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Abstract: This work is aimed at the analysis of the development of flotation technology by applying
carrier minerals. Based on the concepts of continuum mechanics, a theoretical analysis of the influence
of the carrier minerals (wall) on the motion of a single solid particle is provided, taking into account
their hydrodynamic interaction (in the case of low Reynolds numbers). A correction was obtained in
the form of a ratio of the particle size to its distance from the wall to take into account the influence of
the wall on the hydrodynamic force acting on the particle. The influence of the wall is manifested
through a rapid approximation of the liquid vortex flow in the gap between the solid wall and the
particle to the steady-state mode, accompanied by the suppression of the transverse movement of
particles. When the liquid slides along a wall-mounted gas–liquid layer with a reduced viscosity,
the liquid flow increases in the interfacial gap, which can be analyzed by a dimensionless correction
that includes values describing the properties of a continuous medium (dynamic viscosity) and a
disperse phase (geometric particle size). The reason for the decrease in the induction time when gold
grains adhere to each other is assumed to be due to the forces of hydrophobic attraction (when the
grains have a mirror-smooth surface) and the sliding of the flow along the hydrophobic surface of the
particles along the gas layer (when the grains have a rough surface). When polydisperse particles
are aggregated, the threshold energy of the fast coagulation was established to be lower than that
arising during the interaction of monodisperse particles, whose aggregation requires a large depth
of the potential pit. Performing natural experiments on the ore using a rougher concentrate as a
carrier material showed that the concentrate yield decreases by 20.52% rel. In the second case, the
gold extraction was higher by 4.69% abs. While maintaining the achieved level of gold extraction,
the double mixing of the rougher concentrate and the initial feed increased the gold content in the
rougher concentrate from 4.97 to 6.29 g/t.

Keywords: gold-bearing ore; flotation; fine particles; flotation scheme; carrier minerals; wall
correction; slip correction; field experiments

1. Introduction

Modern gold mining companies in Russia and worldwide are facing problems with
optimizing production costs. These are caused by intense price competition on the one hand
and deteriorating the mining and geological conditions on the other hand, subsequently
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decreasing the gold content of the ore, increasing the depth of development, and reducing
unallocated reserves [1]. One of the current trends of sustainable economic development
existing in the country, taking into account the need to increase the reserves and the
consumption of mineral resources, is the introduction of innovative technologies that use a
wide range of minerals [2].

A significant part of gold ore resources are represented by sulfide ores, which are diffi-
cult to obtain via extraction and require the application of highly efficient new technologies
for processing low-grade and refractory materials [3]. Extracting the ores and concentrates,
in which fine gold is associated with pyrite or arsenopyrite, needs much more complex
technological schemes due to the fact that, during grinding, such gold is only slightly
revealed, and the bulk of it remains in the sulfides. It is not dissolved during cyanidation,
and in the processes of gravity and flotation enrichment, it is extracted together with the
carrier minerals [4].

In recent decades, the gold content of ores has significantly decreased, and the share
of poor and rather difficult-to-uncover, refractory, gold-bearing raw materials involved in
processing has increased to 40% [5].

Improving the efficiency of processing hard-to-process gold-bearing ores and concen-
trates, which are characterized by complex mineralogical and geochemical compositions,
submicroscopic grain sizes, heterogeneous textures, and a variety of genetic processes of
ore formation, leads to a fine dispersion of gold particles in waste rock minerals. This
also requires the assessment of structural and textural parameters [6] and the modeling
of technological processes [7], the possible use of selective disintegration and separation
technologies [8], and reducing the amount of gold in waste rock minerals.

The main enrichment process for such ores is flotation, which is a complex, multiphase
process, and the works of many researchers have focused on optimizing this operation as a
key link in enrichment technology [9].

The ores in which finely disseminated gold is associated with sulfide minerals, such
as pyrite, arsenopyrite, or antimonite, are processed using complex technological schemes.
In the case of fine dissemination of gold in sulfide minerals, the very fine grinding of
ores is required. However, in the case of a significant decrease in the particle size, the
hydrodynamic field of the bubbles that flow up significantly reduces the efficiency and
selectivity of the flotation process [10–12]. Due to inertia forces, coarse particles are known
to approach the surface of bubbles along a rectilinear trajectory, either by the impact or
by the effect followed by sliding along the surface of the bubbles. When the particle size
decreases, its hydrodynamic interaction with the bubbles depends on the fact that, during
the contact time (the time of the particle’s movement from the upper pole of a bubble to
its equator and below), the trajectory of the particle’s movement and the liquid flow lines
flowing around the bubble curve become twisted and coincide. The inertia-free interaction
with a bubble, i.e., displacement along with a liquid flow without contact with the surface
of a bubble up to its lower hemisphere, is the main reason for the loss of fine particles
during flotation, including gold [13,14]. Regardless of the nature of the liquid flow near
the surface of the bubble (Reynolds number is Re = (2 Rb υb/ν) >> 1) or viscous Stokes
(Re < 1), there is a quadratic dependence of the collision efficiency E on the value of the
Rp/Rb ratio. In this case, υb is the velocity of the bubble with radius Rb, ν is the kinematic
viscosity of the liquid, and Rp is the particle size.

If the high losses of the fine particles are caused by a decrease in the collision efficiency
and a decrease in the particle size due to hydrodynamic interactions, then the deterioration
in the selectivity of their separation is associated with the developing balance of the surface
forces [15–19] acting on the separated particles.

An obvious (but technically far from being simple) solution to the problem of fine
particle flotation is the use of nanobubbles [20–23]. Another promising direction in the
flotation of fine particles is their preliminary aggregation [24,25].

The adhesion of the fine particles to the surface of the bubble is possible under the con-
dition of their convergence to distances coinciding with the long-range potential minimum.
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But the collision followed by the subsequent adhesion of the particle to the surface of the
bubble without the formation of a contact angle is indiscriminate, and, in the case of the
selective flotation of ores, it reduces the efficiency of the mineral separation process.

To increase the flotation efficiency of the microdispersions of minerals, conditions are
created for their preliminary aggregation with coarse minerals [26,27]. These technologies
are based on the fact that the rate of the adhesion of the fine particles to coarse ones is
400–500 times higher than the rate of the aggregation of the fine particles among them-
selves [28,29]. And the frequency of the collision of the particles with significantly different
sizes tends to unity, while in the case of fine particles, it is negligible [30].

We can assume that during the flotation processes, the particles move in an unlimited
liquid, since the value of the ratio is R/l >> 1. Here, R and l are the particle size and the
distance from the center of the particle to the wall of the apparatus or to a single coarse
particle in the case of a polydisperse system, respectively. The liquid flow lines induced
by the motion of the single particles in the unlimited liquid are close to infinity [31,32].
However, when several particles move together, their hydrodynamic interaction manifests
itself in the fact that the movement of each particle in the group is influenced by the
movement of neighboring particles [33–35]. As a result, a single particle is influenced by a
greater (than that determined by the Stokes formula) viscous drag force than that which
influences each particle in the group. When the value of the R/l ratio decreases, the effect of
the volume substitution and the alternating motion of the liquid caused by it, in which the
particle participates, begins to manifest itself. The change in the hydrodynamic resistance
during the transition from the movement of a single particle in the unlimited liquid to the
movement of a group of the particles (or near the wall) was quantitatively described by
Brenner [36,37]. The convergence resistance is lower in the case of fine particles, which may
be the reason for their effective adhesion to coarse particles [26–28].

During the hydrodynamic interaction of the hydrophobic particles, the sliding of the
liquid decreases the hydrodynamic resistance to the liquid flow in the gap between the
particles. This effect of increasing (against the expected one by calculation when meeting
the adhesion condition) the liquid flow is a consequence of its sliding along the gas layer
(or nanosized gas bubbles) owing to a large difference in the dynamic viscosity of water
and gas (ηl/ηg~50) [38–40].

Gold is effectively recovered by flotation after loading xanthogenate [41–46].
Valderrama L. demonstrated [23,47] that, due to the adhesion to coarse particles, the
extraction of fine gold by xanthogenate is increased by 24%, and the retention is increased
by 50% when the flotation rate is increased 3–4 times. Two flotation peaks were revealed
when the shear energy was 0.5–2.0 and 3.0–4.0 kW/m3.

The overall positive effect of using analogue technologies based on the aggregation
of polydisperse particles is an increase in the extraction of fine-dispersed fractions of the
target component. For example, hydrophobic glass beads [48], paraffin, organic polymers,
magnetized iron (or magnetite) isolated from ores, and specially prepared monominerals
are used [27,49]. However, the development of the attractive forces between polydisperse
particles is possible only at a high concentration of coarse particles [50]; in the presence of a
large number of microdispersions, the conditions established for the extraction of coarse
particles become critical. Therefore, up to 200% (of the mass of the fine particles) of carrier
minerals must be introduced into the flotation system [51]. Such flotation carrier platforms
are expendable. The organization of the regeneration of their surface for the purpose of
reuse in most cases is inefficient and increases capital expenditures and operating costs for
conducting the flotation process.

This work is focused on studying the techniques of improving the technology of fine
gold flotation using carrier minerals. To improve the technical and economic performance
of this technology, the efficiency of using a maximally homogeneous material, including
fine gold, i.e., the rougher concentrate isolated from a part of the ore, as carrier minerals is
proven [51,52]. The rougher concentrate is the most flotation-active part of the raw material
enriched with gold. When it is mixed with the initial feed, an increase in the fine gold
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extraction is possible due to two effects: the adhesion of the fine particles to the coarse ones
and an increase in the gold content in the flotation feed, which is unattainable when using
inert materials [30].

The fact that the flotation of the fine particles is a qualitatively new process is proven
by using special terms, such as “microflotation” [26] and the flotation of “inertialess par-
ticles” [30], when discussing the results of researching it. In terms of modern colloidal
chemistry, microflotation is an orthokinetic heterocoagulation. This allows for interpreting
the experimental data on the aggregation of hydrophilic particles using two approaches that
form the basis of the DLVO theory: dispersion (van der Waals) forces and ion-electrostatic
interactions. However, in the case of the aggregation and the flotation of hydrophobic
particles, in order to harmonize the theory and the experiment, it is necessary to apply
new mechanisms of long-range surface forces. They are collectively called “non-DLVO”
forces in the literature [53–55] and are taken into account by the extended DLVO theory
(XDLVO [56–58]). The relationship between the particle adhesion to the bubble during
flotation and the interaction forces caused by the altered structure of the liquid present in
the wetting film, i.e., hydrophobic attractive forces, is shown in [41,59], including during
gold flotation with xanthogenate [44,60,61].

The achieved level of understanding the physical regularities of the flotation of fine
particles has allowed for developing the technologies for extracting minerals from ores,
reaching high technical and economic indicators. However, the problem of reducing the
losses of mineral microdispersions involving flotation waste is still relevant.

The purpose of the work is to develop a flotation technology for gold-bearing ores
based on the revealed patterns of the hydrodynamic interaction of polydisperse hydropho-
bic surfaces used as carrier minerals of fine gold.

2. Materials and Equipment
2.1. Research Object

The research object was composite ore samples obtained from two sites of the
Bereznyakovsky gold ore field. The samples were composed of a witness core of the
wells and ditches (77 samples 50 mm in size, whose total weight was 143 kg) located at
various hypsometric levels. When they were processed at the gold recovery factory, the
gold size in the flotation tailings was characterized by the histograms shown in Figure 1.
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Figure 1. Experimental curves of the grain size distribution of gold in the flotation tailings during the
flotation of the ores of the first (a) and second (b) samples obtained at the gold recovery factory.

The histograms of the size distribution of gold grains are based on the results of
measuring 100 grains in each sample. The histograms of the size distribution of the gold
grains in the flotation tailings of both ore samples have a pronounced asymmetric nature.

The mineralogical studies were conducted using a Nikon Eclipse LV 100 Pol mi-
croscope. The X-ray diffraction phase analysis (DRON-3M, Cu-Kα radiation) and the
mineralogical studies (Nikon Eclipse Lv 100n Pol microscope, Nikon Instruments Inc.,
Tokyo, Japan) allowed for revealing the fact that 35%–40% of the material of the two sam-
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ples belonged to quartz and about 50% of the material was represented by pyrophilite,
illite, sericite, and paragonite. The bulk of the sulfides that were present in the samples
was composed of pyrite (up to 10% by weight). Tahr ores, secondary copper sulfides, and
sulfosalts together amounted to no more than 0.6%, while sphalerite, chalcopyrite, and
galena accounted for 0.10%–0.45% (sphalerite predominated, amounting to 0.4%). Pyrite
grains (of idiomorphic, hypidiomorphic, and framboidal shapes) had a size ranging from
1–5 µm to 0.05–0.10 mm.

The gold in the ores was mainly accompanied by pyrite, recovered at the operating
gold processing plant by flotation into a concentrate, which is subjected to cyanidation after
the autoclave gold extraction.

2.2. Flotation Equipment

Full-scale tests of the flotation technology using the rougher concentrate as a carrier
mineral were performed on a laboratory bench (Figure 1) [30].

The flotation method of extracting gold was chosen followed by constructing a flow
diagram according to the jet principle [28–30]. In the experiments on flotation, a laboratory-
scale plant with a square cross-section of 47 × 47 mm in size was used for the column
flotation (Figure 2).
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The bench was based on three column-type flotation machines, each of which received
1/3 of the initial feed. The columns were interconnected by a rougher concentrate flow.
The concentrate isolated on the first flotation column was mixed with the initial feed of the
second flotation column. Then, the concentrate of the second flotation column was mixed
with the initial feed of the third flotation column, and a ready-made rougher concentrate
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was obtained. Therefore, the ready-made rougher concentrate was isolated in three steps,
using the concentrate material of the first two flotation columns as the carrier minerals.

The main part of the bench (Figure 1) consisted of three columns (1) made of corrosion-
resistant steel (of the 8X18H10 type) with a square cross-section (47 × 47 mm) that was
2070 mm in height. The feeding depth was 767 mm. The initial feeding system included
a sand pump (2) equipped with a thin-layer platelike mixer (3) of the Jones sampler type.
The column was countercurrent and was supplied with the initial feed from above the
distribution grid (4) and the gas phase from below. The air was supplied by a side-mounted
pneumohydraulic aerator of the confusor–diffuser type (5). An airlift (6) served to unload
the chamber product; during the emergency unloading of the column, the pulp was
discharged through a Teflon gate (7).

Monominerals were floated in a countercurrent column-type flotator that was 64 mm
in diameter and 1.7 m in height when the initial feed was supplied under the cleaning zone
to a depth of 0.46 m. The flotator was equipped with a pneumohydraulic aerator of the
confusor–diffuser type. The cylindrical mixing chamber was placed between the confusor
(Ø was 1 mm) and the conical expanding diffuser (Ø was 5.1 mm). The diffuser outlet was
closed with a polyurethane mesh, which allowed for calculating the size of the formed
air bubbles. The total length of the aerator was 152 mm. Air was supplied to the mixing
chamber by a compressor through a vertically mounted connecting pipe with a nozzle of Ø
1.47 mm at a rate of 1.35 m3/min per 1 m2 of the chamber cross-section. The aerator was
installed in the bottom part of the column on its outer side and on the side.

The column capacity in terms of the initial feed was 1.5 m3/min per 1 m2 of the
chamber section.

The column water balance allowed for the conclusion that at a washing flow rate
of 0.34 m3/min per 1 m2 of the column section, the water flux flowing into the tailings
exceeded the water flux flowing into the feed by 7%–8%, which made it possible to suppress
the mechanical removal of non-floating minerals into the concentrate.

Potassium butyl xanthate was supplied at a rate of 25 mg/dm3 for recleaning.
The air pressure at the entrance to the airlift was 0.14 MPa at a flow rate of 0.045 m3

per 1 m3 of the pulp removed into the tailings.

2.3. Flotation Mode

The base ore, which was 3 mm in size, was ground in a rod mill at a ratio of S:W = 1:1
to a grain size of 80% of a 71 µm class in the presence of sodium sulfide (112 g/t). After
being activated with copper sulfate (15 g/t), the sulfides were floated with potassium butyl
xanthogenate (85 g/t) and a foaming agent T-92 (35 g/t).

When performing the flotation, the reduced air velocity was 1.75 × 10−2 m/s at a
flow rate of 3.85 × 10−5 m3/s. The airflow rate was measured by a diaphragm rheometer
(sequentially connected to the pneumatic system) or a gasometer of the UGIMETERS type
(in some cases, by the volumetric method); the air pressure at the inlet to the ejector was
measured by a mercury pressure gauge. The excess air pressure in the pneumatic system
could be adjusted in the range from 1.1 × 10−2 to 1.4 × 10−2 MPa. The air supply to the
ejector was controlled by an adjustable clamp. The indicators of the gas flowmeters were
verified by calculating the static pressure drop of the flotation chamber atmosphere, as
measured by a U-shaped meter.

The liquid workflow into the ejector was fed from an overflow tank (to maintain a
constant level of filling with water) by a water pump through a flow meter equipped with
fine-adjustment valves and pressure control implemented by pressure gauges installed
at the inlet and outlet. A laboratory shut-off-and-control valve was mounted on the feed
pipe; in the working jet, the water pressure was changed in the range from 20.01 × 10−2 to
25.20 × 10−2 MPa.

The washing water consumption was 0.4 m3/min per 1 m2 of the chamber section,
which provided a 7%–8% excess of the water flow into the tailings compared to the amount
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of water flow into the feed and the removal of rock minerals that were mechanically trapped
from the foam layer.

Air was supplied to the airlift by a compressor through a flow meter, a shut-off
armature, and a pressure gauge.

During the flotation, the volumetric capacity of the flotation column was maintained
at 1.59 × 10−5 m3/s when the reduced pulp velocity was ~1 × 10−2 m/s.

3. Results and Discussion
3.1. Studying the Hydrodynamic Interaction of Polydisperse Solid Particles with Carrier Minerals
under Flotation Conditions

During flotation using carrier minerals, the formation of a flotation complex should be
preceded by the aggregation of polydisperse particles; the accumulation of fine gold occurs
on its coarse particles. In order to preliminarily aggregate the polydisperse gold particles,
the rougher concentrate isolated from a part of the initial ore is mixed with another part of
the ore, and only then flotation is implemented.

At a sufficiently close distance from each other, the particles enter into a hydrodynamic
interaction, which manifests itself in the perturbation of the fields of local liquid flows
occurring near them. The factors influencing this interaction are, first of all, the sizes of
the interacting particles, their velocity, the forces causing their movement, the orientation
relative to each other, etc.

The subject of this study is the hydrodynamic interaction of polydisperse particles
under flotation conditions, i.e., the adhesion of fine gold onto the coarse particles of a
rougher concentrate (carrier minerals). The interaction of a coarse particle and a single
solid particle moving along it (a micron-sized mineral) in the case of its Stokes flow
is investigated.

Let us assume that the flow of the liquid is symmetrical with respect to the 0z axis
and that, therefore, the resultant of forces F of the viscous resistance (rrθ) and pressure (trr)
applied to the particle are also directed along the 0z axis and coincide with the direction of
the liquid flow (Figure 3).
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Figure 3. Components of the resistance force acting on the solid particle in the viscous liquid flow.

Integrating the sum of the projections of the pressure forces (trr) and viscous friction
(trθ) on the 0z axis over the entire surface of the particle provides:

F =
∫
S
(− trr cos θ + trθ sin θ) d S =

= 2 π
π∫
0
(− trr cos θ + trθ sin θ) R2sin θ d θ = 3 π µ υ∞ R

π∫
0

sin θ d θ +

+ 2 π R3 ρ g
π∫
0

cos2 θ sin θ d θ

(1)
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or
F = 6 π µ υ∞ R +

4
3

π R3 ρ g. (2)

Therefore, when:
R e = υ∞ Rp / ν << 1 (3)

from the side of the flow of the viscous unlimited liquid, the resistance force acts on a solid
particle moving in it [36], which consists of two forces. First, this is the Stokes drag force:

FStk = 6 π η υ∞ Rp (4)

which tends to compensate for the velocity difference between the surrounding liquid and
the particle, and, second, the inertial buoyancy force arises:

FArh = 4/3 π R3 ρ g. (5)

In the case under consideration, the system of basic differential equations of fluid
hydrodynamics, taking into account external volumetric forces (external mass forces are
neglected) acting on the liquid, consists of the continuity equation:

d ρ

d t
+ ρ div

→
υ = 0 (6)

and the Stokes equation:

− 1
ρ
∇ p + ν ∆

→
υ = 0 (7)

provided that the hydrodynamic force acts on a solid particle whose dimensions Rp are
small compared to its distance from the wall l:

R/l << 1. (8)

In this case, Re—Reynolds number; υ∞—typical velocity scale (an absolute value of the
vector of the velocity of the incident flotation of the liquid); ν = η / ρ, η—kinematic and
dynamic viscosity; ρ—density; Rp—size of the body, streamlined by the liquid or the inner
radius of the pipe through which the liquid is flowing; g—free-fall acceleration; t—time;
→
υ —velocity vector; and p—hydrostatic pressure. When writing Equations (6) and (7), the
following notations were used:

∇ =
→
i

∂

∂ x
+
→
j

∂

∂ y
+
→
k

∂

∂ z
; ∆
→
υ = i → ∆ υx +

→
j ∆ υy +

→
k ∆ υz (9)

where
→
i ,
→
j ,
→
k are unit vectors along the directions of the Ox, Oy, Oz axes of the Cartesian

coordinate system and ∆ is the Laplace operator.
The inequality (8) corresponds to the condition of the near-hydrodynamic interaction

between the coarse (wall) particle and the fine one moving at a speed of:

→
u =

→
i u (10)

where i → is the unit vector along the Ox axis.
Provided that the surface S of the fine particle is on the surface of the coarse particle

(wall) Σ, we can write the boundary conditions as follows:

→
υ
(1)

∣∣∣∣ S = u ;
→
υ
(1)
→ 0 when r → ∞ ; (11)

→
υ
(2)

∣∣∣∣ Σ = −→υ
(1)

;
→
υ
(2)
→ 0 when r → ∞ ; (12)
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→
υ
(3)

∣∣∣∣ S = −→υ
(2)

;
→
υ
(3)
→ 0 when r → ∞ ; (13)

Taking into account the linearity of Equations (6) and (7), we may represent the fields
of local pressures as the sum of the fields:

⇀
υ β∗ = p =

⇀
υ
(1)

β∗ +
⇀
υ
(2)

β∗ +
→
υ
(3)

β∗ + · · · = p(1) + p(2) + p(3) + · · · (14)

where β is the dimension sliding factor and velocities:

→
υ =

→
υ
(1)

+
→
υ
(2)

+
→
υ
(3)

+ · · · , (15)

each member of which satisfies the boundary conditions (11)–(13).
From the side of the unlimited extent of the liquid, the particle moving in it is influ-

enced by the initial field of the velocities
→
υ
(1)

and the force corresponding to it:

→
F
(1)

=
←
F ∞. (16)

The boundary condition (12) is equivalent to the field of the velocities
→
υ
(2)

neutralizing

the initial field
→
υ
(1)

on the surface of the carrier mineral Σ. The determination of
→
υ
(2)

allows
for finding the field

→
υ
(3)

that, in accordance with the boundary condition (16), neutralizes

the field
→
υ
(2)

on the surface S of the fine particle.
The calculation of the individual contributions of the fields to the local field of the

velocity
→
υ makes it possible to find the force

→
F acting from the side of the liquid, bounded

by the carrier mineral, on the fine particle moving along it. At the same time, we should
note that, in accordance with the boundary conditions (11)–(13), only the velocity fields

with odd indices contribute to the magnitude of the force
→
F :

→
F =

→
F
(1)

+
→
F
(3)

+ . . . (17)

In accordance with the selected conditions (16) and (17), the total force
⇀
F acting on the

particle from the side bounded by the liquid wall and the force
⇀
F ∞ determining the first

contribution to it are opposite to the movement direction of the particle:

⇀
F ∞ == −

⇀
i F∞

⇀
F = −

⇀
i F

. (18)

Provided that the fine particle moves along the surface Σ or in the plane that is
perpendicular to its symmetry, it is possible to write:

⇀
υ
(2)

= −
⇀
i υ(2)

⇀
F
(3)

= F∞
⇀
υ
(2)

u
⇀
F
(3)

= −
⇀
i F(3)

F(3) = F∞
⇀
υ
(2)

u

(19)

Since the conditions are considered according to G. Lamb, its influence on the hy-
drodynamic interaction occurring in the system of polydisperse particles consists in the

coincidence of the fields created by the moving particle and the force
→
F ∞, located in its

center, which can be considered by the following expressions:
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⇀
υ
(1)

β = p(1) =
1

4 π

(
⇀
F ∞· ∇

)
1
r
+ o

(
1
r2

)
(20)

→
υ
(1)

= −
→
F ∞

6 π µ r
− r2

24 π µ

(→
F ∞ · ∇

)
∇ 1

r
+ o

(
1
r

)
. (21)

Using (17), we can obtain an expression for the total resistance force acting on the fine
particle from the side of the resistance force limited by the liquid wall:

F = F∞ ×
(

1 − υ2

u

)−1

· β (22)

where β is a nondimensional sliding coefficient.

Proceeding from (22), between the magnitude of the velocity
⇀
υ
(1)

and the magnitude
of the force F∞ acting on the particle in the unlimited extent of the liquid, there is a
directly proportional dependence. On the other hand, in accordance with the conditions

(14) and (15), the velocity
⇀
υ
(1)
S on the fine particle surface and the velocity

⇀
υ
(2)
Σ on the

carrier–mineral surface (wall) are interrelated linearly. The force
⇀
F introduced into the

expression (22), is proportional to the liquid viscosity µ and the value
⇀
υ
(2)
→ 0 , provided

that l → ∞ , i.e., when the distance between the particle and the wall is increasing unlimitedly.
Then, the analysis of the dimensionalities leads to the conclusion that the above

dimensional quantities are related by the following ratio:

⇀
υ
(2)

=
F∞

6 π µ l
. (23)

By substituting the expression (23) into (21), we obtain an expression for the correction
to the hydrodynamic resistance force acting on the fine particle from the liquid side bounded
by the wall (the surface of the carrier mineral):

F =
F∞

1 − F∞
6 π µ l u

· β. (24)

Taking into account [36], the expression for the force acting at the time moment t on
the solid particle moving in the liquid at the velocity

→
u can be written as:

F
6 π η R u

= 1 +
R√
π ν t

+
9
16

R
l

K
(

l√
ν t

)
. (25)

Let ϕ = l /
√

ν t, and when φ < 1, the decomposition for the function K(φ):

K (ϕ) = 1 − 16
9
√

π
ϕ +

8
9
√

π
ϕ3 − 1

6
ϕ4 + O

(
ϕ5

)
(26)

will be substituted into the expression for the resistance force (25), and for steady flow
when t→∞, we can obtain:

F
6 π η R u

= 1 +
9
16

R
l
+

1
2
√

π

R
l

(
l√
ν t

) 3
(27)

At the initial moment of time t, the particle is located at a sufficiently large distance
from the wall, so that φ > 1 and, substituting the decomposition of the function K(φ),
we have:

K (ϕ) =
1
3

ϕ−2 +
4

3
√

π
ϕ−3 + O

(
ϕ−4

)
(28)
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In the ratio (27), we have an expression for the force in the absence of the wall:

F
6 π η R u

= 1 +
R√
π ν t

+
9

16
R
l

(
ν t
3 l2

) 3
(29)

According to the expression (27), near the coarse particle, the velocity of the approach-
ing of the vortex (nonstationary) liquid flow to the steady state will change in the same
way as the value t−3/2 does. Based on the expression (29), at large distances between
the particles (in the case of the particle motion in the unlimited liquid), the correction
conditioned by the unsteadiness of the liquid flow will be changed in the same way as the
value t−1/2 will be. In the case of the Stokes flow, the correction to the hydrodynamic force
acting on the particle is of the R/l order. Consequently, during the flotation involving the
carrier minerals in the gap between the fine particle and the coarse one, the velocity of the
approaching of the liquid flow to the steady-state mode is increased.

During the flotation, the particles hydrodynamically interact with plane
(two-dimensional) and axisymmetric (two-dimensional and three-dimensional) fluid flows,
for which the components of the velocity vector and the pressure field are determined
based on the expressions:

υr (r , θ) = − υ∞ cos θ
(

1 − 3
2

R
r + 1

2
R3

r3

)
;

υθ (r, θ) = υ∞ sin θ
(

1 − 3
4

R
r −

1
4

R3

r3

)
;

p (r, θ) =
(

3
2 µ υ∞ R

r2 + ρ g r
)

cos θ

(30)

In the case of these two flows, the distribution of the velocity and the pressure depends
on two coordinates (r, θ are polar coordinates), and the continuity equation contains the
sum of two derivatives, which allows for introducing a scalar Stokes current function
depending on these two coordinates, i.e., the current function ψ (r , θ). In this case, the
constituent velocities υr and υθ of the liquid are determined based on the current function
in accordance with the equalities:

υr = υ∞ cos θ = − 1
r2 sin θ

∂ ψ

∂ θ
; υθ = − υ∞ sin θ =

1
r sin θ

∂ ψ

∂ r
. (31)

The hydrodynamic interaction of the polydisperse particles can be estimated by the
value of the current function for the current line (surface), the movement along which for
the deposition of the fine particle on the surface of the coarse one is the boundary ψcr:

E = ψcr / υ0 Rp (+) (32)

where υ0 is the velocity of the incoming undisturbed flow, provided that:

r = Rp (+) + Rp (−) ; θ = π / 2 ;
D =

[
Rp (+) − Rp (−) / Rp (+)

]
<< 1

D0 = Rp (−) / Rp (+)
(33)

Equation (32) can be obtained in the form of:

E = 2
ϖ

υ0

[
Rp (−)
Rp (+)

] 2

. (34)

Here,
ϖ = υ0

2 (2.00− ln Re) ;
Re = 2 Rp (+) υ0 / ν

(35)

where ν is the liquid kinematic viscosity.



Minerals 2024, 14, 88 12 of 22

The expression for the particle collision efficiency (34) is obtained under the assump-
tion that the condition of the liquid adhesion to the hydrophilic surface of the mineral is
observed. In the flotation conditions, during the hydrodynamic interaction of hydrophobic
polydisperse particles, when determining the collision efficiency, it is necessary to take into
account an inaccurate compliance with the adhesion condition, i.e., the sliding of the liquid
along the hydrophobic surface. The change in the hydrodynamic mode of the interaction
during the transition from hydrophilic solid particles to hydrophobic solid polydisperse
particles can be considered by obtaining an expression for the current function when taking
into account the liquid sliding.

Based on Oseen’s equation:(
⇀
υ ∞ · ∇

)
⇀
υ = − 1

ρ
∇ p + ν ∆

⇀
υ , (36)

the velocity components are:

υr = − A0
r2 + 2 A1 cos θ

r3 − C0 e−k r (1− cos θ)

2 k r2 [1 + k r (1 − cos θ)] + υ∞ cos θ

υθ = A1 sin θ
r3 + C0 sin θ

2 r e−k r (1 − cos θ) − υ∞ sin θ
(37)

when δ r << 1 (where δ = υ∞ / 2 ν) has the following form:

υr = A0
r − A1

cos θ
r2 + υ0 cos θ−

− C0
2

[
1

δ r + cos θ −
(

γ + ln 1
2 δ r

)
cos θ

]
,

(38)

υθ = − A1
sin θ

r2 − υ0 sin θ − C0

2

(
γ + ln

1
2

δ r
)

sin θ. (39)

Here, γ is the Euler constant, and A0, A1 and C0 are the constants whose values must
be obtained from the boundary conditions.

Based on the boundary condition that υr = 0, when r = Rp (+) by equating the
coefficient to zero, when cos θ, and when a member does not contain cos θ, the following
is true:

A0 =
C0

2 δ
; A1 = υ0 R2

b
C0 R2

p (+)

2

(
1 − γ − ln

1
2

δ r
)

. (40)

If the condition υθ = 0 corresponds to the adhesion of the liquid, then the condition of
the equality of the tangential stress pr θ to the tangential force takes into account the sliding
of the liquid along the surface of the coarse particle r = Rp (+):

υ0 β∗ = pr θ = η

(
∂ υθ

∂ r
+

∂ υr

r ∂ θ
− υθ

r

)
r = Rp (+)

. (41)

Using (38) and (39), based on (41), when r = Rp (+), we have:

A1

(
β∗

η
+

4
Rp (+)

)
= − β∗

η
R2

p (+)

[
υ0 +

C0

2

(
λ + ln

1
2

δ r
)]

, (42)

from which:
C0 = 2 υ0

(1− γ− ln 1
2 δ Rp (+))− 1

2

(
1+ 2 η

β∗ Rp (+)

)−1 ;

A1 = − C0 R2
p (+)

4
(

1+ 2 η

β∗ R2
p

) (43)

Proceeding from the condition that:
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
d ψ = r υr d θ − υθ d r
ψ = 0 ghb r = Rp (+)

η
β∗ Rp (+)

<< 1
, (44)

we will obtain:

E = 2
ϖ

υ0

(
Rp(−)
Rp (+)

) 2 (
1 +

2 η

β∗ Rp (−)

)
. (45)

The comparison of the expressions (34) and (45) allows for stating that the correction
for slip is given by the expression:

fE =

(
1 +

2 η

β∗ Rp (−)

)
. (46)

In view of this, taking into account the sliding, the efficiency of the collision the fine
particle with the coarse one is higher by correction, whose value is determined by the
ratio (46).

A comparison of the expressions (20), (22) and (26), (37) allows for stating that during
the flotation of the microdispersions of minerals using carrier minerals, the adhesion of fine
particles to coarse ones is facilitated by the rapid approach of the vortex liquid flow in the
interphase gap to the steady-state mode accompanied by suppressing transverse particle
movements. In the case of the Stokes flow, this fact can be considered by the correction
having the R/l order to the hydrodynamic force acting on the particle. The coefficient value
of the capturing by a bubble of an aggregate consisting of hydrophobic particles is higher
by the slip correction value in the form of:(

1 +
2 η

β∗ Rp (−)

)
.

3.2. Flotation of Gold Microdispersions Using Carrier Minerals

Based on the obtained estimates, the influence of the polydispersity of the particles
and the conditions of adhesion/sliding of the liquid along the hydrophobic surface on the
result of their hydrodynamic interaction was analyzed. This was analyzed according to the
method related to the preliminary adhesion of hard-to-extract forms of the minerals (their
microdispersions) to the carrier minerals that were specially introduced into the flotation
system. The purpose of this section of the work was to obtain experimental evidence for
the technological effectiveness of the flotation technology using the rougher concentrate as
carrier minerals.

The aggregation process of the minerals in the flotation cells occurs in the turbulent
mode of their movement. Therefore, the methods used for studying the aggregation in
a calm suspension, even after mixing, cannot fully reflect the ongoing changes in the
particle size. The method of studying the aggregation of the fine particles during their
mixing should more fully reflect the change in the dispersed composition of the mineral as
compared to static methods.

In order to study the kinetics of the thinning and breakthrough of the symmetric
interphase films formed during the interaction of the polydisperse grains of gold, the
induction time was measured when the grains adhered to each other. The influence of
temperature and the gold samples on the induction time was studied. To solve this problem,
a change was introduced to the device design: the system used for generating a gas bubble
was replaced by a cantilever beam (probe) containing a grain of gold, glued according to
the method that was developed and tested in [62]. When assembling the probe, the most
flattened grains were selected: thin plates, scales, and leaves of native gold. The selected
gold grains, when mounted on the probe, were oriented towards the material placed in the
cuvette by a larger surface, i.e., a face (wall). Providing a predetermined grain position on
the probe, the induction time was measured when individual grains adhered to the “gold
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wall” and not to its edge or corner. Nevertheless, the lack of geometric similarity of the
interphase gap during the interaction of the flat wall with the polyhedral gold grains in the
material layer was the main reason for the measurement error.

Gold grains of a given coarseness were isolated by sedimentometric analysis.
For the first experiment (Figure 4a, curve 1), native gold grains with a mirror-smooth

surface without any relief, corrosive shells on the periphery of the grains, or signs of hy-
pergenic transformation of the gold faces were selected. On the contrary, for the second
experiment (Figure 4a, curve 2), the research object was non-rounded gold grains with a
shagreen (rough), pitted, and bumpy surface. When using the high-resolution electron mi-
croscope, randomly (mosaic) located micron-sized depressions (ranging from fractions of a
micron to 1–3 microns in size) of a geometrically regular shape in the form of “honeycombs”
were marked on the faces of the gold grains.
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The native gold grains were treated with a 10−3 M solution of ethyl xanthogenate.
In the first case (Figure 4a, curve 1), the induction time decrease when the temperature

increased can be explained by an increase in the hydrophobic interaction forces, i.e., an
endothermic process associated with the difference in the structure and properties of the
water located in the boundary layer and in the volume [19,59,63]. This also includes the
cases of adsorption of ethyl xanthogenate on the gold surface [42,44,64]. A sharp increase
in the dependence of the induction time on temperature when the rough surface particles
interact (Figure 4a, curve 2) can be associated with the manifestation of the effect of the
water flow sliding along the hydrophobic surface of the particles as a result of stratifying the
wall-mounted gas–liquid layer [65,66] or separating stable nanobubbles from the surface
relief irregularities [39,67].

The experimental results were processed along with rejecting the measurement runs;
if the empirical dispersion of the measurement runs was noticeably greater, then the
significance of its difference from the rest was checked by comparing it according to
Cochran’s test (G-criterion). The critical (tabular) values of the G-criterion were determined
at a significance level of 0.95. The points shown in Figure 4 belong to the midpoints of the
confidence intervals constructed using Student’s t-distribution.

The induction time measurement was supplemented by an experiment conducted
on the flotation of native gold of different sizes and samples. The experiments were
carried out in a counterflow flotation column that was 64 mm in diameter when the
xanthogenate concentration was 15.6 mg/L and the foaming agent concentration was
0.025 mg/L. Washwater was not supplied to the foam layer.
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To determine the diameter of the air bubbles (db, mm), its dependence (approximation
accuracy was R2 = 0.98) on the pressure drop occurring between the phases (p, MPa) and
the outlet hole diameter (d, mm) was in the form of [57]:

db = −33.81× 10−2 + 60.08× p + 18.15× d + 430.02× p d. (47)

In the experiments, high-assay copper (870‰–930‰) native gold (of reddish color)
admixed with platinum and with inclusions of ilmenite and magnetite was used; no signs
of hypergenic transformations were noted on the surface of the angular gold grains. Only
individual grains had a low assay (680‰–770‰); their surface differed by a heteroge-
neous structure, and they had endogeneous deformation signs and corrosion shells. Small
classes of coarseness were enriched with lamellar and flake morphotypes of semiangular
grains. Native gold of three size classes was used: (−100 + 71) µm (Figure 4b, curve 1),
(−71 + 40) µm (Figure 4b, curve 2), and −20 µm (Figure 4b, curve 3).

The flotation rate constant was determined to decrease (Figure 4b) when the bubble
size increased and the Rp/Rb ratio value decreased. The obtained result is explained by the
influence of the hydrodynamic interaction of the particles with the bubbles on the flotation
complex formation. The result can be explained by the low efficiency of the collision of the
fine particles with the large bubbles (the action of viscous forces) and the high efficiency of
the collision of the coarse particles with the bubble surface due to the action of inertia forces.

The change in the inertia forces during flotation by the developed method is possible
due to the adhesion of gold microdispersions to the coarse particles of the carrier minerals.
Moreover, there is an interaction of the particles whose surface is hydrophobized by a
collecting reagent. The surface hydrophobization increases the area of the isotherm of the
wedging pressure in the region of its negative values (from S1 to S2), under which the
attraction forces prevail over the repulsion forces (Figure 5).

Minerals 2024, 14, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 5. The view of the isotherm of the wedging pressure П(h) of the wetting film. 

The decrease in the surface hydrophilicity was associated with the adsorption of the 
collector, whose hydrocarbon radicals were the cause of the appearance of the interaction 
forces caused by a change in the structure of the liquid, i.e., the forces of hydrophobic 
attraction. When the thickness h of the wetting film decreased, when the particles ap-
proached, the energy of their interaction U was determined by the additive contribution 
of the energies of a different nature [68–70]: 
• Molecular attraction VA 

1 2123

1 26
p p

A
p p

R RAV
h R R

=
+

 (48)

• Electrostatic repulsion VR 

( ) ( )
( ) ( )1 2 2 2 1 2

0 1 2 2 2
1 2 1 2

12 1 2
1

p p
R

p p

R R exp κ hψ ψV π ε ψ ψ ln ln exp κ h
R R ψ ψ exp κ h

  + − = + + − −     + + − −   
 (49)

• Hydrophobic attraction VS 

( )

1 2

1 2

03

1 1 1

2

12 51 1012 2
1

p p
S

p p

R R hV π K λ exp
R R λ

exp θ / 100.λ . k ; K k ; k
π e

−

 = − +  

−×= = − =
−

 (50)

The values kT/Umin  were calculated during the interaction of the gold grains, 
whose sizes were Rp1 = 1–10 µm and Rp2 = 100–150 µm (Figure 6b). The calculation condi-
tions were as follows. А123 = 4.1 × 10−12 erg is the Hammaker constant for the interaction of 
gold grains (indices “1” and “2”) through a symmetrical film of water (index “3”). ε0 = 8.85 
× 10−12 F/m is the electrical constant of the dispersion medium. φ1, φ2 = −14.7 mV is the 
Stern potential of the particles (approximated by their ζ-potential, whose experimental 
values were determined by the electrophoretic mobility of the particles in water using the 
Henry equation, a Dispersion DT-310 electroacoustic spectrometer (Dispersion Technol-
ogy Inc., New York, the United States) and a Zetasizer Nano ZS device, Malvern 
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The decrease in the surface hydrophilicity was associated with the adsorption of the
collector, whose hydrocarbon radicals were the cause of the appearance of the interaction
forces caused by a change in the structure of the liquid, i.e., the forces of hydrophobic
attraction. When the thickness h of the wetting film decreased, when the particles ap-
proached, the energy of their interaction U was determined by the additive contribution of
the energies of a different nature [68–70]:

• Molecular attraction VA

VA =
A123

6 h
Rp1 Rp2

Rp1 + Rp2
(48)

• Electrostatic repulsion VR
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}
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• Hydrophobic attraction VS
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The values |Umin| / kT were calculated during the interaction of the gold grains, whose
sizes were Rp1 = 1–10 µm and Rp2 = 100–150 µm (Figure 6b). The calculation conditions
were as follows. A123 = 4.1 × 10−12 erg is the Hammaker constant for the interaction
of gold grains (indices “1” and “2”) through a symmetrical film of water (index “3”).
ε0 = 8.85 × 10−12 F/m is the electrical constant of the dispersion medium.
φ1, φ2 = −14.7 mV is the Stern potential of the particles (approximated by their ζ-potential,
whose experimental values were determined by the electrophoretic mobility of the parti-
cles in water using the Henry equation, a Dispersion DT-310 electroacoustic spectrometer
(Dispersion Technology Inc., New York, the United States) and a Zetasizer Nano ZS device,
Malvern Instruments Ltd, Malvern, United Kingdom). σ0 = 3 × 1014 charge/cm2 is the
surface-charge density of the gold grains. κ = 0.92 × 106 cm−1 is the parameter of the
double electric layer corresponding to the inverse Debye shielding radius (the parameter κ
was determined based on the electrical conductivity data). h is the distance between the
particles Rp1 and Rp2 (κh < 3). K is the parameter characterizing the magnitude of surface
structural forces, J/m2 [58,71]. θ = 640 is the contact angle. λ is the parameter characterizing
the long-range action of the forces, nm [58,71]. e = 2.718 is the transcendental constant.
k = 1.381 × 10−23 J/K is the Boltzmann constant. T = 293 K is the absolute temperature.
The calculations were performed in the Maple 2021 environment.
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Figure 6a shows the change in the potential energy of the interaction of the particles
when the distance between them was increased from r1 to r2. The selected distance between
the particles corresponds to the length of the long-range potential minimum; starting from
the distance r ≥ r1, the potential energy of the interaction of the particles is U < 0; r2 is the
distance between the particles, at which the energy of their interaction is |U| = k T.

When the size of the fine particles increased (Figure 6b), the absolute value of the
threshold depth of the long-range potential minimum decreased from 0.56 (when the
minimum coordinate was rmin = 11.6 nm) to 0.36 (when rmin = 15.4 nm). Therefore, when
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the particle size increased, the area of their interaction increased; the polydisperse particles
were aggregated at a smaller depth of the long-range potential minimum.

The results of studying the aggregation and flotation of gold allowed for reaching a
conclusion about the probability of efficiently recovering the microdispersions of minerals,
including native gold, by flotation using the carrier minerals intended for sticking the
fine particles onto the coarse ones. This process is followed by the flotation of the formed
aggregates containing the bubbles of a reduced size.

Using the two samples of ores, which differed in gold content, experiments were
set up to compare the technological indicators obtained using competing technologies
that have been adopted at an operating gold recovery factory and developed using the
rougher concentrate as carrier minerals. The set of the experiments differed in the fact
that the ready-made concentrate was obtained on the ore of sample-1 according to the
full technological scheme, and the ore of sample-2 allowed for releasing only the rougher
concentrate. This made it possible to evaluate the technological regularities of the scheme
as a whole and the main flotation operation efficiency in particular. The experiments were
conducted according to the continuous process principle.

During the flotation of the ores of sample-1 according to the technological scheme
adopted at the operating gold extraction factory, 82.93% of the gold was extracted into
a sellable concentrate when the concentrate yield was 3.07% and the gold content was
20.80 g/t.

During the flotation and proceeding according to the scheme shown in Figure 6, when
the rougher concentrate was first mixed with the base ore, the gold content in the main
flotation feed increased from 0.77 to 1.22 g/t and up to 1.62 g/t during the second mixing,
i.e., by 58.4 and 110.4% rel. with respect to the base ore. The consequence of increasing
the gold content in the initial feed of the rough flotation operation was the operational
extraction increase in the metal from 83.74 to 91.28 and 94.40%, respectively. The gold
extraction into a sellable concentrate was 87.62% when the Au content was 27.65 g/t and
the ∆γ concentrate yield decreased by:

∆ γ =
3.07− 2.44

3.07
× 100 = 20.52%.

Table 1 shows the experimental results of extracting the rougher concentrate from
the ores of sample-2 in the mode adopted at the operating gold processing factory and
the results of testing the flotation mode using the rougher concentrate material as carrier
minerals (Figure 2).

Figure 7 shows a qualitative and quantitative scheme of the sample-1 flotation when
the rougher concentrate was mixed twice and provided with the initial feed.

Table 1. Results of the experiments on the ore flotation using competing flotation schemes.

No. Item Product Name Yield, % Au Content, g/t Au Extraction, %

Sample-2 flotation in the factory mode

1 Rougher concentrate 14.417 4.97 74.95
2 Flotation tailings 85.583 0.280 25.05
3 Base ore 100.0 0.956 100.0

Sample-2 flotation using carrier minerals

4 Rougher concentrate 11.40 6.29 74.95
5 Tailings-1 29.76 0.297 9.24
6 Tailings-2 29.42 0.274 8.43
7 Tailings-3 29.42 0.240 7.38
8 General tailings 88.60 0.270 25.05
9 Base ore 100.0 0.956 100.0
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Table 1 concludes that, while maintaining the achieved level of gold extraction (74.95%),
the double-mixing of the rougher concentrate with the initial feed made it possible to
increase the gold content in the rougher concentrate from 4.97 to 6.29 g/t (the gold concen-
tration degree increased from 5.199 to 6.579) when the concentrate yield decreased.
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Figure 8 demonstrates the dependences of the operational gold extraction on the metal
content in the initial feed of the main flotation operation obtained using the material of
sample-1 (Figure 8a) and sample-2 (Figure 8b). A similar dependence (Figure 8c) proceeded
from the data processing results obtained at the stage of the preliminary research works
related to developing the ores of the deposit.
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Figure 8 shows that when using the rougher concentrate material as carrier minerals,
a mixture was obtained, which, in terms of the extracted mineral content and the flotability,
was identical to the base ore with an increased content of the valuable component.

Various methods of processing refractory sulfide gold concentrates are possible;
their implementation requires significant operating expenses. Therefore, reducing the
gold concentrate amount delivered for metallurgical processing provides a significant
economic effect.

The cost of processing the persistent sulfide flotation concentrates by various technolo-
gies was calculated using the data given in [72]. When using the developed method of the
ore flotation, the possibility of reducing operating costs attributed to 1 ton of the initial ore
has been established, which increases the economic efficiency of its processing.

4. Conclusions

A flotation technology of processing gold-bearing ores, which was developed in order
to increase the completeness of extracting the fine particles of the valuable component, was
studied in this paper.

A correction was obtained for the hydrodynamic drag force acting from the liquid side
on the fine particles under conditions of their flotation applying the carrier minerals.

A decrease in the induction time when the temperature increases was revealed when
studying the kinetics of the thinning and breakthrough of the symmetrical interphase films
formed by the gold grains with a mirror-smooth surface without any relief. The obtained
results can be explained by an increase in the forces of hydrophobic interactions. The
decrease in the induction time, when the gold grains adhere to the rough surface, can be
associated with the manifestation of the effect of the liquid sliding along the gas layer.

The influence of the liquid sliding effect is considered by a dimensionless correction to
the magnitude of the collision efficiency of the aggregate of hydrophobic particles with an
air bubble. The correction expression includes the values that describe the properties of a
continuous medium (dynamic viscosity) and a disperse phase (geometric particle size); the
correction value is always greater than one.

We have revealed that the flotation rate constant decreases when the size of the bubbles
increases and the ratio of the particle size to the bubble size decreases.
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We have found that during the aggregation of polydisperse particles, the threshold
energy of the rapid coagulation is lower than that occurring during the interaction of
monodisperse particles, whose aggregation requires a large depth of the potential pit.

When performing full-scale experiments using the ore of sample-1, sellable concen-
trates were obtained according to two complete technological schemes. The first has been
adopted at the existing gold recovery factory and the second uses the rougher concentrate
as a carrier material. We have established the fact that when the concentrate yield decreased
by 20.52% rel. in the second case, the gold extraction was 4.69% abs. higher.

According to the example of the ore of sample-2, when comparing two technologies
used for extracting the rougher concentrate (the factory one and the developed one using
the rougher concentrate as a carrier material), we have shown that while maintaining the
achieved level of gold extraction (74.95%), the double-mixing of the rougher concentrate
with the initial feed allowed for obtaining an increase in the gold content in the rougher
concentrate from 4.97 to 6.29 g/t. At the same time, the degree of the gold concentration
increased from 5.199 to 6.579.

A possible level of increasing the commercial efficiency indicators of production has
been shown when using the developed approach to extracting microdispersions of minerals.
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