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Abstract: The particle swamp optimization procedure was applied to high-quality magnetic data
acquired from the Precambrian Obudu basement complex in Nigeria with the object of estimating
the distinctive body parameters (depth (z), index angle (θ), amplitude coefficient (K), shape factor
(Sf), and location of the origin (x0)) of magnetic models. The magnetic models were obtained from
four profiles that ran perpendicular to the observed magnetic anomalies within the study area.
Profile A–A’ with a length of 2600 m is characterized by inverted model parameters of K = 315.67 nT,
z = 425.34 m, θ = 43◦, Sf = 1.15, and x0 = 1554.86 m, while profile B–B’ with a length of 5600 m is
described by K = 257.71 nT, z = 543.75 m, θ = 54◦, Sf = 0.96, and x0 = 3645.42 m model parameters.
Similarly, profile C–C’ with a length of 3000 m is defined by K = 189.53 nT, z = 560.87 m, θ = 48,
Sf = 1.2, and x0 = 1950 m. Profile D–D’, which is well-defined by a 2500 m length, started at the crest
of the observed magnetic anomaly and displays inverted model parameters of 247.23 nT, 394.16 m,
39◦, 1.26, and 165.41 m. Correlatively, the estimated shape factor of the four models (Sf = 1.15, 0.96,
1.2, and 1.26) shows that the magnetic models are linked to thin sheets. Furthermore, quantitative
interpretations of the models show that the PSO operation is rapid and proficient.

Keywords: particle swarm optimization; magnetic; mineral exploration

1. Introduction

High-resolution magnetic data analysis has been applied extensively to mineral and
ore explorations worldwide [1–3]. Additionally, it can be used in the investigation of
hydrocarbon [4], engineering surveys [5,6], detection of UXO [2], mapping of geothermal
anomalies [7,8], archaeological investigations [9], and delineation of subsurface hydrologi-
cal structures [3,5]. Moreover, almost all magnetic data analysis procedures are performed
believing that the subsurface features are simple geometrical structures, such as thin sheets,
horizontal cylinders, spheres, and faults (caused by diverse ore and mineral-bearing bodies,
as well as structural hydrocarbon traps), which are buried at various depths [5,10].

A number of inversion procedures are used in general to evaluate parameters con-
nected with simple geologic models, such as geologic contacts, cylinders, spheres, and thin
sheets [11–13]. In several tasks, these models assume notable roles [13]. However, while it
may be challenging to precisely define the geological origins of these models resulting from
subsurface magnetic bodies, they still hold significant utility in magnetic analysis for the
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determination of body parameters [13,14]. Many calculable inversion procedures were cre-
ated to evaluate magnetic data across diverse geologic features [12,13]. Previous procedures
applied to analyze the magnetic data have included parametric curves [15], the Werner
deconvolution [16], and Euler deconvolution [17]. Additionally, linear least-squares [14],
layered model inversion [18], gradient [19], and fair-function minimization [20] methods
have been used. Nonetheless, some of these conventional inversion methodologies pro-
duce a significant number of unacceptable results because of misinterpretations between
magnetic sources, noise sensitivity, and window sizes [21]. Furthermore, some of these
procedures require the use of initial model parameters derived from geological information,
rely on a limited dataset along a profile, assume knowledge of the shape factor, and have a
longer processing time [21].

In recent years, global optimization procedures have been applied as an alternative
to geophysical inversion techniques. These techniques include PSO [22], genetic algo-
rithms [23], simulated annealing [24], and differential evolution [25,26]. Other notable
inversion procedures involve simulated annealing [27], social spider optimization [28], ant-
colony optimization [29], hybrid genetic algorithm [30], and hybrid genetic algorithm [30].
Genetic algorithms (GAs), proposed by [31], mimic the process of natural evolution to
search for optimal solutions. GAs utilize populations of individuals representing potential
solutions, subjecting them to selection, crossover, and mutation operations to evolve fitter
solutions over generations. Simulated annealing (SA), as introduced by [32] in optimiza-
tions performed by simulated annealing, draws inspiration from the annealing process in
metallurgy. This method explores the solution space by allowing temperature-controlled
transitions between solutions, gradually reducing the exploration intensity to converge
towards optimal solutions. Differential evolution (DE), a simple and efficient heuristic
for global optimization over continuous spaces [33], operates through the mutation and
recombination of parameter vectors to generate new candidate solutions. DE employs a
population-based approach that prioritizes the best-performing solutions while maintain-
ing diversity. The PSO is an efficient optimization technique for precisely and dependably
resolving challenging issues [28]. The PSO technique developed by [34] is a stochastic
computation tool. It focuses mostly on simulating the natural behavior of fish, insects, and
birds as they look for food. The PSO algorithm uses a population of particles that traverse
the solution space while adapting their trajectories based on historical information and the
best-performing solutions encountered [35]. Location vectors that signify the parameter
value and a speed vector are both present in every particle. Each particle or person, for
instance, will have a position in a five-dimensional space that serves as a solution for
the optimization issue [36]. In the realm of optimization, researchers and practitioners
continually seek innovative methods to efficiently tackle complex and high-dimensional
optimization problems across various domains [35]. The PSO has gained considerable
attention due to its simplicity, ease of implementation, and effectiveness in solving a wide
range of optimization challenges. It enhances exploration and exploitation capabilities by
incorporating environmental factors that simulate real-world conditions [35].

The PSO technique has been applied to the inversion and modeling of geophysical
data [37]. It also has connections to a wide range of problems, including machine learn-
ing [38], electromagnetic optimizations [33,39], model building [40], inverse scattering [41],
biomedical imageries [42], hydrological issues [43], etc. In this research, the PSO procedure
is applied to the inversion of magnetic data over causative bodies noticeable in observed
magnetic data obtained from Obudu Precambrian basement rocks. The model parameters
approximated involve the depth (z), index angle (θ), amplitude coefficient (K), location of
the origin (x0), and shape factor (Sf), and they are determined to be reliable and resolvable.

2. Location and Geology of the Investigated Area

The studied location was situated within the Precambrian Obudu basement complex
(Figure 1), and it was located between longitude values of 9◦00′ E and 9◦30′ E and lati-
tude values of 6◦30′ N and 7◦00′ N. According to [44], a series of tectono-thermal events
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with about three or more stages of distortion are responsible for the formation of the
Nigerian basement complex. Three lithologic assemblages—the migmatite–gneiss com-
plex, schist belts, and older granite sets—generally characterize the basement complex.
In structurally regulated basins, the Cretaceous-Recent sedimentary sequence has been
successfully maintained. The main rocks in the Nigerian basement complex are believed to
be migmatite–gneiss complexes [45]. Age values related to the Kibaran ranged from 900
to 450 Ma, indicating the influence of the Pan-African occurrence that produced gneisses,
migmatite, older granites, and connected lithological components [45].
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Figure 1. Location and geologic maps of the study area.

There were no magmatic or depositional events that occurred during the middle-to-
late Paleozoic era. Younger Jurassic granites are among the alkaline, anorogenic, shallow
sub-volcanic intrusive materials that characterize the Mesozoic era. They are found in a
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north–south thin belt in the western part of the eastern region and extend northward into
the Republic of Niger. One of Nigeria’s Precambrian basement outcrops is located in the
Obudu Plateau, a section of the Bamenda Massif [46]. High-grade metamorphic rocks,
including migmatized schists and gneisses that have been affected by granites, quartzo-
feldspathic veins, and unmetamorphosed dolerites, are to blame for the region’s unusual
lithology [46]. Amphibolites, metaquartzites, and metagabbro are also present in these
rocks in traces. According to [47], the rocks in this area date to the Archaean, Eburnean,
and Pan-African eras. Researchers arrived at the conclusion that the Southeast Nigerian
basement evolutionary history is connected to the Pan-African mobile belt in Central Africa
because of the relatively close agreement between the lithology of the rocks and ages
of the Southeast Nigeria, Northern Cameroon, and Central African Fold Belt basement
complexes [47]. The Adamawa-Yade and western Cameroon domain served as the active
margin during the continent-to-continent collision that created to the Pan-Central African
belt in Central Africa, whereas the northern Congo Craton border served as the passive
margin [48]. According to [46], migmatitic gneiss, also known as garnet–sillimanite gneiss,
garnet–hornblende gneiss, or simply migmatite gneiss, compose the majority of the OP.

3. Methodology
3.1. Two-Dimensional Magnetic Forward Problem

After carefully examining the magnetic anomaly expressions of horizontal cylin-
ders [49], thin sheets [50], and spheres, [51,52] summarized the general new formula of
the two-dimensional magnetic anomaly (T) profile for simple geometric bodies, which is
defined as:

T(xi ,z) = K
Az2 + B(xi − x0) + C(xi − x0)

2[
(xi − x0)

2 + z2
]S f , i = 0, 1, 2, 3, . . . . . . . . . , N (1)

where K is the amplitude coefficient, z is the depth of the buried body, and A, B, and C are
described as follows:

A


3sin2θ − 1

2sinθ
−cosθ
cosθ
cosθ

z

, B


−3zsinθ
−3zcosθ

−3zsinθ, C
2zsinθ
−sinθ


3cos2θ − 1
−sinθ
2cosθ

0

• For a sphere (total field);
• For a sphere (vertical field);
• For a sphere (horizontal field);
• For a horizontal cylinder, FHD of thin sheet, and SHD of geological contact (all fields);
• For a thin sheet and FHD of geological contacts (all fields).

θ is the angle of effective magnetization [51,53] in the spheres. Additionally, ref [54]
defines the cases of thin sheets and horizontal cylinders as follows: x0 is the coordinate of
the source body’s center, FHD and SHD are the first and second horizontal derivatives of
the magnetic anomaly, respectively; N is the number of data points; and Sf is the shape
factor, with values of 2.5 for spheres, 2 for horizontal cylinders, and 1 for thin sheets [55].

3.2. Magnetic Inverse Problem

In geophysics, the inversion technique is an optimization process aimed at identifying
the model parameters of concealed geological features that are most suitable for explaining
the measured data. To solve the inverse problem, it is necessary to perform this with
an initial model [56]. This preliminary model can be established using drilling, other
geophysical methods, and prior geological knowledge [57]. Every iteration step involves
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progressively refining the initial model until the theoretical and observed data are the
best match.

According to the two-dimensional magnetic formula (Equation (1)), the model’s
unidentified parameters are the origin’s location (x0), depth (z), index angle (θ), shape
factor (Sf), and amplitude coefficient (K). Due to its ease of use and speedy operation by
merging fewer operators, the PSO technique was utilized to resolving the inverse problem.
Furthermore, it is stable in terms of both numbers and mathematics. The model parameter
values that would minimize the discrepancies between the collected field data and the
theoretical model are determined using the following simple objective function:

Q =
2∑N

i=1
∣∣Tm

i − Tc
i

∣∣
∑N

i=1
∣∣Tm

i − Tc
i

∣∣+ ∑N
i=1
∣∣Tm

i − Tc
i

∣∣ (2)

where N is the number of data points, Tm
i is the observed magnetic anomaly at the point xi,

and Tc
i is the approximated magnetic anomaly at the point xi.

3.3. Particle Swarm Optimization

Ref [34] suggested the PSO technique as a global optimization algorithm. It depends
on creatures (represented as particles) in the environment imitating natural processes, such
as fish schooling and birds flocking. A point in M-dimensional space has an equivalent
competitive solution for each particle in a PSO algorithm. In the inquiry space of the objec-
tive function, the computation is introduced freely and the initial solutions are established
arbitrarily [58]. The PSO algorithm effectively guides researchers to achieving a global
optimum value. The PSO algorithm’s main model structure is that the most likely answers
are developed before the best ones. Figure 2 shows a basic flowchart. The PSO algorithm
starts by assigning each particle in the swarm a random position and speed in the problem
search space. Every bird, which represents a particle or model, has a velocity vector and a
position vector that reflect the parameter value. PSO explains a swarm of particles (models)
in an M-dimensional space. Each particle retains the position and speed of its previous
optimal state. The best location of the swarm and the previous best position, often referred
to as the Tbest model inhabited by the particle, are utilized to jointly estimate the speed
modification of the particle at each iteration phase. The modified velocity is then utilized to
calculate a new position for the particle using the Jbest model [59]. The following equations,
according to [60], describe the update:

Vk+1
i = c3Vk

i + c1rand ()(Tbest − Pk+1
i ) + c2rand ()[(Jbest − Pk+1

i )Pk+1
i ] = Pk

i + Vk+1
i (3)

xk+1
i = xk

i + vk+1
i (4)

where Pk
i is the current i model at the kth iteration, vk

i is the speed of the ith particle at the
kth iteration, and rand() is an identical random number in the rang (0, 1). c1 and c2 are
the positive consistent numbers that control individual and social behaviors [61]. c3 is the
inertial coefficient that controls the particle velocity. xk

i is the position of the particle i at the
kth iteration.

The magnetic anomaly from Equation (1) is computed every iterative phase for each xi
using the PSO algorithm. To estimate the quality of the data fit at each iteration phase of
the inversion process, the RMS is given as:

RMS =

√
∑N

i=1
[
Tm

i (xi)− Tc
i (xi)

]2
N

(5)

This is taken as the misfit between the observed and theoretical anomalies.
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Figure 2. Flowchart of the PSO algorithm applied to magnetic anomalies’ interpretations.

4. Data Acquisition and Selection of Profiles

The aero-magnetic data that were used in this work (Figure 3) were collected and
filtered between 2005 and 2010 by Fugro Airborne Services, Canada. These data were
collected by means of a Flux-Adjusting Surface Data Assimilation System with a flight-line
space of 0.1 km, tie line space of 0.5 km, and terrain clearance ranging from 0.08–0.1 km
along 826,000 lines. The mean total field, inclination value, and declination value were
32,851.9 nT, −14.6◦, and −2.4◦, respectively. The magnetic data have the potential to map
small geologic anomalies, and when compared to the aero-magnetic data from 1970, they
were found to be of good quality. In order to obtain associated PSO parameters, including
the origin position (x0), depth (z), amplitude coefficient (K), and index angle (θ), the profiles
used in the PSO operation were carefully chosen across notable anomalies of the magnetic
data (Figure 4).
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5. Interpretation and Discussion of Results

The PSO algorithm was used for magnetic data interpretations over the Obudu Pre-
cambrian basement complex in Nigeria. The area that is situated in the eastern flank of
Nigeria’s border with the Republic of Cameroon is predominantly composed of metamor-
phic rocks that have been invaded by unaltered granites, dolerites, and quartzo-feldspathic
veins [3,46,62–65]. The profile of A–A’ (with a distance of 2600 m) and its related signature
(Figure 4a’) were obtained from the magnetic data. Table 1 displays the results of the
inverted model parameters (depth, amplitude coefficient, index angle, shape factor, and
location of origin) over A–A’. The optimum results of the model parameters from the
magnetic anomaly are observed as K = 315.67 nT, z = 425.34 m, θ = 43◦, Sf = 1.15, and
x0 = 1554.86 m.

Profile (B–B’) in Figure 4 shows the component of the magnetic anomaly with a profile
length of 5600 m. The model parameters are displayed in Table 2, which were obtained
from the observed geologic anomaly. Table 2 reveals the evaluated model parameters
as K = 257.71 nT, z = 543.75 m, θ = 54◦, Sf = 0.96, and x0 = 3645.42 m. Furthermore, the
parameters of the third anomaly (Table 3) obtained from the profile length of 3000 m (Fig-
ure 4; profile C–C’) were K = 189.53 nT, z = 560.87 m, θ = 48, Sf = 1.2, and x0 = 1950 m.
The fourth magnetic anomaly profile with a length of 2500 m and associated signature
(a’) (Figure 4) revealed the inverted model parameters (Table 4) of 247.23 nT, 394.16 m,
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39◦, 1.26, and 165.41 m, respectively, for amplitude coefficient, depth, index angle, shape
factor, and location of the origin over D–D’. It can be noticed that profile D–D’ (Figure 4d’)
originates from the peak of the noticed magnetic anomaly and, as a result, the profile
signature assumes the shape of a quarter cycle. From the obtained shape factor results
involving the four models (Sf = 1.15, 0.96, 1.2, and 1.26), it can be established that the four
magnetic anomalies are generated by thin sheets. Similar results were reported by [21]
(Sf = 0.89 and 0.93) in their comparative study involving the application of PSO to real
and synthetic data. On the contrary, Sf values of 2.5 and 2.0 were reported for the sphere
and horizontal cylinder, respectively [21]. These geologic structures are created by the
invasion of older granite suites by younger granite suites, resulting in a series of metamor-
phisms [66], folds, faults, and shear zones [67,68] linked to the Pan-African orogeny and
succeeding post-orogenic events [67]. According to several published studies, geological
structures within tectonically active regions act as depositional zones for igneous-related
minerals and migratory pathways for hydrothermal fluids [69–71]. Magmatism and miner-
alization are linked, according to several investigations [3,45,69,71]. Therefore, it is believed
that vast quantities of metallogenic minerals in the study area are under the influence of
magmatic intrusions.

Table 1. Numerical results of magnetic anomaly for profile A–A’.

S/N Parameter Range PSO Result GA Result

1 K (nT) 0–3000 315.67 297.54

2 z (m) 200–1200 425.34 417.69

3 θ (◦) −90–90 43 47

4 Sf (dimensionless) 0.5–2.5 1.15 1.05

5 x0 (m) 1100–1900 1554.86 1527.97

6 RMS (nT) 6.43 8.59

Table 2. Numerical results of magnetic anomaly for profile B–B’.

S/N Parameter Range PSO Result GA Result

1 K (nT) 0–3000 257.71 278.28

2 z (m) 200–1200 543.75 549.14

3 θ (◦) −90–90 54 50

4 Sf (dimensionless) 0.5–2.5 0.96 0.89

5 x0 (m) 2500–3800 3645.42 3654.87

6 RMS (nT) 4.81 6.28

Table 3. Numerical results of magnetic anomaly for profile C–C’.

S/N Parameter Range PSO Result GA Result

1 K (nT) 0−3000 189.53 208.35

2 z (m) 200–1200 560.87 569.26

3 θ (◦) −90–90 48 52

4 Sf (dimensionless) 0.5–2.5 1.2 1.13

5 x0 (m) 500–3000 1950 1962

6 RMS (nT) 5.95 9.62
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Table 4. Numerical results of magnetic anomaly for profile D–D’.

S/N Parameter Range PSO Result GA Result

1 K (nT) 0−3000 247.23 219.59

2 z (m) 200–1200 394.16 384.15

3 θ (◦) −90–90 39 45

4 Sf (dimensionless) 0.5–2.5 1.26 0.97

5 x0 (m) 50–1250 165.41 170.57

6 RMS (nT) 8.92 11.53

The validity of the PSO algorithm was tested on real data obtained from the Pima
copper mine, United States of America, and the Hamrawein zone, Egypt [21]. The Pima
copper mine field is characterized by minerals related to Laramide Paleozoic igneous
activity [72]. The magnetic anomaly profile (696 m length) over a thin sheet-like fea-
ture is well-defined by these model parameters (K = 600 nT, z = 71.08 m, h = −47.83,
Sf = 0.92, and x0 = −0.49) [50]. The correlation between the measured and theoretical
data, including drilling information [73], indicates a relatively strong match [50]. Similarly,
the PSO algorithm was used for magnetic data acquired from Hamrawein, Egypt. This
region is located at the western flank of the Red Sea and is dominated by sedimentary and
metavolcanic rocks [74]. The observed anomalies were characterized by inverted model
parameters of 507.64 nT, 623.05 m, 57.04◦, 0.89, and 4255.98 m (amplitude coefficient, depth,
index angle, shape factor, and location of origin, respectively) and 427.38 nT, 494.14 m,
37.27◦, 0.93, and 14,823.96 m (amplitude coefficient, depth, index angle, shape factor, and lo-
cation of origin, respectively) for the first and second anomalies [21]. Previous studies have
shown the strong correlations of theoretical and observed anomalies [21]. Likewise, the
PSO procedure, when compared with the very fast simulated annealing method (VFSAM),
generated good results in a shorter time period [75].

The inversion outcomes for the four profiles (A–A’, B–B’, C–C’, and D–D’), presented
in Tables 1–4, utilizing the particle swarm optimization method were juxtaposed with those
obtained through the genetic algorithm. This comparison reveals that the results achieved
via the PSO approach exhibit greater stability and efficiency, primarily attributable to their
lower root mean square (RMS) values.

6. Conclusions

In this research, the PSO algorithm was employed in approximating the distinctive
model parameters (K, z, θ, x0, and Sf) of the models. These models were generated from
four profiles drawn for high-quality airborne magnetic data obtained from the Precambrian
Obudu basement complex in Nigeria. Magnetic anomaly profile A–A’ with a distance
of 2600 m generated inverted model parameters of K = 315.67 nT, z = 425.34 m, θ = 43◦,
Sf = 1.15, and x0 = 1554.86 m. The second profile (B–B’) of a length of 5600 m had associated
model parameters of K = 257.71 nT, z = 543.75 m, θ = 54◦, Sf = 0.96, and x0 = 3645.42 m.
Likewise, the parameters of the third anomaly obtained from a profile length of 3000 m
(profile C–C’) were K = 189.53 nT, z = 560.87 m, θ = 48, Sf = 1.2, and x0 = 1950 m. The fourth
profile (with a length of 2500 m) that originated from the peak of the magnetic anomaly
produced inverted model parameters of 247.23 nT, 394.16 m, 39◦, 1.26, and 165.41 m,
respectively, for the amplitude coefficient, depth, index angle, shape factor, and location of
the origin. On the whole, the obtained shape factor values of the four models (Sf = 1.15,
0.96, 1.2, and 1.26) suggest the magnetic anomalies are initiated by thin sheets. The model
results show that the PSO procedure is rapid, stable, and proficient for analyzing magnetic
data for quantitative interpretations. The observed geological structures from the PSO
results reveal depositional zones for igneous-related minerals and migratory pathways for
hydrothermal fluids. As a result, it is believed that vast quantities of metallogenic minerals
in the study area are associated with magmatic intrusions.
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