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Abstract: Understanding the temporal–spatial distribution and influencing factors of heavy metals on
a regional scale is crucial for assessing the anthropogenic impacts and natural variations in elemental
geochemical behavior. This study evaluated the spatial distributions of the heavy metals As, Cd,
Pb, and Zn as well as the driving mechanisms over the past 31 years in Guangxi, China, using
three geochemical baseline projects (the Environmental Geochemical Monitoring Network Project
(EGMON) project 1992–1996; the Geochemical Baseline (CGB) 1 project 2008–2012; and the CGB2
project 2015–2019). By calculating the variable importance using the random forest algorithm, it was
found that natural factors are the primary drivers of the spatial distribution of heavy metals in the
EGMON project, especially precipitation for As, the digital elevation model (DEM) for Cd and Pb,
and temperature for Zn. Surface alluvial soils showed obvious heavy metal enrichment in the CGB1
project, with the gross domestic product (GDP) driving the spatial distribution of all heavy metals. In
addition, the anomalous intensity and range of heavy metals in the CGB2 project decreased signifi-
cantly compared with the CGB1 project, especially owing to the normalized difference vegetation
index (NDVI) as a positive anthropogenic factor that improves the degree of rocky desertification,
thus reducing the heavy metal contents of As and Pb, and the precipitation promoting the decom-
position of Fe–Mn concretions and thus the migration of Cd and Zn. This research promotes an
understanding of anthropogenic and natural influences on the spatiotemporal distribution of heavy
metals and is of great significance for environmental monitoring and governance.

Keywords: heavy metals; alluvial soil; spatiotemporal variations; driving factors; geochemical
baseline projects

1. Introduction

Heavy metals are harmful pollutants that are covert, persistent, irreversible, and easily
enter the human body through the food chain, causing damage and pathological changes
in organs and thus threatening human health [1–5]. Heavy metals are widely recognized
as a global environmental threat [6–8]. Therefore, it is of great significance to study the
spatiotemporal distributions of heavy metals to monitor anthropogenic disturbances and
naturally occurring changes. However, previous studies on the spatiotemporal distributions
of heavy metals have mostly been based on data from two periods and have mostly been
conducted at the local scale [9–11]. Moreover, previous studies have mainly focused on
spatial–temporal change characteristics, ignoring the quantitative evaluation of the main
driving factors of spatiotemporal changes [12,13].
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China has conducted three environmental geochemical baseline projects aimed at mon-
itoring the changes in concentration and spatial distribution of geochemical elements caused
by anthropogenic activities, climate change, and geological processes, thus providing a
quantitative scale for environmental change, including the Environmental Geochemical
Monitoring Network Project in 1992–1996 (EGMON) [14,15] and China’s first and second
Geochemical Baseline projects in 2008–2012 (CGB1) [16] and 2015–2019 (CGB2) [17]. These
projects aimed to provide high-resolution and high-quality geochemical baseline data
by developing improved sampling and laboratory analysis methodologies. The primary
objective of the projects was to establish nationwide geochemical baselines against which
future human-induced or natural chemical changes could be recognized and quantified.
Samples of alluvial soil, the most representative sampling medium, which represents the
average values of elements and effectively reflects the environmental changes caused by
human input in the basin, were collected. Alluvial soils can be used to monitor environ-
mental changes and inputs because the transport processes of pollutants in rivers occur
continuously [18]. The similar sample media, analytical methods, and quality controls used
by the three projects may provide an unbiased opportunity to quantify these changes [19].

The driving factors of spatiotemporal variations in heavy metals generally include
external inputs; the influence of parent materials; and geochemical processes, such as
leaching and transformation through surface runoff [20,21]. Heavy metals in soils are
sourced from parent materials, the concentrations of which are usually increased by external
inputs, whereas both are increased or decreased by geochemical processes, depending on
the different elements and environmental conditions [22]. Therefore, identifying the main
driving factors and quantifying their influence on the spatiotemporal variations of heavy
metals is helpful in determining the sources of heavy metals and providing meaningful
information on anthropogenic disturbances and naturally occurring changes [23–25].

Random forest is a highly accurate, adaptable, and interpretable machine learning
method that uses a set of decision trees to classify and regress and can incorporate both
continuous variables and type variables simultaneously [26]. Moreover, the predictive
values of the dependent variables and the relative importance of each variable can be
calculated on the basis of the nonlinear relationships between the dependent and inde-
pendent variables. The random forest method is becoming increasingly popular in many
fields, such as geological mapping [27], digital soil mapping [28], and mineral exploration
mapping [29].

This study investigated the spatiotemporal distributions and variations of the heavy
metals As, Cd, Pb, and Zn in Guangxi, China, a typical province with a widely distributed
karst area, and quantified the driving factors impacting heavy metal concentrations at
regional scales using a random forest algorithm based on data obtained from three geo-
chemical baseline projects. This research is helpful for understanding the geochemical
behavior of heavy metals and quantitatively evaluating anthropogenic disturbances and
natural changes over a long period of time.

2. Materials and Methods
2.1. Study Area

The total area of Guangxi province, located in South China (104◦26′ E~112◦04′ E;
20◦54′ N~26◦24′ N), is about 23.67 × 104 km2, and the province has a subtropical monsoon
humid climate (Figure 1). The terrain inclines from the northwest to the southeast and
is dominated by basins. Karst landforms are widely distributed in central, western, and
northwestern Guangxi, covering an area of approximately 9.58 × 104 km2, accounting for
40.9% of the total area (Figure 2).
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volcanic rocks, vb: basic volcanic rocks, vi: intermediate volcanic rocks, wb: water body.

2.2. Sampling and Analysis Method
2.2.1. Materials and Sampling

In view of recognizing the need for global-scale geochemical baselines that can quantify
future human-induced or natural changes in the chemistry of the Earth based on Global
Reference Network grid sampling of Earth’s surficial materials [30], China initiated the
Environmental Geochemical Monitoring Networks (EGMON) project from 1992 to 1996 [14].
Most of the samples were collected in 1995. Samples of Alluvial soil, formed by flood
sediments, were collected, and the sampling locations were mostly in the floodplains of
large catchment basins ranging from 1000 to 10,000 km2 [15]. The first China Geochemical
Baselines Project (CGB1), as part of the Global Geochemical Baselines Project [30], was
conducted from 2008 to 2014 [17], and most samples were collected in 2010–2012. The
Second China Geochemical Baselines Project (CGB2) was carried out between 2015 and
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2019 [18]. Samples of alluvial soil, formed from drainage sediments, were collected from
3382 and 1741 locations in CGB1 and CGB2, respectively, according to a global reference
network grid cell in mainland China (9.6 million km2). Sample locations were designated
at the outlet plains of drainage catchments ranging in area from approximately 1000 to
5000 km2, with most locations being 2000–3000 km2 in area. The topsoil samples were
collected from the surface to a depth of 25 cm, and the litter was scraped off; the minimum
weight of each sample was 2.5 kg.

Temporal changes in heavy metal concentrations may increase or decrease, and a major
issue is whether these changes can be detected by soil monitoring. Sampling materials and
monitoring sites must indicate that contaminants build quickly enough to be revisited on
subsequent occasions [31]. The sample media from the EGMON and CGB were the same;
both were alluvial soils formed from catchment sediments (overbank/floodplain/delta
sediments) through river transportation (Figure 3). All runoff materials are transported to
the same outlet or plain to form soil through drainage network channels (Figure 3). The
transported samples collected from the outlets of large drainage catchments are excellent
media, representing the natural background and anthropogenic emissions of the area. The
contamination of alluvial soils occurs relatively quickly. Pollution comes from diffuse
sources, such as natural weathering, mining, industries, residents, pesticides, and fertilizers.
Rainfall on land picks up and transports pollutants into watercourses and deposits them in
low-reach plains, overbanks, or fluvial terraces.
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Twenty samples from the EGMON project and 26 from the CGB1 and CGB2 projects
were collected in Guangxi, as shown in Figure 1.

2.2.2. Sample Preparation and Laboratory Analysis

All samples were prepared and subjected to chemical analyses in the same laboratory.
The samples were air-dried and homogenized, and each raw sample was split into two
sub-samples; one was sieved through a mesh (<2 mm) for laboratory analysis, and the
other was stored for future investigation. The sieved sample was ground to <74 µm in an
agate mill for laboratory analysis.

An aliquot (0.25 g) was weighed and placed in a test tube, and 10 mL of HF, 5 mL
of HNO3, and 2 mL of HClO4 were added to digest the samples. The test tube was
heated in a boiling water bath until it dried. After cooling, 8 mL of 1:1 aqua regia (aqua
regia (1 HNO3 + 3 HCl): pure water = 1:1 vol.) was added to decompose the residue.
The solution was diluted with 2% HNO3 and then analyzed by ICP-MS to determine
Cd and Zn. Arsenic was determined by hydride atomic fluorescence spectrometry, and
Pb was determined by X-ray fluorescence spectrometry [32]. The detection limits were
1.00 mg/kg, 0.02 mg/kg, 2.00 mg/kg, and 4.00 mg/kg for As, Cd, Pb, and Zn, respectively.
The accuracy of the method was assessed by analyzing the soil reference materials (GSS-1,
GSS-2, GSS-17, GSS-19, GSS-25, GSS-26, GSS-27) [33] 34 times, and the ∆lgC was less than
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0.10 (∆lgC = |lgCi − lgCs|; Ci is the average of measured values and Cs is the standard
reference value).

2.3. Factor Selection

Four anthropogenic factors—land use, the spatial distribution density of major pol-
lution sources, gross domestic product (GDP), and the normalized difference vegetation
index (NDVI) in Guangxi—were selected, and the geology background, temperature,
precipitation, and digital elevation model (DEM) were selected as natural factors. Ge-
ology background and land use were type variables, whereas the others were numeric
variables. Gross domestic product, NDVI, and land use were variable factors, and data
from 1995, 2010, and 2015 were selected to represent the factor characteristics of the
EGMON, CGB1, and CGB2 sampling periods. Data on land use, GDP, NDVI, temper-
ature, and precipitation were collected from the Resource Environmental Science and
Data Centre, Institute of Geographical Sciences and Natural Resources Research, Chinese
Academy of Sciences (https://www.resdc.cn/data.aspx?DATAID=123, accessed on 17
January 2022). Temperature and precipitation data are presented as annual mean val-
ues. Digital elevation model data were collected from the Geospatial Data Cloud Website
(http://www.gscloud.cn/search, accessed on 26 January, 2021), and major pollution source
data for Guangxi were collected from the Guangxi Hechi Ecological Environment Bureau
(http://sthjj.hechi.gov.cn/, accessed on 26 January, 2021). The spatial analysis module of
ArcGIS 10.4 was used to calculate the nuclear density to obtain the pollution source density
of Guangxi. The spatial distributions of the influencing factors in Guangxi Province are
shown in Figures 4–7.
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2.4. Random Forest Algorithm

Random forest is a classic combined classifier algorithm proposed that was by Breiman [34].
A bagging algorithm was used to generate training sample subsets, and a classification
regression tree was used as a meta-classifier, which was randomly selected to split the
current node when building a single cart tree. This double random (random training set
and random attribute) strategy results in a greater difference between meta-classifiers,
which improves the classification performance [35].

Random forest is a combination of tree classifiers {h(x,θk), k = 1, . . .. . .}, and its meta-
classifier h(x,θk) is a complete growth and nonpruning classification regression tree. x is
the input vector, and {θk} is an independent and identically distributed random vector and
determines the growth process of a single classification regression tree. For classification,
the output of random forest is the result of simple majority voting, and the output is the
simple average of the output of a single tree.

Random forest has many advantages; for example, the algorithm can incorporate
both continuous and categorical attributes by using the cart algorithm as its meta-learning
algorithm. Moreover, the decision tree is of great use in identifying differences and shows
better classification performance owing to the combination of the bagging algorithm and
randomly selected candidate feature splitting, which prevents overfitting and improves
tolerance to noise.
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Another prominent feature of random forest is the calculation of the importance of
variables. First, the random forest algorithm adds disturbance by the random reordering
of a variable of the training samples, and then it observes the change in the classification
accuracy of all samples in the decision tree before and after disturbance to measure the
variable importance.

Random forest analysis was completed using R3.4.2 [36]. The method used in this
study is illustrated in Figure 8.
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3. Results
3.1. Descriptive Statistics

Table 1 shows the statistical parameters of the As, Cd, Pb, and Zn concentrations
in the EGMON, CGB1, and CGB2 projects. The maximum values of As, Cd, Pb, and Zn
(1270.72 mg/kg, 30.61 mg/kg, 1385.64 mg/kg, and 3724.96 mg/kg respectively) for CGB1
were the highest, indicating that heavy metals were heavily enriched in the CGB1 project.
In addition, the coefficients of variation of As, Cd, Pb, and Zn were 405.67, 370, 314.1, and
320.28, respectively, in the CGB1 project, which were also higher than those of the other
two projects, suggesting that they had the strongest spatial variations. Moreover, As, Cd,
and Pb showed the highest median values (12.58 mg/kg, 0.26 mg/kg, and 31.04 mg/kg,
respectively) in the CGB1 project, and Zn showed the highest median value in the CGB2
project. The medians of As, Cd, and Zn were lowest in the EGMON project, and the median
of Pb was lowest in CGB2.
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Table 1. Descriptive statistics of heavy metals in the EGMON, CGB1, and CGB2 projects.

As Cd Pb Zn

EGMON

Mean 15.77 0.17 38.35 85.98
CV 193.49 70.45 72.28 79.51

Median 7.80 0.13 34.50 72.00
Min 2.10 0.05 14.00 17.50
Max 144.00 0.47 137.00 342.00

CGB1

Mean 59.71 1.57 83.06 218.96
CV 405.67 370.00 314.10 320.28

Median 12.58 0.26 31.04 79.42
Min 3.12 0.10 16.10 37.96
Max 1270.72 30.61 1385.64 3724.96

CGB2

Mean 12.81 0.39 32.35 87.84
CV 78.07 10 75.50 61.38

Median 12.17 0.24 26.95 80.22
Min 2.47 0.03 10.60 27.15
Max 50.42 1.53 137.92 261.79

Units: mg/kg. CV: coefficient of variation.

3.2. Spatiotemporal Distributions of Heavy Metals

The heavy metal geochemical maps of the three projects (Figure 9) were drawn using
the inverse distance weighting method in ArcGIS 10.4 with the European Union soil heavy
metal pollution standard values (indicated by the triangular symbol on the color scale)
as the thresholds. Arsenic showed the strongest enrichment in the three projects. In the
EGMON project, As-anomalous areas were mainly distributed in the east and west of the
study area, and the proportion of alluvial soil samples exceeding the limit of 20 mg/kg
of As was approximately 10%. As-anomalous areas in the CGB1 project were distributed
in the northwest and southeast of the study area, and the proportion exceeding this limit
was approximately 23%. In addition, the As-anomalous areas in the CGB2 project were
mainly distributed in the northwest and northeast of the study area, showing an exceeding
proportion of 11%, and the anomalous intensity and range in the CGB1 project were both
weaker than those in the CGB1 project.

In the EGMON project, the Cd content at all sampling sites was below the Cd EU heavy
metal pollution threshold of 1000 ug/kg. In the CGB1 project, the Cd-anomalous areas
were mainly distributed in the northwest of the study area, with an exceeding proportion
of 17%, while the Cd-anomalous intensity and range decreased significantly, showing an
exceeding proportion of 7% in the CGB2 project.

The anomalous areas of Pb and Zn in the EGMON project were mainly distributed in
the northwest and southeast of the study area, and the proportions of alluvial soil samples
exceeding the limits of 70 mg/kg Pb and 160 mg/kg Zn were both approximately 5%. The
exceeding proportions of Pb and Zn in the CGB1 project were approximately 17% and
13%, respectively. Compared with the previous two projects, the anomalous intensity and
range of Pb in the CGB2 project decreased significantly, with an exceeding proportion of
3.5%, and the anomalous intensity and range of Zn in the CGB2 project were significantly
lower than those in the CGB1 project but higher than those in the EGMON project, with an
exceeding proportion of 7%.
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4. Discussion

Land use affects soil quality and eco-environmental function, which may be related to
soil chemical availability and environmental migration conditions as well as fertilization
and irrigation under different land use conditions [37,38]. Gross Domestic Product likely
reflects the environmental problems caused by rapid economic development, including
industrial and commercial development [39]. The density of the pollution sources around
the sampling sites directly reflects the influence of industrial emissions on the heavy metal
content of the soils. Pollution can contaminate the downstream soils through atmospheric
sedimentation and surface runoff [40,41]. The NDVI is a positive anthropogenic factor
that indicates an improved ecological environment and reduced rocky desertification in
karst areas [42]. Natural heavy metals in the soil originate from weathering, erosion, and
the transport of parent materials. Geological lithology likely reflects the type of parent
material. Temperature and precipitation are climatic factors that determine the weathering
and denudation rate of parent materials, and lastly, the DEM can determine the path and
difficulty of element migration.

The variable importance of the influencing factors, calculated using the random forest
algorithm, is illustrated in Figure 10. The spatial variations in As in the EGMON project
were mainly affected by precipitation, followed by the spatial distribution density of
pollution sources and GDP. The As-anomalous areas geographically coincided with poor-
precipitation areas. The greater the rainfall, the stronger the weathering and leaching, while
the batholith ions in the soil are more easily lost; thus, the soil is acidic. Fe–Mn concretions
are often associated with rich heavy metals because of their poor crystallinity, large surface
area [43], high surface negative charge, and the isomorphic substitution of manganese
oxides. Fe–Mn concretions in the soil decompose through the acidification process, which
leads to the migration of heavy metals from the solid state to the ionic state, resulting
in a relatively low heavy metal content in the soil. Natural factors were the key factors
regulating the spatial variation of As, with a proportion of more than 60% in the EGMON
project. As spatial variation was controlled by GDP and the spatial distribution density of
pollution sources in the CGB1 project, the proportion of anthropogenic factor importance
was approximately 58%. China experienced rapid economic development during this
period, and extensive economic growth has brought many problems, such as the wanton
discharge of pollutants and resulting environmental pollution, which were the key factors
controlling the spatial distribution of As in the CGB1 project. Arsenic is mainly derived
from smelting, pigments, glass, and paper manufacturing in industry, and in agriculture,
arsenide is mainly used in pesticides, algicides, and preservatives [44]. The As-anomalous
areas were decreased in CGB2 compared with CGB1, and the proportion of anthropogenic
factor importance was approximately 55%. The results of the random forest analysis
showed that the pollution source was still the key factor affecting the As spatial distribution;
however, the NDVI took second place and should be given more focus for the positive
role that it plays. The NDVI of the study area increased significantly in the CGB2 project
compared with the previous two projects. Vegetation likely regulates surface runoff and
conserves soil and water, thereby improving soil quality and the ecological environment.
Therefore, it can be concluded that a higher NDVI is associated with a lower degree of rocky
desertification; thus, the soil erosion and pollutant contents decreased correspondingly,
reflecting the positive impact of human activities on the spatial distributions of heavy
metals [45,46].

The key factors regulating the Cd spatial distribution in the EGMON project were
natural factors, including DEM, temperature, and geological lithologies, the proportion of
which was 61%. The Cd-anomalous areas geographically coincided with low-lying areas;
Cd is an active element that migrates more easily than other heavy metals, and low-lying
areas can gather materials eroding from the surrounding high-relief areas, resulting in the
accumulation of Cd. GDP was the most important factor regulating the spatial distribution
of Cd in the CGB1 project, with a proportion of anthropogenic factors of approximately
53%. Cd is a by-product of Zn smelting, which is mainly used in batteries, dyes, and
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plastic stabilizers, and is more easily absorbed by crops than other heavy metals [47]. The
anomalous intensity and range of Cd in CGB2 decreased significantly, with precipitation
being the main factor affecting its spatial distribution.
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The spatial variation in Pb in the EGMON project was mainly controlled by the DEM
and precipitation, and the proportion of natural factors was approximately 53%. High wet
deposition was accompanied by high soil Pb content in Guangxi in the EGMON project,
which was different from the other elements. Leaded gasoline was used in China during the
EGMON project period; thus, Pb from the exhaust emissions of motor vehicles using leaded
gasoline would be adsorbed onto particles and enter the soil through wet deposition [48].
Gross Domestic Product is an important factor controlling the spatial distribution of Pb in
the CGB1 project. During this period, leaded gasoline was completely banned in China;
thus, lead in soils mainly originated from mining, smelting, leaded coatings, foundry, and
other industrial production activities [49]. In the CGB2 project, NDVI was the controlling
factor affecting spatial variations in Pb, suggesting a positive role for human activities. The
implementation of vegetation restoration and the control of rocky desertification decreased
the contributions of upstream rocks; thus, the heavy metal content in the alluvial soils
decreased accordingly.

The spatial variation in Zn in the EGMON project was mainly affected by temperature,
and the proportion of natural factor importance was approximately 53%. There was
a negative correlation between Zn content and temperature. Zn is more active at high
temperatures and easily migrates from the solid state to the ionic state, resulting in relatively
low Zn content in soils. In the CGB1 project, the GDP was still a key factor, and the
proportion of anthropogenic factor importance was greater than 53%. Zn pollution sources
include zinc mining, smelting and processing, machinery manufacturing, zinc plating,
instrumentation, synthesis, and papermaking. Tire wear and coal combustion also produce
zinc and zinc compounds. Precipitation was the most important factor affecting the spatial
variation in Zn in the CGB2 project, whereas GDP still played an important role. It was
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found that the Zn-anomalous areas changed compared with the CGB1 period, which might
have been due to the development of the local economy.

In conclusion, the surface soil environmental quality in Guangxi was the best during
the EGMON project (1992–1996) period. The disturbance of human activities was relatively
small, and the spatial distribution of heavy metals was mainly driven by natural factors. In
the CGB1 project period (2008–2012), surface soils showed obvious heavy metal pollution
due to rapid economic growth and poor attention to environmental protection. In the
CGB2 project (2015–2019), economic growth slowed down, environmental protection was
strengthened, the degree of rocky desertification was reduced, and the phenomenon of soil
erosion was greatly improved; thus, the anomalous intensity and range of heavy metals
decreased compared with that in the CGB1 project.

The factors influencing the spatial distributions of Cd and Zn were similar (Figure 9).
Cd is a dispersed element that is closely associated with middle- to low-temperature Pb–Zn
deposits and occurs in sphalerite, wurtzite, and other minerals as isomorphisms. Both
Cd and Zn are sulfophilic elements with similar ionic radii; therefore, their geochemical
behavior is consistent. It is generally accepted that, at the local scale, soil-forming parent
materials are among the most important factors affecting heavy metal distribution in
soils [50]. However, this study found that wet deposition associated with the DEM is
among the most important factors responsible for the spatial distribution of heavy metals
in karst areas at a regional scale. The intense tropical rainfall associated with the special
geochemical properties of carbonates may be the key factor controlling mass migration
and, thus, heavy metal accumulation in karst areas.

Spatial variations in heavy metal concentrations are caused by many factors, including
numerical variables (such as GDP and NDVI) and categorical variables (such as geology
background and land use). In the past, owing to the limitations of methods, most studies
have only focused on numerical variables of the spatial variations of heavy metals, lacking
a comprehensive study of both numerical and categorical variables. In this study, numerical
and categorical variables were evaluated for the first time using a random forest algorithm.
This research promotes an understanding of anthropogenic and natural influences on the
spatiotemporal distribution of heavy metals and is of great significance for environmental
monitoring and governance. It is of great significance to study the distribution of heavy
metals on large spatial and temporal scales, as well as the potential influencing factors. It
is necessary to monitor the spatial and temporal changes in heavy metals on a regional
scale over long time periods and clarify the impact of human disturbance on natural
environmental change, which is also one of the original intentions of long-term geochemical
projects in China.

5. Conclusions

In conclusion, the surface alluvial soils showed the strongest heavy metal accumulation
in the CGB1 project, followed by the CGB2 and EGMON projects. Arsenic showed the
strongest enrichment among the three projects. Natural factors were among the most
important factors affecting the spatial distribution of heavy metals in the EGMON project,
particularly precipitation for As, DEM for Cd and Pb, and temperature for Zn. Gross
Domestic Product was a key factor regulating the spatial distribution of all heavy metals
in CGB1. The NDVI and precipitation were important factors controlling heavy metal
variations in CGB2. As a positive anthropogenic factor, the NDVI improved the degree of
rocky desertification, reduced the heavy metal contents of As and Pb, and promoted the
decomposition of oxides and hydroxides and thus the migration of Cd and Zn.
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C.W., Y.Z., Q.W. and F.L.; writing—original draft preparation, M.T.; writing—review and editing,
Q.W.; visualization, Y.Q., C.W., Y.Z., Q.W. and F.L.; supervision, J.Z. All authors have read and agreed
to the published version of the manuscript.
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