94 12.3 13.00
DGS-20 Calcite −5.04 13.5 12.87

Hucun
Cu–(Au)
deposit

HC-16 Calcite
Calcite–pyrite

vein

−2.26 14.1 11.94
HC-22 Calcite −2.42 13.7 12.77
HC-25 Calcite −3.82 15.4 11.86

4.3. Sulfur Isotopes

The sulfur isotopic compositions of the sulfides are listed in Table 3. In the Chaoshan
deposit, the δ34S values of pyrrhotite range from 4.56 to 7.63‰, with an average of 6.44‰.
In the Dongguashan deposit, the δ34S values of the chalcopyrite range from 4.19 to 7.87‰,
with an average of 5.83‰. In the Hucun deposit, the chalcopyrite samples exhibit δ34S
values ranging from 1.95 to 3.28‰, with an average of 2.49‰, while the molybdenite
samples have δ34S values between 4.74‰ and 5.25‰, with an average of 5.07‰.

Table 3. Sulfur, lead, and copper isotopic compositions of the Chaoshan, Dongguashan, and
Hucun deposits.

Deposit Sample Mineral Occurrence δ34S
(‰)

206Pb/
204Pb

207Pb/
204Pb

208Pb/
204Pb

δ65Cu
(‰)

Chaoshan Au
deposit

CS-13 Pyrrhotite
Pyrrhotite massive

ore

6.58 18.388 15.502 38.456 0.17
CS-14 Pyrrhotite 7.63 18.523 15.552 38.236 0.05
CS-15 Pyrrhotite 4.56 18.563 15.645 38.263 −0.03
CS-17 Pyrrhotite 6.98 18.272 15.535 38.321 0.12

Dongguashan
Cu–(Au)
deposit

DGS-6 Chalcopyrite Cu-bearing
serpentinite in the
stratiform orebody

5.47 18.356 15.541 38.412 0.21
DGS-7 Chalcopyrite 4.19 18.201 15.644 38.235 0.35
DGS-8 Chalcopyrite 6.7 18.329 15.568 38.288 0.28

DGS-14 Chalcopyrite Disseminated
chalcopyrite in the

intrusion

5.31 18.252 15.623 38.313 −0.06
DGS-15 Chalcopyrite 7.87 18.477 15.646 38.174 −0.13
DGS-16 Chalcopyrite 5.45 18.52 15.582 38.352 −0.19

Hucun Cu–(Au)
deposit

HC-12 Chalcopyrite

Chalcopyrite–
molybdenite

vein

3.28 18.168 15.525 38.185 −0.25
HC-13 Chalcopyrite 1.95 18.216 15.573 38.354 −0.15
HC-14 Chalcopyrite 2.23 18.281 15.554 38.164 −0.09

HC-12 Molybdenite 5.23
No testHC-13 Molybdenite 4.74

HC-14 Molybdenite 5.25

4.4. Lead Isotopes

Table 3 also presents the Pb isotopic compositions of sulfides, which exhibit a gen-
eral consistency. In the Chaoshan deposit, the pyrrhotite samples display 208Pb/204Pb
ratios ranging from 38.236 to 38.456, 207Pb/204Pb ratios ranging from 15.502 to 15.645, and
206Pb/204Pb ratios ranging from 18.272 to 18.563. In the Dongguashan deposit, the chalcopy-
rite samples demonstrate 208Pb/204Pb ratios ranging from 38.174 to 38.412, 207Pb/204Pb
ratios ranging from 15.541 to 16.646, and 206Pb/204Pb ratios ranging from 18.201 to 18.52.
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In the Hucun deposit, the chalcopyrite samples exhibit 208Pb/204Pb ratios ranging from
38.164 to 38.354, 207Pb/204Pb ratios ranging from 15.525 to 15.573, and 206Pb/204Pb ratios
ranging from 18.168 to 18.281.

4.5. Copper Isotopes

The Cu isotopic compositions of pyrrhotite and chalcopyrite were analyzed to eluci-
date the origin of the copper element in mineralization (Table 3). In the Chaoshan deposit,
the pyrrhotite samples demonstrate δ65Cu values ranging from −0.03 to 0.17‰, with an
average of 0.08‰. In the Dongguashan stratiform orebody, the chalcopyrite samples dis-
play δ65Cu values ranging from 0.21 to 0.35‰, with an average of 0.28‰, while in the
Dongguashan porphyry orebody, the chalcopyrite samples exhibit δ65Cu values ranging
from −0.19 to −0.06‰, with an average of −0.13‰. The chalcopyrite samples in the Hucun
deposit have δ65Cu values ranging from −0.25 to −0.09‰, with an average of −0.16‰.

5. Discussion
5.1. Origin of the Ore-Forming Fluids

The H–O isotopes of fluids provide valuable information for tracing the source and
evolution of ore-forming fluids due to variations in hydrogen and oxygen isotopic compo-
sitions in water from different origins [56]. The δDfluid and δ18Ofluid values obtained from
quartz samples in the Chaoshan deposit, Dongguashan deposit, and Hucun deposit exhibit
a consistent trend (Table 2). When plotted on the δDfluid vs. δ18Ofluid diagram (Figure 5), the
data points cluster near the primary magmatic water field, indicating that the ore-forming
fluids were predominantly derived from magma [57,58]. Previous studies have reported
that the oxygen isotope values of the regional mineralization-linked intrusions range from
9.9 to 13.2‰ [59,60]. The lower δ18O values in the ore-forming fluids suggest the presence
of a certain amount of meteoric water mixed during the mineralization process.
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Figure 5. δDfluid vs. δ18Ofluid diagram of the ore-forming fluids in the Chaoshan, Dongguashan, and
Hucun deposits (Base diagram from [58]; meteoric water line from [57]).

Based on previous studies, three main sources of carbon are proposed in a hydrother-
mal metallogenic system [61–63]. These sources are the mantle or magma, characterized
by δ13C values around −5‰ [64]; marine carbonate, with δ13C values predominantly near
0‰ and ranging between −4‰ and 10‰ [65]; and sedimentary organic matter, exhibiting
δ13C values ranging from −30 to −15‰ [66]. The δ13C values of the three deposits are
concentrated in the transitional area between the intrusion and marine carbonate, closer
to the intrusion range (Figure 6), suggesting a possible origin of the hydrothermal fluids
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from magma. Additionally, the δ13C values of the carbonate sediments in the Shizishan
orefield [67,68] are significantly higher compared to the δ13C values of the three deposits,
indicating an inconsistency between the ore-forming fluids and the stratigraphic materials.
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5.2. Sulfur Source

The sulfur isotope ratios of sulfides are influenced by various factors, including the
sulfur concentration, oxygen fugacity, pH, and temperature of the ore-forming fluids [70,71].
Past findings have demonstrated that when sulfates are either absent or occur in small
amounts, sulfur in the ore-forming fluids predominantly exists in reduced substances such
as HS− and S2−. In such cases, the sulfur isotopic composition of the ore-forming fluids
can be represented by the sulfur isotopic composition of sulfides [70–72]. The absence
of sulfates, such as barite or gypsum, during the mineralization stage in the Shizishan
orefield points to sulfides as the dominant minerals and indicates that sulfur predominantly
exists in its reduced form within the fluids. The obtained sulfur isotopic values of sulfides
are relatively concentrated, exhibiting a tower-shaped distribution (Figure 7A). Therefore,
the δ34S values of sulfides can be considered as approximations of the sulfur isotopic
composition of the ore-forming fluids.

The δ34S values of the three ore deposits largely fall within the typical range of
magmatic melt [66]. The δ34S values of the Mesozoic intrusions in the Tongling region
range from 0.27‰ to 6.28‰ [73], suggesting that the sulfur in the ores shares a common
magmatic source with intrusions. In the Chaoshan and Dongguashan deposits, a few
individual sulfides exhibit δ34S values higher than 7‰, indicating a potential mixture of
magmatic sulfur and sedimental sulfur. In the Tongling region, where gypsum layers
are present in the Lower Carboniferous and Triassic stratums, the δ34S values of gypsum
and anhydrite typically range from 20‰ to 30‰ [30]. The incorporation of this high 34S
component into the magmatic–hydrothermal fluids may result in higher δ34S values in the
precipitated sulfides.
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For the Hucun deposit, the δ34S values of molybdenite are higher than those of chal-
copyrite, aligning with the enrichment sequence of 34S during sulfide crystallization [66].
This consistency indicates that the sulfur isotopic fractionation in the ore-forming fluids
has reached an equilibrium state [71]. Assuming that mineral pairs (A and B) co-precipitate
from a homogeneous system while experiencing varying temperature, the relationship
between 1000lnαA-B and δ34SA (or δ34SB) should exhibit a linear correlation, with the in-
tercept of this line approximately equal to the δ34S value of the ore-forming system [74].
Specifically, 1000lnαA-B ≈ δ34SA − δ34SB. By applying this method to calculate the sulfur
isotopic values of molybdenite and chalcopyrite pairs from the Hucun deposit, a δ34Sfluid
value of 5.44 is obtained (Figure 7B), indicating that the sulfur originates from a deep
magmatic source.

5.3. Origin of Metals

The Pb isotopic compositions of the sulfides in the Shizishan ore field were plotted on
the diagram of 206Pb/204Pb vs. 207Pb/204Pb (Figure 8A) and 206Pb/204Pb vs. 208Pb/204Pb
(Figure 8B). The analysis reveals little variation in Pb isotopes among different deposits.
Furthermore, the chalcopyrite samples obtained from both the stratiform orebody and
the porphyry orebody in the Dongguashan deposit exhibit nearly identical Pb isotopes,
suggesting a similar lead source. The majority of data points fall within the range of
the mantle and upper crust, indicating a mixed crustal and mantle origin for Pb in the
ores. Compared with the Pb isotopes of igneous and sedimentary rocks in the Tongling
region [75], the sulfides have Pb isotopes that are generally consistent with the regional
igneous rocks. Therefore, it can be inferred that the lead in the sulfides mainly derives
from magmatic–hydrothermal fluids, although a minor contribution from sedimentary lead
cannot be completely excluded.

The Cu isotopic compositions of the three ore deposits show little variation and
are close to the average δ65Cu value of approximately 0 for the bulk earth silicate [76],
implying a consistent copper source within the region. Unlike traditional C–H–O–S isotopes
that provide indirect clues about the source and evolution of ore-forming materials, the
Cu isotope offers direct indications of copper mineralization. Typically, the Cu isotopic
ratios associated with magmatic processes exhibit limited variations, centered around
zero, while low-temperature hydrothermal and sedimentary deposits tend to enrich in
63Cu [77]. However, for the porphyry–skarn mineralization system, the range of copper
isotopic variations is broader, possibly due to the sequential precipitation of different
Cu-bearing minerals [78] and the incorporation of wall-rock materials into the ore-forming
fluids [79]. Previous experiments have demonstrated that the crystallization of minerals can
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lead to copper isotopic fractionation, with preferential precipitation of 63Cu and gradual
enrichment of 65Cu in the residual hydrothermal fluids. The δ65Cu value of the wall-
rock marble in the Dongguashan deposit is 0.7‰ [76], significantly higher than the δ65Cu
values of the chalcopyrite samples in the stratiform orebody, indicating that wall-rock
components have a minor influence on the chalcopyrite precipitation. The lower δ65Cu
values of chalcopyrite samples in the porphyry orebody compared to the stratiform orebody
primarily arises from copper isotopic fractionation during the sulfide precipitation process,
suggesting that the porphyry orebody formed prior to the stratiform orebody. By comparing
it with the δ65Cu value of the Dongguashan quartz diorite [76], it is suggested that Cu in
the Shizishan orefield mainly originates from magmatic–hydrothermal fluids (Figure 9).
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Figure 8. The diagrams show plots of 206Pb/204Pb vs. 207Pb/204Pb (A) and 206Pb/204Pb vs.
208Pb/204Pb (B) ratios of sulfides in the Chaoshan, Dongguashan, and Hucun deposits. The trends
for the upper crust (U), orogenic belt (O), mantle (M), and lower crust (L) are taken from [80]. The
fields for igneous rocks and sedimentary rocks are drawn using data from [75].
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Figure 9. Histogram of δ65Cu values for sulfides in the Chaoshan, Dongguashan, and Hucun
deposits. Abbreviations: CS = Chaoshan deposit; HC = Hucun deposit; DGS-P = Dongguashan
porphyry orebody; DGS-S = Dongguashan stratiform orebody; QD = Dongguashan quartz diorite;
WR = wall-rock marble in the Dongguashan deposit (QD and WR data from [76]).
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5.4. Genesis of the Shizishan Orefield

The origin of the stratiform orebodies in the unconformity interface between the De-
vonian and Carboniferous strata in the MLYMB has long been a subject of debate. The crux
of the controversy lies in whether these orebodies were mainly formed by the Carbonifer-
ous sedimentary exhalative mineralization or by the Mesozoic magmatic–hydrothermal
mineralization. However, based on our study of the Shizishan orefield, it seems that there
may not be significant sedimentary exhalative mineralization in this area.

The geological cross-section map of the Dongguashan deposit indicates that the devel-
opment of the stratiform orebodies was closely linked to the quartz diorite intrusion. The
orebodies were mainly distributed around the intrusion, with thicker orebodies near the
intrusion and thinner ones away from it until they pinched out (Figure 3C). This evidence
contradicts the mechanism of sedimentary exhalative mineralization, which entails metal-
logenic fluids ascending along deep faults in a rift or oceanic spreading tectonic setting,
resulting in the forming of orebodies through sedimentary exhalative activities. Such a
process should have a regional extent and would not produce changes within a confined
range from the intrusion to distant areas, causing orebodies to gradually vanish. If sedimen-
tary exhalative activities occurred during the Carboniferous period, the contemporaneous
sediments should show abnormalities of ore-forming elements near the exhalative vents,
leaving discernible traces even in the region beyond the mining district far from the intru-
sion. However, the anomalies of ore-forming elements like Cu, Au, Ag, Pb, and Zn in the
Tongling region are closely correlated with the distribution of the Mesozoic intrusions [43].
Additionally, the metallogenic alteration of the host rocks of the Dongguashan stratiform
orebodies is primarily characterized by silicification, and the upper parts of the stratiform
orebodies gradually transition into silicified orebodies, while the minerals of the stratiform
orebodies are mainly derived from the retrograde alteration of magnesian skarn [81], which
differs from the predominantly sedimentary exhalative mineralization. The formation
mechanism of stratabound orebodies is believed to be influenced by lithological variations
between Devonian siliceous rocks and Carboniferous calcareous rocks. These variations
serve as structural weak planes that control the positioning of orebodies. They exert a
significant pumping effect on magmatic–hydrothermal fluids, leading to the horizontal
release of ore-forming substances along the unconformity surface [29]. This may explain
why orebodies are confined to specific strata.

The main evidence for the sedimentary exhalative mineralization comes from field
observations and isotope analysis of massive sulfides at the bottom unconformity interface
of the Carboniferous strata. These factors encompass exhalative structures and the sedi-
mentary origin of colloidal pyrite and strawberry pyrite, as well as sulfur isotope analysis
of certain pyrite samples, which indicates their sedimentary source [21]. Undoubtedly, a
substantial amount of sedimentary pyrite was developed near the bottom unconformity
interface in the MLYMB. However, the pivotal question is whether the deposition of these
pyrite particles was accompanied by the Cu–polymetallic mineralization. Hence, for the
utilization of sulfur isotopic data derived from pyrite, it is imperative to rely on compre-
hensive microscopic observations and in situ microanalysis. Otherwise, the acquired data
are prone to being a blend of values from diverse time periods, failing to accurately depict
the actual ore-forming event. Therefore, the isotopic results of the sulfides related to Cu,
Au, and Mo, namely chalcopyrite, pyrrhotite, and molybdenite, are evidently more reliable
than the widely distributed pyrite in the region.

From multiple isotopic analysis, the stratiform-type and porphyry-type orebodies
in the Dongguashan deposit, as well as in the Chaoshan deposit and the Hucun deposit,
exhibit consistency in H–O–C–S–Pb–Cu isotopes. The findings suggest that porphyry–
skarn–stratabound-type Cu–Au–Mo deposits of the Shizishan orefield belong to the same
Mesozoic magmatic–hydrothermal metallogenic system. Furthermore, these results indi-
cate a significant similarity in both the sources of ore-forming materials and the genesis of
deposits between the stratabound copper sulfide deposits and the porphyry–skarn-type
copper deposits in the MLYMB.
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6. Conclusions

This paper examined three representative deposits in the Shizishan orefield: the
Chaoshan skarn-type Au deposit, the Hucun porphyry–skarn-type Cu–Mo deposit, and the
Dongguashan Cu–(Au) deposit, which has a disputed genesis of its stratiform orebodies. We
investigated the ore genesis and sources of mineralized elements in the Shizishan orefield
using H, O, C, S, Pb, and Cu isotopes. The main findings of our study are as follows:

(1) The H–O isotopic compositions of hydrothermal quartz from the Chaoshan, Dong-
guashan, and Hucun deposits in the Shizishan orefield indicate that the hydrothermal
fluids responsible for mineralization mainly originated from magmatic water mixed
with some meteoric water. The C–O isotopic compositions of calcite show a large
difference from the local sedimentary carbonates. The S isotopic compositions of
sulfides reveal the characteristics of magmatic sulfur.

(2) The Pb isotopic compositions in the three deposits are similar to those of the Shizishan
intrusions, suggesting a predominantly magmatic source for lead. The Cu isotopic
compositions of chalcopyrite and pyrrhotite demonstrate that Cu, the primary ore-
forming element, was mainly derived from magmatic–hydrothermal fluids.

(3) The Dongguashan stratiform orebodies, which are regarded as typical sedimentary
exhalative mineralization in the previous controversy, are consistent in H–O–C–S–Pb–
Cu isotopes with the Dongguashan porphyry orebodies and Chaoshan and Hucun
deposits, implying a shared source of ore-forming materials and a common genetic
origin.

(4) From these findings, we conclude that the porphyry–skarn–stratabound-type Cu–Au–
Mo deposits in the Shizishan orefield can be classified as a unified Mesozoic magmatic–
hydrothermal metallogenic system. The stratabound copper sulfide deposits and the
porphyry–skarn-type copper deposits share a notable resemblance in the source and
genesis of ore-forming elements in the MLYMB.
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