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Abstract: The Sandaozhuang super-large W-Mo deposit is located in the southern margin of the
North China Craton, within the well-known East Qinling Mo mineralization belt, and is one of the
typical skarn-type W-Mo deposits in China. Based on EMPA and LA-ICP-MS analyses, major and
trace elements were presented, and the mineral chemistry of magnetite at various mineralization
stages was discussed. Combining field observations, petrography, and geochemical characteristics,
the magnetite at the Sandaozhuang deposit can be classified into three types, namely early-magmatic-
stage high-temperature magnetite (Mag1), potassic-alteration-stage magnetite (Mag2), and retrograde-
alteration-stage magnetite (Mag3). The Mag1 and Mag2 magnetites primarily occurred in granites
in association with potassium (K) feldspar and biotite, whereas Mag3 is associated with metallic
sulfide minerals that occurred mainly in vein-like structures in skarn. The three magnetites Mag1,
Mag2, and Mag3 can be distinguished as having magmatic, magmatic–hydrothermal transition, and
hydrothermal origins, respectively. All three types of magnetite exhibit a depletion of high-field-
strength elements (HFSEs) such as Zr, Hf, Nb, Ta, and Ti, and large-ion lithophile elements (LILEs)
including Rb, K, Ba, and Sr, compared to the mean continental crust composition. Conversely, they
are enriched in elements such as Sn, Mo, V, Cr, Zn, and Ga. Mag3 showed no significant depletion
of Co, Ni, Cu, and Bi, indicating that the influence of coexisting sulfides on the composition of
magnetite at the Sandaozhuang deposit is limited. There are systematic variations in major and
trace elements from Mag1 to Mag3, which exhibited similar patterns in trace element spider and
rare earth element diagrams, and Y/Ho ratio, indicating a consistent source for the three types of
magnetite. The changes in V and Cr contents and (Ti + V) vs. (Al + Mn) diagram of magnetite at
the Sandaozhuang deposit reflected the evolution of ore-forming fluids with an initial increase in
oxygen fugacity and a subsequent decrease, as well as a gradual decrease in temperature during
skarn mineralization. The early high-temperature and high-oxygen-fugacity magmatic fluids became
W and Mo enriched by hydrothermal fluid interaction. The rapid change in fluid properties during
the retrograde alteration stage led to the precipitation of scheelite and molybdenite.

Keywords: magnetite; mineral chemistry; ore-forming mechanism; Sandaozhuang W-Mo deposit;
East Qinling

1. Introduction

Magnetite is a ubiquitous accessory and crucial metallic mineral formed in various
geological settings, including sedimentary, igneous, and hydrothermal environments. Its
tetrahedral and octahedral sites can accommodate numerous trace elements, such as Al3+,
Nb5+, Ta5+, Mo4+, W4+, Ti4+, Si4+, Ge4+, V3+/V4+, and others [1,2]. The concentration of
these elements is intricately linked to the fluid and/or magma composition, oxygen fugacity
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(f O2), crystallographic factors, and element partitioning behavior [3–5]. Magnetite is a
common constituent in a wide range of lithological units and has significant implications
for the genesis of rocks and ore deposits. Its widespread occurrence in diverse petrogenetic
and metallogenic systems provides a unique research window for exploring the formation
mechanisms of granites and ore deposits, as well as an effective tool for ore deposit
exploration and prospecting [6–13].

The Sandaozhuang super-large molybdenum (tungsten) deposit is a typical skarn-
type deposit located at the eastern margin of the East Qinling molybdenum polymetallic
metallogenic belt. It has a total molybdenum metal reserve of 672,500 tons (a mean grade
of 0.115%) and associated tungsten metal reserve of 502,460 tons (a mean grade of 0.117%).
It also contains 3.98 million tons of sulfur and 22 tons of rhenium [14]. Together with
the adjacent Nannihu and Shangfanggou porphyry-type molybdenum deposits, the San-
daozhuang deposit constitutes the world-class Nannihu molybdenum polymetallic ore
district. Previous studies on the deposit’s geological features, mineralization age, ore-
forming fluids, and geochemical characteristics of ore-forming rocks [14–16] indicated that
the deposit’s mineralization and alteration are comparable to those of typical skarn-type
tungsten–molybdenum deposits worldwide [17]. However, the metallogenic mechanism of
the Sandaozhuang deposit, particularly the changes in physicochemical conditions during
the mineralization process, remains understudied.

The previous studies on the Sandaozhuang deposit examined the evolution of ore-
forming fluids using garnet [18] and scheelite [16]. However, these studies were limited to
specific stages of mineralization and did not investigate the fluids throughout the entire
process from magmatism to mineralization. As a result, the role of fluid properties during
the pre-mineralization stage in W-Mo mineralization has been overlooked. Magnetite is
widely present throughout the entire mineralization stages of the Sandaozhuang deposit
and provides important insights into the genetic mechanisms of the deposit based on the
patterns of its geochemical composition changes. In this study, we selected different types
of magnetite from different stages of the Sandaozhuang deposit as research objects, based
on detailed field investigations and mineral identifications. Trace element analyses using
an electronic microprobe analyzer and in situ LA-ICP-MS were performed, and the genesis
of magnetite and constraints of the mineralization process from the perspective of fluid
properties were discussed.

2. Regional Geology

The Qinling orogenic belt is divided into four tectonic units from the north to the
south of the southern margin of the North China Craton, the North Qinling orogenic belt,
the southern Qinling orogenic belt, and the northern margin of the Yangtze Craton [19].
The Qinling molybdenum metallogenic belt is mainly developed in the southern margin of
the North China Craton and the North Qinling orogenic belt. The Sanbao and Shangdan
faults mark the northern and southern boundaries, respectively, while the Sandaozhuang
tungsten–molybdenum deposit is located in the Luanchuan mining district on the southern
margin of the North China Craton (Figure 1).
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(c) geological map of molybdenum metallogenic belt in East Qinling Mountains (modified after [20]).

The regional stratigraphy in the study area is characterized by a double-layered crustal
structure of a crystalline basement and sedimentary cover [21]. The crystalline basement
mainly consists of the Neoproterozoic-Paleoproterozoic Taihua Group metamorphic rock
series, while the cover includes the Middle Paleozoic Xionger Group volcanic rock series,
the Middle-Neoproterozoic Guandaokou Group and Luanchuan Group terrestrial clastic
rocks and carbonate rocks, and the Neoproterozoic-Lower Paleozoic Taowan Group shallow
marine carbonate rocks [22] (Figure 1). The large-scale molybdenum, tungsten, lead, zinc,
and gold mineralization in the eastern Qinling region is mainly related to the Mesozoic
granites. The southern margin of the North China Craton, where the study area is located,
is characterized by frequent magmatic activity and a wide distribution of various magmatic
rocks, including volcanic rocks, gabbro, and quartz diorite (Figure 1). The complex multi-
stage tectonic framework of the southern margin of the North China Craton is dominated
by faults with NWW-SEE direction, overlaid by NE-trending and NNE-trending secondary
fault zones. The Luanchuan fault, the most important fault in the Luanchuan mining
district, underwent several brittle–ductile deformations during the Mesozoic orogeny. A
series of NE-trending fault structures were superimposed on the Luanchuan fault, which is
an intruded space for ore-bearing porphyry and its driven hydrothermal mineralization
system, controlling the distribution of granitoids and molybdenum, tungsten, and other
metal deposits in the region [23].

3. Ore Deposit Geology

The Sandaozhuang deposit, located in northwestern Luanchuan County, Henan
Province, covers an area of 2.51 km2 and is a part of the world-renowned Luanchuan
molybdenum mining field, together with the adjacent Nannihu porphyry molybdenum
deposit and Shangfanggou porphyry–skarn molybdenum–iron deposit. The mining area is
dominated by the Neoproterozoic San Chuan Formation (Pt3s) and Nannihu Formation
(Pt3n) of the Luanchuan Group, as the main ore-bearing formations in the area (Figure 2). In
addition, lower orebodies have been discovered in the upper section of the Baishuzhuang
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Formation at deeper levels in the Sandaozhuang mining area [24]. The Sanchuan Formation
is mainly distributed in the Shibapan area in the northern part of the Sandaozhuang deposit,
and in the Nanzhuang and Beizhuang regions situated in the eastern section of mining
district, and consists of metasandstone and hornfels. The Nannihu Formation occurrs in
the upper Donggounao, Nannihu, Sandaozhuangling, Zushimiao, and Taibaoshan areas,
and is mainly composed of hornfels and quartzite.
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Figure 2. Geological map of Sandaozhuang mining area (modified after [14]).

The deposit is located in the northeastern inner and outer contact zone of the Nan-
nihu granite porphyry, with molybdenum as the main ore and tungsten as the minor ore
(Figure 3). The area of the Nannihu granitic porphyry is approximately 0.12 km2, and the
porphyry body is mainly distributed in the Nannihu mining area (Figures 2 and 3). A small
amount of porphyry bodies exists in the deep part of the Sandaozhuang mining area and
are rarely developed in the internal skarn. The main characteristics of the Sandaozhuang
deposit are the hornfels alteration of the surrounding rock and the skarn in the outer contact
zone, identified as a skarn-type deposit [15].

The mineralization process can be divided into six stages based on the characteristics
of vein cross-cutting relationships and mineral assemblages of the magmatic stage (I),
quartz-K-feldspar-biotite-magnetite stage (II), early silicate skarn stage (III), retrograde
alteration stage (IV), quartz-sulfide stage (V), and quartz-carbonate stage (VI) (Figure 4).
The main features of the six stages are as follows.
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(1) The magmatic stage (I) is the stage of granitic porphyry formation associated with
mineralization. During this stage, minerals such as biotite, plagioclase, K-feldspar,
quartz, apatite, and magnetite are formed (Figure 5a,b and Figure 6a–c). Mag1 occurs
as an accessory mineral in the granitic porphyry, and magnetite is commonly enclosed
within biotite and K-feldspar phenocrysts, as a result of early magmatic crystallization,
with a small grain size ranging from 0.1 to 0.2 mm, mostly in ovoid or ellipsoid shapes
(Figure 6a–c).
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Figure 5. Photos of hand specimens of granite porphyry and skarn ore in the Sandaozhuang W-Mo
deposit. (a) Granite porphyry, Mag1 coexisting with feldspar and quartz phenocrysts, and small veins
of molybdenite interspersed within it; (b) quartz-K-feldspar-biotite-magnetite veins intercalated in
the granite porphyry, Mag2 coexisting with K-feldspar and biotite; (c) garnet-wollastonite-silicate
skarn ore, molybdenite is disseminated mineralization, scheelite is star shaped mineralization and
coexists with Mag3; (d) actinolite-diopside-silicate skarn ore, coexistence of Mag3 and retrograded
actinolite; (e,f) skarn ore, quartz-pyrite-molybdenite veins intercalated in garnet silicate skarn, with
molybdenite mineralization in disseminated and vein forms; (g,h) hornfels ore, with quartz-pyrite,
quartz-calcite-pyrite veins interspersed within it. Notes: Grt = garnet, Di = diopside, Wo = wollas-
tonite, Qtz = quartz, Act = actinolite, Sch = scheelite, Mol = molybdenite, Chl = chlorite, Cal = calcite,
Py = pyrite, Kfs = K-feldspar, Mag = magnetite, Bt = biotite.
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Figure 6. Photomicrographs of the mineral assemblage from Sandaozhuang W-Mo deposit. (a,b) Mag1
coexisting with biotite and plagioclase phenocrysts in the granite porphyry; (c) BSE image showing
Mag1 coexisting with biotite, quartz, and ilmenite in the granite porphyry; (d,e) Mag2 closely
coexists with pyrite, quartz, and K-feldspar in the quartz-K-feldspar vein; (f) BSE image showing
Mag2 coexisting with pyrite and plagioclase in the quartz-K-feldspar vein; (g,h) Mag3 coexists with
irregular scheelite and sheet and bundle molybdenite in the retrograde altered silicate skarn; (i) BSE
image showing Mag3 coexisting with garnet and dendritic molybdenite. Note: Ccp = chalcopyrite,
Zr = zircon, Pl = plagioclase, Ilm = ilmenite. The abbreviated names of other minerals are shown
in Figure 5.

(2) The stage (II) with quartz-K-feldspar-biotite-magnetite assemblage (potassic alteration
stage) is characterized by the formation of minerals such as quartz, K-feldspar, biotite,
magnetite, and pyrite. K-feldspar includes K-feldspar altered with a sheet-like or
linear distribution, and K-feldspar associated with quartz and biotite (Figures 5b and
6d–f). Magnetite is common in this stage, usually appearing as aggregates, forming
intergrowths with pyrite. A small amount of molybdenite occurred in thin veins
or impregnations, appearing with K-feldspar alteration. Magnetite is commonly
distributed on both sides of the veins, appearing in granular aggregates (Figure 5b).

(3) The early silicate skarn stage (III) is mainly characterized by the formation of anhy-
drous silicate minerals, predominantly garnet and diopside (Figure 5c), as well as
minor amounts of wollastonite and vesuvianite, and the formation of small amounts
of scheelite.

(4) The late silicate skarn stage (retrograde stage) (IV) is mainly characterized by the
formation of a large number of hydrous silicate minerals, such as vesuvianite, chlorite,
tremolite, epidote, zoisite, and minor amounts of quartz and apatite. At the same time,
this stage also formed a large amount of scheelite and magnetite (Figure 5d–f), which
is the main mineralization stage for scheelite. The scheelite occurs as subhedral to eu-
hedral grains intermittently distributed in the interstices between garnet and diopside
or intercalated in quartz veins in the skarn, often forming intergrowths, inclusions, or
crosscutting relationships with molybdenite. It is distributed more in the middle part
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of the thin veins. Magnetite in the silicate skarn minerals commonly coexists with
garnet, zoisite, and pyrite, appearing in granular aggregates (Figure 6g–i).

(5) The quartz-sulfide stage (V) is the main stage of molybdenite formation, with a
large amount of metal sulfide such as pyrite and chalcopyrite formed together with
quartz, calcite, fluorite, and other minerals to form various veins, including molyb-
denite, quartz-molybdenite, quartz-pyrite-chalcopyrite-molybdenite, quartz-pyrite-
molybdenite, and quartz-pyrite veins. These veins are filled in the fractures of silicate
skarn, hornfels, and granite porphyry (Figure 5e,f).

(6) The quartz-carbonate stage (VI) is the final stage of ore formation, characterized by the
formation of a large amount of calcite, quartz, pyrite, with minor fluorite (Figure 5f).

4. Sampling and Analytical Methods
4.1. Sampling

Mineralogical analyses of magnetite in this study were conducted on samples primarily
collected from the open-pit mining area of the Sandaozhuang tungsten–molybdenum de-
posit, comprising a total of 9 samples designated as SDZ01–SDZ09. The samples numbered
SDZ01–SDZ05 were obtained from granite porphyry closely related to W-Mo mineraliza-
tion. The SDZ01–SDZ03 granite porphyry has partial silicification alteration signatures,
mainly in quartz veins containing minor amounts of pyrite and molybdenite, and potassic
alteration occurred in SDZ04 and SDZ05, and K-feldspar-biotite-magnetite veins can be
seen interspersed among them. Samples SDZ06–SDZ09 were collected from various types
of silicate skarn-type tungsten–molybdenum ores, such as garnet silicate skarn, zoisite-
diopside silicate skarn, and wollastonite-silicate skarn. The vein minerals of the three types
of silicate skarn ores are primarily composed of garnet, diopside, quartz, wollastonite,
epidote, and minor zoisite, whereas metallic minerals are mainly molybdenite, scheelite,
magnetite, pyrite, and chalcopyrite.

4.2. EMPA Major Element Analyses

Samples from the Sandaozhuang tungsten–molybdenum deposit were made into
probe sections for detailed optical microscope observation and identification of different
mineral phases and stages. Target minerals were then selected, and backscattered electron
(BSE) imaging was performed after carbon coating. Electron microprobe analyses (EMPAs)
were carried out to determine mineral compositions. Backscattering (BSE) and cathodo-
luminescence (CL) images were obtained using a JXA-8800 instrument (JEOL, Japan) at
the Institute of Geology, Chinese Academy of Geological Sciences and China University of
Geosciences (Beijing), with a testing acceleration voltage of 20 kV, beam current of 20 nA,
and beam spot size of 5 µm.

EMPAs was conducted at the Analysis and Testing Center of the Science Research
Institute, China University of Geosciences (Beijing), using a EMPA-1720 electron microprobe
analyzer (Shimadzu, Japan). The analyses were performed on an acceleration voltage of
15 kV, a beam current of 10 nA, a beam spot size of 1 µm, and ZAF correction. Following the
national standard for electron microprobe analysis, the relative error for the measurement
of major elements was managed to be less than 5%.

4.3. LA–ICP–MS Trace Element Analysis

In situ trace element content analysis of minerals was conducted using LA-ICP-MS at
the Institute of Mineral Resources, Chinese Academy of Geological Sciences. The GeoLas
2005 laser ablation system (Lambda Physik, Germany) and Agilent 7500a ICP-MS (Agilent
Technologies, America) were employed. Helium was used as the carrier gas during the
laser ablation process, with a laser frequency of 10 Hz, a beam spot diameter of 50 µm, and
an energy density of 5 J/cm2. Calibration standards, such as BCR-2G, BIR-1G, and GSE-1G
from USGS, were used for calibration [26–29]. For more detailed experimental procedures,
please refer to [27].
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5. Results

The magnetite occurrences in the Sandaozhuang deposit can be classified into three
types, magnetite in granite (Mag1), magnetite in quartz-K-feldspar-biotite veins (Mag2),
and magnetite in skarn (Mag3), based on their formation stages. Detailed results of EMPA
and LA-ICP-MS for all magnetite samples are summarized in Tables 1 and 2, with the full
data supplied in the Supplementary Materials, Tables S1 and S2.

Table 1. Chemical compositions of magnetite from the Sandaozhuang W-Mo deposit (wt%).

Type Mag1 Mag2 Mag3

Number
13 11 20

Min Max Mean Min Max Mean Min Max Mean

SiO2 0.03 0.88 0.22 0.02 0.66 0.11 0.07 2.28 0.76
TiO2 0.04 0.47 0.16 0.02 0.42 0.12 0.00 0.08 0.02

Al2O3 0.01 0.29 0.12 0.00 0.18 0.08 0.00 0.14 0.05
FeOT 91.76 93.67 92.65 91.20 93.21 92.43 87.85 93.37 91.60
MnO 0.00 0.13 0.03 0.00 0.49 0.16 0.36 0.67 0.50
MgO 0.01 0.05 0.02 0.01 0.02 0.01 0.05 0.15 0.06
CaO 0.01 0.06 0.02 0.04 0.13 0.03 0.02 0.49 0.15

Na2O 0.01 0.09 0.04 0.02 0.06 0.03 0.03 0.07 0.03
K2O 0.05 0.17 0.05 0.04 0.04 0.02 0.02 0.05 0.03

Cr2O3 0.01 0.13 0.05 0.02 0.14 0.06 0.01 0.13 0.04
V2O3 0.30 0.54 0.44 0.01 0.06 0.03 0.01 0.25 0.12
Total 93.41 94.56 93.93 92.73 93.81 93.22 91.48 94.43 93.49

5.1. Major Elements

Based on EMPA analytic results (Table 1, Figure 7), the three types of magnetite are
generally characterized by high Ca, Al, Si, and Mn and low Mg, Ti, Na, K, and Cr. The
detailed data are presented in the appendix. The FeOT contents of Mag1 (91.76–93.67 wt%,
mean 92.65 wt%) are similar to those of Mag2 (91.20–93.21 wt%, mean 92.43 wt%) and
Mag3 (87.85–93.37 wt%, mean 91.60 wt%). However, Mag3 has higher SiO2 contents
(0.07–2.28 wt%, mean 0.76 wt%), MnO contents (0.36–0.67 wt%, mean 0.50 wt%), and
CaO contents (0.02–0.49 wt%, mean 0.15 wt%), compared to Mag1 (0.03–0.88 wt% SiO2;
0–0.13 wt% MnO; 0–0.06 wt% CaO) and Mag2 (0.02–0.66 wt% SiO2; 0–0.49 wt% MnO;
0–0.13 wt% CaO).

5.2. Trace and Rare Earth Elements

Regarding trace elements (Table 2), all three types of magnetite are depleted in high-
field-strength elements (HFSE) including Zr, Hf, Nb, Ta, and Ti, and large ion lithophile
elements (LILE) such as Rb, K, Ba, and Sr, relative to the overall composition of the
continental crust [30], and enriched in Sn, Mo, V, Cr, Zn, and Ga (Figure 8). The Zn content of
Mag1 (222.4–807.4 ppm, mean 448.5 ppm) is comparable to those of Mag2 (326.4–610.6 ppm,
mean 402.8 ppm), both of which are higher than those of Mag3 (131.4–435.3 ppm, mean
255.5 ppm). The Ga content of Mag2 (53.1–149.5 ppm, mean 100.7 ppm) is similar to
that of Mag1 (24.5–68.9 ppm, mean 41.0 ppm), and both are higher than that of Mag3
(31.3–43.3 ppm, mean 38.7 ppm). The Co content (14.5–298.7 ppm, mean 76.7 ppm), Ge
content (4.9–12.2 ppm, mean 8.7 ppm), and Cu content (15.4–264.6 ppm, mean 138.4 ppm)
of Mag3 are higher than those of Mag1 and Mag2. Therefore, Mag1 and Mag2 in this
deposit are similar to magmatic-type magnetite (a combination of Ni, Cu, Zn, and Ga),
while Mag3 is more similar to skarn-type magnetite (with high Co and Ge content) and
hydrothermal-type magnetite (with relatively high Cu content).
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Figure 7. Diagram of major element of magnetite in the Sandaozhuang W-Mo deposit. (a) SiO2 vs.
Al2O3 diagram; (b) FeOT vs. MgO diagram; (c) SiO2 vs. CaO diagram; (d) FeOT vs. SiO2 diagram;
(e) SiO2 vs. MgO diagram; (f) FeOT vs. (CaO + Al2O3 + MnO) diagram.

The ΣREE of all three types of magnetite are relatively low. Mag1 has a higher
ΣREE (0.2–34.1 ppm, mean 7.3 ppm) than Mag2 (0.9–14.3 ppm, mean 4.4 ppm) and Mag3
(0.1–5.5 ppm, mean 1.4 ppm). The (La/Yb)N ratios (1.0–13.1, mean 4.3) and LREE/HREE
ratios (1.9–14.4, mean 7.2) of Mag3 are lower than those of Mag1 (5.2–45.9, mean 15.3;
7.7–19.4, mean 12.6) and Mag2 (3.1–30.2, mean 14.1; 4.5–22.6, mean 15.2). However, all
three types have (La/Yb)N and LREE/HREE ratios greater than 1, indicating relatively
obvious light–heavy rare earth element fractionation. The normalized rare earth element
distribution patterns of the chondrite-normalized REE patterns show characteristics of
LREE enrichment and HREE depletion (Figure 8).
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in retrograde stage.
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Table 2. LA-ICP-MS analytic results (ppm) of magnetite from Sandaozhuang W-Mo deposit.

Type Mag1 Mag2 Mag3

Number
10 8 11

Min Max Mean Min Max Mean Min Max Mean

Li 0.44 12.72 2.60 0.86 4.56 2.63 0.34 4.07 1.30
B 0.43 4.64 2.02 2.31 6.87 5.20 0.16 10.43 3.28
Sc 1.10 4.76 2.78 4.31 9.65 6.86 0.46 0.95 0.72
V 787.50 1274.32 895.50 21.00 215.51 106.49 256.31 362.04 285.92
Cr 12.20 70.29 33.05 7.19 69.15 22.61 0.15 57.79 17.43
Co 0.38 3.77 1.90 0.11 1.82 0.61 14.51 298.72 77.69
Ni 10.21 37.73 22.09 0.78 9.01 2.95 5.12 220.71 36.01
Cu 0.13 23.78 6.75 0.26 5.02 1.32 15.41 264.60 138.38
Zn 222.39 807.39 448.50 326.37 610.59 402.82 131.44 435.30 255.50
Ga 24.45 68.92 40.97 53.13 149.48 100.72 31.26 43.28 38.65
Ge 1.00 4.32 2.31 1.90 3.57 2.36 4.90 12.21 8.68
As 7.57 15.52 10.66 3.37 7.79 6.16 2.47 13.55 8.03
Rb 0.09 4.08 1.61 0.35 1.85 0.97 0.16 17.57 3.23
Sr 0.13 87.76 10.63 0.30 4.12 1.28 0.36 24.62 5.53
Y 0.03 20.18 3.18 0.12 0.74 0.34 0.05 1.45 0.30
Zr 0.08 26.55 7.47 0.07 11.74 2.73 0.13 9.83 2.02
Nb 0.05 92.76 24.31 0.04 4.10 0.92 0.76 1.25 0.99
Mo 0.54 3.92 1.94 1.23 8.54 3.57 0.20 2.09 1.12
Cd 0.15 0.85 0.41 0.25 0.69 0.47 0.21 1.22 0.62
In 0.00 0.44 0.08 0.02 0.36 0.12 0.01 0.78 0.18
Sn 4.70 13.81 8.57 2.14 8.82 4.94 1.73 14.45 5.12
Sb 0.06 1.00 0.31 0.04 0.96 0.26 0.10 0.78 0.40
Cs 0.01 6.53 0.84 0.00 0.08 0.03 0.03 24.59 3.73
Ba 0.45 17.28 3.20 1.71 9.02 4.48 0.84 35.12 10.12
Hf 0.01 1.54 0.42 0.00 0.09 0.03 0.01 0.23 0.07
Ta 0.00 2.69 0.53 0.02 0.11 0.04 0.00 0.03 0.01
W 0.04 4.00 1.13 1.30 6.82 3.15 0.40 1.67 0.86
Tl 0.01 0.57 0.11 0.00 0.01 0.01 0.00 0.43 0.09
Pb 0.07 89.84 19.06 0.42 6.32 1.99 3.14 21.23 8.63
Bi 0.01 0.61 0.12 0.00 0.22 0.06 1.57 36.05 12.69
Th 0.02 66.69 12.62 0.05 1.37 0.40 0.01 0.33 0.09
U 0.00 94.76 13.35 0.01 0.86 0.18 0.05 13.46 2.10
La 0.04 6.59 1.23 0.23 4.05 1.19 0.01 1.00 0.24
Ce 0.09 16.36 2.75 0.30 6.67 1.95 0.02 2.40 0.53
Pr 0.01 1.70 0.28 0.04 0.60 0.18 0.00 0.29 0.07
Nd 0.03 5.86 0.95 0.08 2.03 0.59 0.02 1.17 0.31
Sm 0.01 1.23 0.22 0.01 0.28 0.09 0.01 0.21 0.07
Eu 0.00 3.27 0.51 0.00 0.06 0.01 0.00 0.07 0.02
Gd 0.02 39.73 5.80 0.01 0.13 0.05 0.02 0.23 0.06
Tb 0.00 4.14 0.54 0.00 0.02 0.01 0.00 0.03 0.01
Dy 0.01 26.63 2.76 0.01 0.23 0.07 0.01 0.18 0.05
Ho 0.00 6.54 0.67 0.00 0.03 0.01 0.00 0.04 0.01
Er 0.00 21.49 3.13 0.00 0.08 0.03 0.00 0.11 0.03
Tm 0.00 3.94 0.50 0.00 0.02 0.01 0.00 0.01 0.00
Yb 0.01 32.14 3.28 0.02 0.11 0.06 0.01 0.08 0.03
Lu 0.00 5.89 0.75 0.01 0.02 0.01 0.00 0.01 0.00

ΣREE 0.19 34.13 7.34 0.91 14.32 4.38 0.08 5.52 1.37
LREE 0.17 31.91 6.89 0.75 13.68 4.12 0.05 5.04 1.21
HREE 0.02 2.22 0.45 0.08 0.64 0.26 0.01 0.60 0.16

LREE/HREE 7.73 19.39 12.59 4.51 22.61 15.16 1.88 14.41 7.15
LaN/YbN 5.20 45.94 15.30 3.08 30.16 14.07 1.02 13.11 4.31

δEu 0.32 1.02 0.70 0.11 0.84 0.38 0.00 3.95 1.43
δCe 0.63 1.27 0.95 0.70 1.03 0.88 0.38 1.62 1.07

Note: The units for trace and rare earth element mass fractions are 10−6. The values for chondrite normalization
are from [31]. δEuN = 2EuN/(SmN + GdN) and δCeN = 2CeN/(LaN + PrN).
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6. Discussion
6.1. Origin of Magnetite

The significant variations in Al2O3, MnO, CaO, MgO, TiO2, Ni, Cr, V, and Ga contents
in magnetite are important indicators for the different types and mineralization stages
of magnetite [1,2,32–36]. Mag1 mainly falls within the porphyry field, Mag2 mainly falls
within the skarn porphyry region, and Mag3 mainly falls within the skarn region in the
compositional diagrams of TiO2-Al2O3-(MgO + MnO), (Ti + V) vs. (Ca + Al + Mn), (Ti + V)
vs. (Al + Mn), and (Ti + V) vs. Ni/(Cr + Mn) (Figure 9). This observation is corresponding to
the petrographic observations, which revealed that Mag1 is present in quartz and feldspar
phenocrysts in granite porphyry, Mag2 in K-feldspar-black biotite veins cutting granite
porphyry, and Mag3 is associated with skarn minerals such as diopside, garnet, tremolite,
and actinolite.
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vs. (Al + Mn) and (Ti + V) vs. Ni/(Cr + Mn) after [33]).
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Ni and Cr exhibit coupled geochemical behavior in silicate magmas, with Cr having a
higher solubility than Ni under high-temperature conditions, resulting in a Ni/Cr ratio
of ≤1 for magnetite in magmatic rocks. Experimental studies by [37] supported this
observation. However, during (magmatic) hydrothermal activity, Ni and Cr show a distinct
decoupling behavior, with Ni having a much higher solubility than Cr, resulting in a
magnetite Ni/Cr ratio of ≥1 for hydrothermal deposits. The combination of Ni/Cr and
Ti ratios has been used to distinguish between magmatic and hydrothermal magnetite
deposits [2,36]. However, the various magnetite types in the Sandaozhuang deposit exhibit
different geochemical characteristics. Data from Sandaozhuang show that Mag1 (with a Ti
concentration of up to 2863 ppm) and Mag2 (with a Ti concentration of up to 1716 ppm)
have high Ti contents, consistent with the published data that magmatic magnetite has
a higher Ti content than hydrothermal magnetite [1,38] (Figure 10a). Additionally, most
of the Mag1 and Mag2 samples fall into the magmatic magnetite field (Figure 10b), while
Mag3 falls into the hydrothermal magnetite field. Therefore, we suggest that Mag1 has
a magmatic origin, Mag2 has a magmatic-hydrothermal origin, and Mag3 is formed by
metasomatism of the ore-forming fluids, and hence falls in the hydrothermal category.
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6.2. Element Behavior of Magnetite during Skarn Formation

Magnetite formed in different types of deposits can incorporate various trace ele-
ments, and its composition is controlled by multiple factors, including the composition
and physochemical parameters of the ore-forming fluids, such as temperature, pressure,
cooling rate, oxygen fugacity, sulfur fugacity, as well as water–rock reactions and coexisting
minerals [1,5,33]. Although each element’s abundance may be influenced by several factors,
some elements exhibit regular variations between magnetite formed at different stages of
mineralization [2,4,35]. Therefore, distinct elements such as Al, Mn, Mg, Ti, V, Cr, Ga, and
Sn, which are closely related to the oxygen fugacity and temperature of the ore-forming
fluids by the compositions of magnetite formed at different mineralization stages, are used
for inferring the evolution of ore-forming fluids [1,2,5,33,39–41].

A previous study has demonstrated that the Cr and V contents in magnetite ex-
hibit a negative correlation with oxygen fugacity, and a decrease in the former indicates
an increase in oxygen fugacity [5,40,42–46]. Numerous analogous reports have been
documented [9,11–13,45,47]. Mag1 has high concentrations of Cr (mean: 33.05 ppm) and
V (mean: 895.50 ppm); however, Mag2 and Mag3 are characterized by low contents of Cr
(mean: 22.61 ppm; 17.43 ppm) and V (mean: 106.49 ppm; 285.92 ppm) in the Sandaozhuang
W-Mo deposit, indicating a consistent trend of a slight initial decrease followed by an
increase in Cr and V contents from Mag1 to Mag2 and then to Mag3 (Figure 11), and a
minor increase in the oxygen fugacity of the ore-forming fluids from the magmatic stage



Minerals 2023, 13, 1091 15 of 23

to the potassic stage, followed by a significant decrease from the potassic stage to the late
skarn stage.
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Figure 11. Chromium (a) and vanadium (b) distribution in magnetite showing f O2 changes in the
ore-forming fluid from different ore formation stages in the Sandaozhuang deposit.

Some researchers have used Fe-Ti oxides as an oxygen barometer, which has been
widely applied in igneous and metamorphic rocks [1,33,48]. At different temperatures, the
minimum oxygen fugacity at which magnetite is stable is iron-magnetite (IM) or magnetite-
wustite (MW) phase assemblages. The fayalite-magnetite-quartz (FMQ) buffer indicates
the minimum oxygen fugacity at which iron is mainly present in the form of magnetite.
If the oxygen fugacity is lower than that of the FMQ buffer, iron will mainly enter the
ferrosilicate minerals. The upper limit of oxygen fugacity at which magnetite is stable is
hematite-magnetite (HM), and as oxygen fugacity continues to increase, magnetite will
transform to hematite (Figure 12). A study on the Sandaozhuang deposit’s three types
of magnetite has uncovered that Mag1 is frequently associated with ilmenite during the
magma stage (Figure 6c), while Mag2 is typically related to small quantities of hematite
during the potassic alteration stage (Figure 6f). During the retrograde alteration stage,
Mag3 mainly coexisted with sulfides (e.g., chalcopyrite, molybdenite) and ferrosilicate
minerals (e.g., garnet, actinolite) (Figure 6h,i). These observations suggest that the fluid
oxygen fugacity increases to a small extent from the magma stage to the potassic alteration
stage, and then decreases significantly from the potassic alteration stage to the late-stage
skarn stage.
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Temperature condition plays a critical role in determining the distribution of elements
in minerals, with higher temperatures facilitating the incorporation of elements into min-
eral lattices and lower temperatures hindering element enrichment [49]. The decrease in
the contents of compatible elements such as Al, Mn, Mg, V, Ga, and Sn in magnetite with
decreasing temperature is an important feature of the transformation from magmatic to hy-
drothermal magnetite [2]. The concentration of Ti in magnetite in magmatic-hydrothermal
systems is controlled by temperature [8]. During the formation of magnetite, Ti typically
replaces Fe3+ in the lattice of magnetite, and the temperature of magnetite formation is
positively correlated with Ti content, making Ti a reliable indicator of magnetite forma-
tion temperature [1,2,50]. The previous study showed that the solubility of Al and Ti
in magnetite reflects a positive dependence on temperature [6,51]. Additionally, V may
be controlled not only by oxygen fugacity but by the temperature of the hydrothermal
environment [8,40], which is consistent with the positive correlation between V and Ti
content in magnetite from the Sandaozhuang deposit. As shown in Figure 13, the contents
of Al, Ga, and Sn progressively decrease from Mag1 to Mag3, while Mn and Mg exhibit a
negative correlation, which may be related to changes in oxygen fugacity. Combined with
the data points in (Ti + V) vs. (Al + Mn) diagram that are correlated with temperature [2],
the temperature of magnetite gradually decreased from Mag1 to Mag3, with formation
temperatures in the range of 300–600 ◦C for Mag1, Mag2, and Mag3, consistent with the
trend of magma evolution during skarn mineralization process, comparable to the previous
fluid inclusion studies [15].
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It is widely accepted that co-precipitated minerals can affect the trace element com-
position of magnetite due to differing distribution coefficients between magnetite and
coexisting minerals [1]. Co, Ni, Cu, Zn, and Bi are chalcophile elements that are more
effectively competed by sulfides than oxides. Therefore, if magnetite particles precipitated
from fluids enriched in these elements are associated with sulfides, their concentrations are
typically lower [1,40]. In this study, changes in Co, Ni, Cu, and Bi in magnetite during the
magmatic to potassic alteration stages followed this pattern. As shown in Figure 13, the
concentrations of Co, Ni, Cu, and Bi in magnetite gradually decreased from Mag1 to Mag2,
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consistent with the genetic model of increasing sulfides in the mineralization. However,
in Mag3, which coexists with sulfides, the expected depletion of Co, Ni, Cu, and Bi was
not observed, ruling out the possibility of co-extraction with sulfide minerals, although
Zn did show a significant loss in magnetite (Figure 14). To explain this contradiction, it
is speculated that the lack of depletion of Co, Ni, Cu, and Bi in Mag3 may be caused by
the earlier precipitation of magnetite, which is supported by the partial replacement of
magnetite by sulfides (Figure 6h,i), similar to the Fe-Cu deposits in the Kangdian metal-
logenic province, China [5]. Since magnetite may have crystallized before sulfides, the
depletion of Zn in magnetite is unlikely to be caused by coexisting sulfides, indicating that
hydrothermal reactivation allows Zn to preferentially dissolve over other trace elements in
the iron-rich hydrothermal fluids [40]. Based on the uneven contact or local replacement
vein structure formed by Mag3 and surrounding chalcopyrite (Figure 6i), the hydrothermal
reactivation of Zn may have occurred during this stage; however, the possibility of later
hydrothermal alteration stages such as chloritization and carbonatization could not be
completely ruled out.
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6.3. Constraints to Metallogenic Mechanism from Compositional Change of Magnetite

The multi-element diagram of trace elements in magnetite is a valuable tool for
investigating the genesis and evolution of mineral deposits [1,2,33]. In addition, FeOT
is approximately inversely proportional to SiO2, MgO, and MnO + CaO + Al2O3. SiO2
and MgO show different trends in Mag1, Mag2, and Mag3 (Figure 8). These observations
suggest the existence of extensive water–rock interaction and material exchange between
the mineralizing fluids and the surrounding carbonate rocks (containing such as Ca, Mn,
Mg) and host rocks of granite (Si, Al), with enrichment in the mineralizing fluids during the
skarn stage, particularly the generation of large amounts of diopside and garnet, resulting
in Mag3 having higher Si, Ca, and Mn than Mag1 and Mag2 (Figure 8). Al, Sc, Ti, V, Nb,
and Hf are relatively depleted, while Zr, Hf, Nb, Ta, Ti, V, and other HFSE elements show
similar linear variation characteristics during the evolution from Mag1 to Mag3 (Figure 8),
indicating consistent material sources [4]. Y3+ (1.019 Å) and Ho3+ (1.015 Å) possess the
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same ionic valence [52] and almost identical 8-fold coordinated ionic radii, suggesting that
Y and Ho have similar geochemical behaviors [53,54]. The relatively uniform Y/Ho ratios
of the three types of magnetite in the Sandaozhuang deposit are consistent with those of
the Nanlinghu granite (Figure 15), indicating that the ore-forming material of the magnetite
mainly comes from magmatic sources. This finding is in line with studies of the C-O-H
isotope [25] and scheelite [16], which both suggest that the ore-forming material of the
Sandaozhuang deposit is primarily derived from magmatic sources.
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Magmatic fluids are typically characterized by low REE contents, LREE enrichment,
HREE depletion, and variable Eu anomalies [56–62]. An increase in the salinity of hy-
drothermal fluids can enhance the distribution coefficient of REEs into the fluid phase and
reduce Eu anomalies. The magnitude of REE fractionation is strongly influenced by the pH
of hydrothermal fluids [47,53,63]. At mildly acidic conditions, fluids are typically enriched
in LREE, depleted in HREE, and characterized by negative Eu anomalies [53]. In contrast,
near-neutral fluids are enriched in HREE, depleted in LREE, and exhibit positive or no Eu
anomalies [47,63]. Moreover, REE3+ and Y preferentially coordinate with “hard” acids (such
as OH−, CO3

2−, F−), while Eu2+ behaves like an alkaline earth metal such as Ca2+ and can
migrate with Cl− to form stable EuCl42− complexes, resulting in a pronounced positive Eu
anomaly [63–65]. The REE partitioning patterns of Mag1 and Mag2 in the skarn stage of the
Sandaozhuang deposit show significant LREE enrichment, HREE depletion, and negative
Eu anomalies (Figure 8), indicating that they crystallized from mildly acidic and high
salinity fluids with magmatic characteristics. In contrast, Mag3 in the retrograde alteration
stage shows slight LREE depletion, slight HREE enrichment, and a positive Eu anomaly
(Figure 8). This REE distribution pattern may be influenced by early crystallization of skarn
minerals [9,18], suggesting that the fluid in this stage may have inherited the characteristics
of the late-stage fluid in the skarn stage, which was characterized by a medium-acidic and
low-salinity fluid. This argument is similar to the results [15,24], which indicate that the
early stage fluid of the Sandaozhuang deposit had magmatic-hydrothermal characteristics
with high temperature and high salinity, while the late-stage fluid had characteristics of
low temperature and low salinity.

In magmatic-hydrothermal systems, changes in the physical conditions of ore-forming
fluids such as temperature, pressure, and solubility, as well as reactions with the surround-
ing rocks or interactions with other fluids, can cause the precipitation of metal elements.
Oxygen fugacity and temperature play a crucial role in the solubility and stability of metal
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complexes in fluids [66]. Variations in V, Cr, and Ti in magnetite (Figure 11) suggest a
continuous decrease in temperature from the magmatic stage to the potassic alteration
stage, and then to the late-stage skarn stage, while oxygen fugacity initially increased and
then decreased. However, this study argued that increased oxygen fugacity during the
early potassic alteration stage facilitated further enrichment of W and Mo in the fluid, as
reflected in the variations in Mo and W contents in magnetite at different stages. From the
magmatic stage to the potassic alteration stage and then to the late-stage skarn stage, the
Mo and W contents in magnetite first increased and then decreased significantly (Figure 16).
This may be related to the high temperature and oxygen fugacity of the early ore-forming
fluid, where ore-forming elements S, Mo, and W (S6+, S4+, Mo6+, W6+) can migrate in
solution in forms of sulfides, halides, and soluble complexes. In the later stages of ret-
rograde alteration, the water–rock reaction was relatively strong, leading to a gradual
decrease in fluid temperature and oxygen fugacity, which reduced the solubility of Mo and
W. Additionally, boiling of the fluid and mixing with atmospheric water caused a rapid
change in fluid properties (Figure 17) [15,24], resulting in the crystallization of molybdenite
and scheelite and a subsequent decrease in the ionic concentrations of Mo and W from the
ore-forming fluid.

Minerals 2023, 13, x FOR PEER REVIEW 20 of 24 
 

 

In magmatic-hydrothermal systems, changes in the physical conditions of ore-form-

ing fluids such as temperature, pressure, and solubility, as well as reactions with the sur-

rounding rocks or interactions with other fluids, can cause the precipitation of metal ele-

ments. Oxygen fugacity and temperature play a crucial role in the solubility and stability 

of metal complexes in fluids [66]. Variations in V, Cr, and Ti in magnetite (Figure 11) sug-

gest a continuous decrease in temperature from the magmatic stage to the potassic alter-

ation stage, and then to the late-stage skarn stage, while oxygen fugacity initially in-

creased and then decreased. However, this study argued that increased oxygen fugacity 

during the early potassic alteration stage facilitated further enrichment of W and Mo in 

the fluid, as reflected in the variations in Mo and W contents in magnetite at different 

stages. From the magmatic stage to the potassic alteration stage and then to the late-stage 

skarn stage, the Mo and W contents in magnetite first increased and then decreased sig-

nificantly (Figure 16). This may be related to the high temperature and oxygen fugacity of 

the early ore-forming fluid, where ore-forming elements S, Mo, and W (S6+, S4+, Mo6+, W6+) 

can migrate in solution in forms of sulfides, halides, and soluble complexes. In the later 

stages of retrograde alteration, the water–rock reaction was relatively strong, leading to a 

gradual decrease in fluid temperature and oxygen fugacity, which reduced the solubility 

of Mo and W. Additionally, boiling of the fluid and mixing with atmospheric water caused 

a rapid change in fluid properties (Figure 17) [15,24], resulting in the crystallization of 

molybdenite and scheelite and a subsequent decrease in the ionic concentrations of Mo 

and W from the ore-forming fluid. 

 

Figure 16. Diagrams of (a) Mo and (b) W content changes in magnetite at different stages in the 

Sandaozhuang molybdenum–tungsten deposit. 

 

Figure 17. Evolution diagram of fluid properties of magnetite at different stages from Sandaozhuang 

deposit. 

Figure 16. Diagrams of (a) Mo and (b) W content changes in magnetite at different stages in the
Sandaozhuang molybdenum–tungsten deposit.

Minerals 2023, 13, x FOR PEER REVIEW 20 of 24 
 

 

In magmatic-hydrothermal systems, changes in the physical conditions of ore-form-

ing fluids such as temperature, pressure, and solubility, as well as reactions with the sur-

rounding rocks or interactions with other fluids, can cause the precipitation of metal ele-

ments. Oxygen fugacity and temperature play a crucial role in the solubility and stability 

of metal complexes in fluids [66]. Variations in V, Cr, and Ti in magnetite (Figure 11) sug-

gest a continuous decrease in temperature from the magmatic stage to the potassic alter-

ation stage, and then to the late-stage skarn stage, while oxygen fugacity initially in-

creased and then decreased. However, this study argued that increased oxygen fugacity 

during the early potassic alteration stage facilitated further enrichment of W and Mo in 

the fluid, as reflected in the variations in Mo and W contents in magnetite at different 

stages. From the magmatic stage to the potassic alteration stage and then to the late-stage 

skarn stage, the Mo and W contents in magnetite first increased and then decreased sig-

nificantly (Figure 16). This may be related to the high temperature and oxygen fugacity of 

the early ore-forming fluid, where ore-forming elements S, Mo, and W (S6+, S4+, Mo6+, W6+) 

can migrate in solution in forms of sulfides, halides, and soluble complexes. In the later 

stages of retrograde alteration, the water–rock reaction was relatively strong, leading to a 

gradual decrease in fluid temperature and oxygen fugacity, which reduced the solubility 

of Mo and W. Additionally, boiling of the fluid and mixing with atmospheric water caused 

a rapid change in fluid properties (Figure 17) [15,24], resulting in the crystallization of 

molybdenite and scheelite and a subsequent decrease in the ionic concentrations of Mo 

and W from the ore-forming fluid. 

 

Figure 16. Diagrams of (a) Mo and (b) W content changes in magnetite at different stages in the 

Sandaozhuang molybdenum–tungsten deposit. 

 

Figure 17. Evolution diagram of fluid properties of magnetite at different stages from Sandaozhuang 

deposit. 

Figure 17. Evolution diagram of fluid properties of magnetite at different stages from San-
daozhuang deposit.



Minerals 2023, 13, 1091 20 of 23

7. Conclusions

Through the above study, the main conclusions are as follows.

(1) The magnetite in the Sandaozhuang deposit can be classified into three types: mag-
matic magnetite (Mag1), magmatic-hydrothermal magnetite (Mag2), and hydrother-
mal magnetite (Mag3). All three types of magnetite are depleted in high-field-strength
elements (HFSEs) such as Zr, Hf, Nb, Ta, and Ti, as well as large-ion lithophile ele-
ments (LILEs) such as Rb, K, Ba, and Sr, and enriched in Sn, Mo, V, Cr, Zn, and Ga
relative to the overall continental crust composition. Mag3 does not exhibit depletion
in Co, Ni, Cu, and Bi, suggesting that magnetite precipitation occurred slightly earlier
than sulfides. The depletion of Zn in Mag3 implies that Zn was extracted by later
hydrothermal fluids during the same stage, indicating limited influence of coexisting
sulfides on the composition of magnetite in the Sandaozhuang deposit.

(2) Mag1, Mag2, and Mag3 show similar trace element spider and rare earth element dis-
tribution patterns, in addition to Y/Ho ratios, indicating a consistent magmatic source.

(3) The changes in V and Cr contents in magnetite, and the (Ti + V) and (Al + Mn) values,
reflect the evolution of oxygen fugacity (increasing from Mag1 to Mag2 and decreasing
from Mag2 to Mag3) and temperature (decreasing from Mag1 to Mag3) during the
skarn mineralization process. The early high-temperature and high-oxygen-fugacity
magmatic fluids further enriched W and Mo in the hydrothermal fluids. The rapid
change in fluid properties during the retrograde alteration stage resulted in the
precipitation of scheelite and molybdenite.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13081091/s1, Table S1: Major compositions of magnetite from
the Sandaozhuang W-Mo deposit, Table S2: Trace Element compositions of magnetite from the
Sandaozhuang W-Mo deposit.
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