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Abstract: The Bilong Co oil shale is one of the most significant source rocks in the Mesozoic Qiangtang
Basin (Northern Tibet); however, its absolute chronology remains controversial. In this study, in situ
carbonate U–Pb isotope dating analysis was carried out for the first time. Detailed field geological
investigations yielded some age-diagnostic ammonites, enabling a re-evaluation of the stratigraphic
age of the Bilong Co oil shale. A total of 61 spots of U–Pb isotope dating from the middle part of the
Bilong Co oil shale section suggests an average age of 181 ± 13 Ma. Elemental geochemistry and
diagenetic analysis indicate that the proposed age represents the early deposition of the calcite, and
the oil shale was deposited during the Early Jurassic time. This estimated age is further supported
by the newly discovered ammonite assemblage of Hildoceratidae–Tiltoniceras sp. at the top part of
the oil shale section, which confirms the deposition of the oil shale during the Toarcian age of the
late Early Jurassic. Consequently, the Bilong Co oil shale can be assigned to the Quse Formation,
which is attributed to the Lower Jurassic rather than the Middle Jurassic. The re-assessment of
the stratigraphic age of the Bilong Co oil shale is of great significance for regional evaluation and
exploration activities of hydrocarbon source rock layers in the Qiangtang Basin as well as for global
stratigraphic correlation of the late Early Jurassic Toarcian oceanic anoxic event.

Keywords: carbonate U–Pb geochronology; ammonite biostratigraphy; oil shales; Quse Formation;
Early Jurassic; Tibetan Plateau

1. Introduction

The Early Jurassic (early Toarcian ca. 183 Ma) was a time of intense environmental and
paleoceanographic perturbations, such as perturbations of the carbon cycle [1,2], global
warming [3], accelerated hydrological cycling and intense continental weathering [4–7],
high magnitude sea level changes [8], and accumulation of organic-rich sediments such as
in the Qiangtang Basin [6,9]. The Qiangtang Basin, located in the eastern Tethyan domain of
northern Tibet, is the largest Mesozoic marine hydrocarbon-bearing basin in China [9–12].
The Bilong Co oil shale is one of the main source rocks investigated in the Mesozoic Qiang-
tang Basin and has received considerable attention in hydrocarbon exploration activities
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due to its high organic carbon content that reaches up to 26.12 wt.% [7,11,13,14]. Earlier
studies proposed that the Bilong Co oil shale bears similarities to asphalt-bearing shales
that occur widely in the western Tethyan and Boreal realms, such as the Posidonia Shale in
Germany [15]. The thick interval of the Quse oil shale in the Bilong Co section is thought to
be deposited in response to the Toarcian Oceanic Anoxic Event (T-OAE) [6,9,16–18].

Oil shales are significant source rocks that play a crucial role in the generation and
accumulation of hydrocarbons. They have been associated with significant perturbations
in the global climate system and marine ecosystems throughout geological time [2,19–24].
To ensure accurate investigations of significant geological and biological events, particu-
larly those pertaining to oil shales, an accurate geochronological framework is essential.
However, the depositional age of the Bilong Co oil shale remains a subject of intense debate.
Previous research on calcareous nannofossils suggested that the Bilong Co oil shale was
deposited during the Middle Jurassic [25,26]. Although there is no report of age-diagnostic
ammonites found in the Quse Formation to support a Toarcian age to date, Xia et al. con-
ducted an analysis on palynomorph-rich assemblages of spores and dinoflagellate cysts [9],
which revealed that the oil shale and the underlying limestone strata were deposited during
the Toarcian (the late Early Jurassic). These conflicting viewpoints primarily arise from the
controversial biostratigraphic chronology in the Bilong Co section. Moreover, the inclusion
of the Bilong Co oil shale within the Early Jurassic Quse Formation is challenged by strati-
graphic contacts and youngest detrital zircon ages [27]. Consequently, obtaining additional
evidence of the bio-chronology and absolute age to establish an accurate geochronological
framework in the Bilong Co section would greatly contribute to addressing key issues
related to hydrocarbon exploration and the T-OAE. Such evidence, however, has not yet
been reported.

In the western Tethys, biostratigraphic dating relies on high-resolution ammonite
zones or subzones to precisely subdivide and resolve strata into biohorizons for Jurassic
successions, particularly for those of the early Toarcian stage [28–31]. Therefore, in this
study, six well-preserved ammonites were recovered for the first time from the uppermost
part of the oil shales in the Bilong Co section to determine whether the Bilong Co oil shale
was deposited during the Toarcian.

In addition, the lack of absolute ages remains a crucial factor contributing to the
ongoing controversy surrounding the age of the Bilong Co oil shale. Syn-sedimentary
volcanic beds are typically preferred for obtaining absolute geochronological ages of strata,
but they are rare, especially in shales. Calcite is widely formed in various sedimentary
environments. Calcite U–Pb dating could be a more widely applicable geochronometer
if well-preserved carbonate mineral fractions can be dated with high precision [32–34]. It
has been demonstrated that a reliable U–Pb dating age can be obtained from calcite using
a Tera–Wasserburg inverse Concordia diagram [35–40]. In situ U–Pb dating technique
(LA–MC–ICP–MS) has been successfully employed to determine the depositional age of
calcite in carbonate sedimentary successions [40–49]. While calcite U–Pb dating cannot be
directly used in shales, limestones interbedded within the shales are a choice for dating
the main interval of the overlying shales. This approach may facilitate dating carbonate
sedimentary successions that lack age-diagnostic fossils or syn-sedimentary volcanic beds.
The ammonites, in combination with the calcite U–Pb age, should provide a more favorable
means to constrain the stratigraphic age of the Bilong Co oil shale.

In this study, the emerging LA–MC–ICP–MS dating technique was applied, combined
with newly obtained ammonite data from the Bilong Co oil shale. Thus, the objectives
of this study are (1) to conduct in situ calcite LA–MC–ICP–MS U–Pb geochronology to
determine the depositional history and age of the oil shale sediments in the Bilong Co
section; and (2) to use age-diagnostic ammonites recovered from the upper part of the oil
shale interval and provide relative age estimates together with in situ U–Pb ages to mutually
validate one another. This not only allows for the determination of the depositional age of
the Bilong Co oil shale but also provides a reliable time scale for the global comparison of
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regional stratigraphy and the T-OAE (Toarcian Oceanic Anoxic Event) in the Qiangtang
Basin (eastern Tethys).

2. Geologic Setting

The Qiangtang Basin is situated in the northern Tibetan Plateau, eastern Tethys, lying
between the Hoh Xil–Jinshajiang suture zone and the Bangong–Nujiang suture zone [50]
(Figure 1A). The Qiangtang Basin can be subdivided into the North Qiangtang Depression,
the central uplift, and the South Qiangtang Depression [13,50] (Figure 1A). During the
Permian to Late Triassic, the subduction of the Paleo-Tethys Oceanic crust beneath the
Qiangtang terrane moved forward to the south, while the Hoh Xili terrane to the north
led to the formation of a syn-tectonic foreland basin within the Hoh Xil–Jinshajiang suture
zone [13,51]. Subsequently, an extensional tectonic system developed in the basin, marking
the beginning of the Mesozoic Qiangtang Basin [12,50,52]. Jurassic marine deposits formed
the most complete thick interval in the South Qiangtang depression, including the Lower
Jurassic Quse Formation; the Middle Jurassic Sewa, Buqu, and Xiali formations; and the
Upper Jurassic Suowa Formation [50] (Figure 2).
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Figure 1. (A) Simplified topographic map of the Tibetan Plateau (modified from Google Earth
Pro). (B) Geological map showing the major structural features and the location of the Bilong
Co section (solid red star). (C) Field photograph of surface outcrop strata dominated by oil shale
with limestone interbeds from the Bilong Co section. Note: 1-Quaternary, 2-Neogene, 3-Lower
Jurassic Quse Formation, 4-Middle Jurassic Sewa, Buqu, and Xiali Formation, 5-Upper Jurassic Suowa
Formation, 6-Fault, 7-Unconformity, 8-Study section in this study, NQD-North Qiangtang Depression,
SQD-South Qiangtang Depression.
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Figure 2. Schematic diagram showing the major lithostratigraphic units and lithofacies composition
of the Upper Triassic–Jurassic in the South Qiangtang Depression [50].

The Quse Formation in the Bilong Co section is characterized by a combination
of shales containing abundant ammonoids and bivalves intercalated with thin-bedded
limestones (Figure 1B,C). These facies have been interpreted as deposits formed in a
shallow sea within a semi-restricted marginal marine basin [6,53]. Notably, significant
negative carbon-isotope excursions (N-CIEs) of about 3‰ have been reported in the oil
shale interval of the Bilong Co section [6,9,18,54]. However, chronological evidence to
ascertain the correlation with the T-OAE is still a matter of significant debate. Therefore,
this study focuses on the chronology of the oil shale interval of the Bilong Co section,
which roughly matches the 5–40 m interval of the succession previously reported by Fu
et al. [6] (Figure 1C). This oil shale interval is characterized by millimeter-laminated beds of
0.2–2.0 cm thick black and dark gray shales interbedded with light gray to white limestone
(Figure 1C).

3. Material and Methods
3.1. Samples

The current study Bilong Co section was collected from the Bilong Co area at longitude
88◦54′28.32′′ E and latitude 32◦49′56.58′′ N. Three carbonate specimens were collected from
the limestone interbed within the Bilong Co oil shale (Figure 3). One of them was chosen
carbonate LA–MC–ICP–MS U–Pb geochronological analysis (Figure 4), while three samples
(including a U–Pb sample) were selected for element analyses. Additionally, six ammonite
fossils were collected from gray shales at the uppermost part of the Bilong Co oil shale
section for species identification (Figure 5).
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the isochrons. Ellipses represent the ‘n’ spot analyses and corresponding isotope ratios obtained. 
Solid black line represents the Concordia curves. All ages are reported with 2σ confidence. (B): 
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Figure 3. Vertical variations of diagenesis proxies (MgO, Ca, Mn, and Sr) and micrographs of
limestone sample BJ4-2. (A) Geochemical data measured by Hand-Held X-ray fluorescence (HH-
XRF). Blue circles are data in this study. Black circles refer to data measured by Fu et al. [6].
(B,C) Reflected light (LIBS) and CL images showing weak diagenesis and highlighting the regions
analyzed for U–Pb. CL images are almost dark to the naked eye, and thus the brightness is turned
up by a fixed amount to show the textural detail. The white dotted lines highlight the cracks caused
during sample preparation, and thus the spots in white circles were excluded from the calculation of
calcite U–Pb ages. (D) Limestone interbed mainly consists of microspar showing weak diagenesis
under the plane polarized light.
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Figure 4. In situ calcite U–Pb isotopic analysis of the limestone sample BJ4-2. (A): Shows a cross-
plot of 238U/206Pb versus 207Pb/206Pb Tera–Wasserburg Concordia diagrams. Gray dashed line
represents the isochrons. Ellipses represent the ‘n’ spot analyses and corresponding isotope ratios
obtained. Solid black line represents the Concordia curves. All ages are reported with 2σ confidence.
(B): Cross-plot of Uranium (U) versus Lead (Pb) concentrations expressed in parts per million (ppm).
(C): Cross-plot of 238U/206Pb versus 207Pb/206Pb ratios showing a wide range in sample BJ4-2.
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Figure 5. Photographs of ammonites recovered from the Bilong Co section. (A,B,E): Tiltoniceras
sp., late Pliensbachian–early Toarcian recovered from samples JJ-01, JJ-02, and JJ-05, respectively.
(C,D,F): Hildoceratidae sp., Early Jurassic, taken from samples JJ-03, JJ-04, and JJ-06, respectively.

3.2. Petrography and Palaeontology

Thin sections with a thickness of 40 µm were meticulously prepared to differentiate
various mineral components. Ammonite classification followed the methodology estab-
lished by Howarth et al. [55]. Conventional optical petrography was conducted using
a Lecia DM750P polarized light microscope and a Nexcope NSZ818 stereomicroscope
under plane- and cross-polarized light. The species identification of ammonites was carried
out at the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences
(NIGP-CAS). Cathodoluminescence (CL) imaging was performed using a Canada BII-CLF2
cold cathode apparatus mounted on a Lecia DM750P microscope, utilizing a beam with
voltages ranging from 10 to 15 kV and currents ranging from 400 to 500 mA.

3.3. LA–MC–ICP–MS U–Pb Isotope Analyses

In situ U–Pb dating was conducted at the Key Laboratory of Carbonate Reservoir of
China National Petroleum Corporation (CNPC). Before U–Pb LA–MC–ICP–MS dating,
optical examination (including microscopy and cathodoluminescence imaging) and geo-
chemical diagenetic analyses were conducted to distinguish areas of alteration. Afterwards,
a polished epoxy-impregnated rock chip mount was cleaned in an ultrasonic bath with
ethanol, and the entire system was flushed with helium gas. In situ U–Pb isotopic analysis
was conducted on the sample, following a procedure similar to that described in Nuriel
et al. [56] and Shen et al. [57]. During the analysis, a manual pre-screening session allowed
the identification of areas with variable U/Pb and 207Pb/206Pb ratios. Then, samples were
ablated in a helium atmosphere. The ablation used a 120-µm-square spot at a laser repeti-
tion rate of 10 Hz and a laser energy of 3 J/cm2. The NIST 614 glass standard was used as
the primary reference material to correct for the 207Pb/206Pb ratios of the carbonate refer-
ence materials and unknowns and instrument drift in the 238U/206Pb ratio. The 238U/206Pb
ratios of calcite samples were further calibrated with calcite standards, the ID-MS calibrated
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calcite standards Damy (221.0 ± 4.6 Ma) [58] and AHX-1 (209.8 ± 1.3 Ma) [59], following
the method described in Roberts et al. [58] and Shen et al. [57]. The sample age was re-
gressed on Tera–Wasserburg plots using Isoplot 3.0 [60] after raw data were processed by
Iolite 3.6. Then, the age was verified and recalculated for initial 207Pb/206Pb by the online
IsoplotR program [61]. All uncertainties are reported as 2σ.

3.4. Element Analyses

All sediment samples were air-dried, sieved, and crushed into fine fractions of 200 µm
size before analysis. Each X-ray fluorescence (XRF) sample cup was filled with approxi-
mately 7 g of sediment (dry weight) until full, after which the cup was sealed with ultralene
film. The Hand-Held (HH) Bruker S1 Titan XRF Alloy Analyzer (Billerica, MA, USA)
was used to screen the samples at the Southwest Petroleum University. The instrument
comprises an X-ray tube with a Rhodium (Rh) anode (4 W, 15–50 kV, 5–100 µA) and a
Silicon Drift Detector (FAST SDD) with a resolution of <145 eV, based on the Peltier Effect.
Check-sample Bruker® was utilized for quality assurance and quality control, with recover-
ies (%) of elements ranging between 90 and 100. The HH-XRF has a detection limit of less
than 0.5 g kg−1.

4. Results
4.1. Ammonites

A total of six ammonite specimens were recovered from the Bilong Co section. Two
species (Figure 5), containing Hildoceratidae sp. and Tiltoniceras sp., were identified at
the NIGP-CAS. In this study, in situ ammonites of the Hildoceratidae family, containing
Tiltoniceras sp. (Figure 5), were collected from gray marls at the top of Interval III (see
Figure 5). The importance and stratigraphic significance of the recorded age diagnostic
marker ammonites will be discussed in Section 5.1.

4.2. U–Pb Geochronology

The concentrations and isotope ratios of U and Pb in the analyzed samples are sum-
marized in Figure 4B. The U concentrations of sample BJ4-2 range from 0.07 to 0.8 ppm,
exhibiting variability in the 238U/206Pb ratios, which ranges from 0.1 to 6.6 (Figure 4C). Tera–
Wasserburg Concordia plots displaying lower intercept ages can be found in Figure 4A.
The complete data set and plots can be found in the Supplementary Materials.

Sample BJ4-2 originates from the limestone interbed within the oil shales (Figures 3 and 6).
A total of 63 spot analyses were conducted on microspar in sample BJ4-2 (Figure 4). Two
spot analyses on a crack (which was generated during sample preparation) were excluded
for calcite U–Pb dating (Figures 3B and 4C), resulting in 61 spot analyses being utilized
to determine the U–Pb age of the BJ4-2 sample. Some of the data have low radiogenic Pb
and anchor the extrapolation to a lower intercept Concordia date with a relatively high
radiogenic Pb content, but the small-scale isochron yields a realistic intercept age.
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4.3. Elemental Geochemistry

The Sr contents in the carbonate exhibit relatively high values from the bottom to
the top of the limestone interbed, ranging from 305 to 469 ppm. The Mn/Sr ratios of
the carbonate samples from the middle part of the limestone interbed (spots 9–17) are
consistently below 2, and generally below 5 in the lower and upper part (spots 1–8 and
18–20) (Figure 3A). The Mg/Ca ratios are consistently below 0.6 throughout the entire
limestone interbed, and usually below 0.1 in the middle part (Figure 3A).

5. Discussion
5.1. Age Constraints Based on Bio-Chronological Data

Since the stratigraphic columns reported in the Bilong Co section and adjacent areas
commonly vary, a clear stratigraphic correlation is necessary to constrain the intervals
in which age-diagnostic fossils occur before discussing the biostratigraphy of the current
study Bilong Co section (Figure 6). Based on the lithological and geochemical features, the
Bilong Co section can be divided into four intervals (Figure 7): Interval I, marked by a basalt
interbed that can be used as a marker event to enhance the lithostratigraphic correlation
of other marls and limestones between the lithologic column c [9] and lithologic column
d [6] (Figure 7); Interval II, a thick oil shale bed (excluding oil shale interbeds) that is char-
acterized by N-CIEs, can further serve as a marker for stratigraphic correlations; Interval
III, made up of gray shales (with minor oil shale interbeds) interbedded by limestones and
characterized by the end of N-CIEs. Interval IV occurs at the upper part of the Bilong Co
section, and consists mainly of intercalations between mudstone, calcareous mudstones,
and marls.
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In the Bilong Co section, the marker coccoliths species Ansulasphaera helvetica defines
the nannofossil NJ12 Zone, which corresponds to a late Bathonian to Callovian age [25].
Moreover, the ammonite species Oxycerites aspidoides is indicative of a late Bajocian age,
whereas Clydoniceras discuss defines a late Bathonian age, both of which were reported in
beds 16 and 20 (Figure 7, section a), respectively [26], corresponding to ~110 m and ~200 m
in the Bilong Co section of Chen et al. [25] (Figure 7, section b). The occurrence of bivalve
species Bositra buchi is reported in beds 3–18 in the Bilong Co section of Yin [26] (Figure 7,
section a). However, these bivalves have a long age range. Obviously, stratigraphic
correlations indicate that age-diagnostic ammonites and bivalves of Yin [26] and coccoliths
of Chen et al. [25] should be placed in Interval IV or higher. Their presence along with
marine microplanktons, mainly of dinoflagellate cysts Nannoceratopsis pellucida, Wanaea
acollaris, and Escharisphaeridia pocockii [9], indicates that sediments of Interval IV were
deposited during the Bajocian–Bathonian (Figure 7). Bajocian ammonites Dorsetensia
sp. and Witchellia sp. suggest a Bajocian age for the Sewa Formation [67–69], while
Bathonian brachiopods Burmirhynchia–Holcothyris from the conformably overlying Buqu
Formation [52] reveal that the Sewa Formation was deposited no later than the Bathonian.
Therefore, the lower part of Interval IV is considered to belong to the Sewa Formation.
However, there are no age-diagnostic ammonites and coccoliths recorded in Intervals I–III,
within which sediments should be deposited earlier than the Bajocian. It is worth noting
that Yin mentioned a nannofossil record and proposed a middle Toarcian–Aalenian age
for the bed 1–8 in the stratigraphic column b [26] (Figure 7), but only poorly preserved
or long-ranging species were identified between 0–100 m as Chen et al. [66] suggested
(Figure 6). Hence, the nannofossil mentioned above should be re-examined to ensure that
it can be placed at the correct interval of the Bilong Co section.

The Hildoceratidae is one of the ammonite families that dominates the lower Toarcian
British strata [55]. Tiltoniceras is typically known to have an appearance that is exclusive
to the Early Jurassic and ranges from the late Pliensbachian to early Toarcian [55]. Tilton-
iceras originated during the late Pliensbachian epoch in the northern Pacific [70], and it
frequently occurred in the Tenuicostatum Zone (lower Toarcian) in the Tethyan Realm and
became abundantly recorded in the Exaratum Subzone [17,55]. This genus is prevalent and
well-preserved in the Tenuicostatum Zone in NE Siberia [55]. In western North America,
the base of the Kanense Zone corresponds to the beginning of the Toarcian period, and
Tiltoniceras extended into the Kanense Zone and disappeared above Dactylioceras kanense [71].
Tiltoniceras is usually found alongside Dactylioceras and has been reported in Toarcian
strata from the Westgate District of central Nevada [70], southern Yukon Territory [71], and
Nechako River map area [71]. The presence of in situ Tiltoniceras sp. attests that the oil
shales in the Bilong Co section can be consistent with the top of the Tenuicostatum Zone
in Europe and the lower Kanense Zone in western North America (Figure 6), providing
an early Toarcian age for the Bilong Co oil shale. In addition, Xia et al. [9] recovered a
rich assemblage of dinoflagellate cysts from the Bilong Co section (Figure 7), indicative of
an early Toarcian age. This includes Nannoceratopsis gracilis, Mancodinium semitabulatum,
Scriniocassis priscus, and Scriniocassis weberi, which were identified from Interval II to IV.
This dinoflagellate cyst assemblage is commonly recorded within the upper Pliensbachian
to lower Toarcian strata from the Tethyan Realm in the UK and NW Scotland, central Italy,
and western Portugal [72,73]. Other age-diagnostic palynomorphs were reported from the
Quse Formation in the Bilong Co section, such as pollen grain species Callialasporites triloba-
tus, Callialasporites dampieri, and Callialasporites microvelatus, which spur further evidence
of the Toarcian [9]. Long-ranging pollen grains, such as Classopollis sp., Spheripollenites
psilatus, and Corolina torosa, are characteristic features of the latest Pliensbachian–Toarcian
in the Bilong Co section, Qiangtang Basin [9], the Ordos Basin, North China [74], NW
Scotland [72], and the Lusitanian Basin, western Portugal [73]. Thus, recurrent occurrences
of these age-diagnostic dinoflagellate cyst and pollen grain species in Intervals II to IV
further support an early Toarcian age constraint of in situ ammonites in the Bilong Co oil
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shale section. Therefore, the Bilong Co oil shale strata should belong to the Early Jurassic
Quse Formation (Figure 7).

5.2. Calcite U–Pb Geochronology
5.2.1. Primary Depositional Age

Interpretations of calcite U–Pb ages are based on the amounts of radiogenic U and
Pb and uncertainties of ablation points in the collected carbonate samples, although the
complex variability of these data makes this task challenging. Two objective criteria were
followed to help select reliable ages. Owing to the limitation of small-sample statistics for
most geochronological data sets, a cutoff of less than 2.5 is suggested, and the data for
which Mean Squared Weighted Deviation (MSWD) are more than 2.5 reflect calculated ages
with dubious geologic significance [75]. Additionally, age uncertainties of less than 10% are
required for robust ages [43]. Here, sample BJ4-2 provides an age estimate of 181 ± 13 Ma
with MSWD 2.2, which is below the threshold line of 2.5 (Figure 4A).

Calcite can be formed in both syn- and post-depositional (diagenetic) stages. If the
U–Pb isotopic system of calcite is altered by late diagenesis, the dating ages may not
represent the primary depositional age of the calcite [36,37]. The potential diagenesis of the
Quse Formation (including limestone interbeds) in the Bilong Co section has been examined
through geochemical studies. Earlier investigations of the Bilong Co section concluded
that diagenesis has a negligible effect on the original isotopic signals of bulk carbonate and
organic carbon present in the studied limestone bed [6]. In this study, additional detailed
work was conducted on the limestone interbed, including microscopic and geochemical
studies to provide further evidence of the depositional history of the Bilong Co oil shale
section (Figure 3). Sample BJ4-2 consists mainly of microspar, and microscopic observation
shows that it has not been significantly altered by diagenesis, except for dissolution and
dolomitization in the BJ4-1 and BJ4-3 intervals (Figure 3D). Dated regions are also far from
veins, laminations, and other textural heterogeneities (Figures 3B and 4C). The Mg/Ca ratio
is often used to indicate the degree of dolomitization [76,77]. Most of the ratios in the BJ4-2
interval of the limestone interbed are less than 0.1, probably reflecting the stability of the
primary isotope system (Figure 3A). Mn/Sr ratios are typically less than 2; thus, the BJ4-2
interval may not have been altered by post-depositional fluid flow [65,78]. Since strontium
is easily lost during water–rock interaction, Sr concentration data are highly sensitive to
minimal levels of the interaction, encompassing nearly all diagenetic pathways [77]. The
BJ4-2 interval typically has Sr concentrations exceeding 300 ppm and Mn concentrations
below 500 ppm (Figure 3A), suggesting that these values are typical of little-altered marine
compositions [77]. Even areas with elevated Sr concentration (305–469 ppm) can have
Mn/Sr ratios up to 4.6 in spots of the BJ4-1 and BJ4-3 intervals. It is worth noting that these
two samples directly interface with the oil shales, while elevated Mn/Sr ratios are often
interpreted as post-depositional alteration. It is suggested that these ratios from these spots
indicate limited post-depositional alteration. Based on the Mg/Ca ratio of less than 0.6
and Sr concentration of higher than 300 ppm within the BJ4 interval, the moderate increase
in Mn/Sr ratios is interpreted to reflect carbonate deposition from anoxic marine fluids.
Since the age was derived from the calcite that composes the sample, the estimated age
of 181 ± 13 Ma is interpreted as the primary depositional age of the limestone interbed,
which is also supported by the relatively good preservation of carbonates in the Bilong Co
oil shale.

5.2.2. Age Assessment Based on Radioisotopic Dates

Due to the relatively well-preserved carbonates in the Bilong Co section, it is proposed
that the calcite U–Pb age of 181 ± 13 Ma can be considered as the primary age of the
sampled horizon. The Toarcian stage represents the final phase of the Early Jurassic,
spanning from ca. 182.7 to ca. 174.1 Ma [79]. The age of ca. 181 Ma, near the base of the
Toarcian, can be regarded as an early Toarcian age, which is supported by the recorded
fossil groups (Figure 6). Regional correlation of ammonite zones suggests that the combined
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Tenuicostatum and Falciferum zones in NW Europe are approximately simultaneous with
the Kanense Zone in North America [63,71] (Figure 6). U–Pb ages obtained from the
Toarcian strata in North America indicate that the duration of the T-OAE is constrained
within a narrow range, from 183.6 ± 1.7/1.1 Ma to 182.0 ± 3.3/4.9 Ma (zircon ICP-MS
U-Pb) [64,80,81]. The new calcite U–Pb age (ca. 181 ± 13 Ma, calcite LA-ICP-MS U-Pb)
obtained in this study overlaps with this range, despite the uncertainty of the measured
age range. This suggests a good agreement not only with global Toarcian ammonite zones
but also with worldwide chronostratigraphic assessments based on radioisotopic ages
during the T-OAE. At the same time, the proposed radioisotopic age also fits exactly with
constraints of the regional chronostratigraphy. The youngest age of detrital zircons peak at
184.4 ± 0.61 Ma (zircon LA-ICP-MS U-Pb) has been given from the base of the Bilong Co
oil shale [6], suggesting a maximum depositional age of this oil shale interval not younger
than Toarcian. Additionally, this interval was previously interpreted under enhanced
oxygen-deprived bottom water conditions and an N-CIE, consistent with a record of the
T-OAE in this part of the eastern Tethys [6,7,9,53]. Ma et al. [82] obtained a maximum
deposition age for the Sewa Formation between 175.9 ± 3 Ma and 171.7 ± 5.1 Ma (zircon
LA-ICP-MS U-Pb), implying an upper Toarcian–lower Aalenian age. Thus, the interpreted
calcite U–Pb age date of 181 Ma for the Bilong Co oil shale in this study falls within the
known radioisotopic age constraints of 184.4 ± 0.61 Ma to 171.7 ± 5.1 Ma.

In conclusion, although the uncertainty range of ± 13 Ma allows for an age assignment
ranging from the Early Jurassic into the Middle Jurassic, it is suggested that the Bilong
Co oil shale was likely deposited around ca. 181 Ma, supported by in situ ammonites and
radioisotopic dates, thus providing a new absolute chronological marker for the Bilong
Co section.

5.3. Significance of the New Geochronology in the Bilong Co Section

To ensure reliable investigations of voluminous geological and biological events and
the evaluation of hydrocarbon resources, particularly for oil shales, it is essential to establish
an accurate geochronologic framework. In this study, data from sedimentary successions,
geochemistry, and chronology are integrated to reconstruct a comprehensive chronostrati-
graphic framework of the Jurassic period in the Bilong Co area (Figure 7). Additionally, the
source-reservoir-seal system in the South Qiangtang Depression will be discussed.

Reconstruction of the Chronostratigraphic Framework in the Bilong Co Section

Pre-Toarcian

This stage corresponds to Interval I, which is constrained by a basalt age of ca.
201.8 ± 0.45 Ma at the base and a youngest detrital zircon peak of ca. 184.4 ± 0.61 Ma at
the top [6]. Sediments overlying the basalt interbed consist mainly of limestone with a few
shale beds, resembling the biotic carbonate platforms that were widespread in the western
Tethys [83–86]. These sediments are attributed to the lower part of the Quse Formation [7].

Toarcian

This stage corresponds to lithologic Intervals II and III, constrained by in situ U–Pb
dating of ca. 181 Ma and the Toarcian marker ammonites Tiltoniceras sp. recovered at the top.
At this time, the demise of the biotic carbonate platform led to the predominance of water
column bioproductivity and regional accumulation of a thick interval of oil shales [86].
These sediments are featured by N-CIEs that are characteristic of the T-OAE throughout
the Tethys [6,9,54].

Aalenian

Ammonites reported south of the Angda’er Co area reveal that the upper part of
the Quse Formation may extend into the Aalenian [82]. Furthermore, the presence of the
ammonite species Planammatoceras cf. lepsiusi and Phylloceras sp. in the Exiubu section
suggests that gray shales and mudstones overlying Toarcian black shales were deposited
during the Aalenian [26,87]. Although no age-diagnostic fossils or absolute ages implying
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an Aalenian age were found in the Bilong Co section, it is inferred, based on stratigraphic
contacts, that the base of Interval IV represents the Bajocian sediments.

Bajocian

This stage corresponds to the lower part of Interval IV. The boundary between the
Bajocian and the Bathonian can be constrained based on the ammonite Oxycerites aspidoides
and bivalve Bositra buchi assemblage, indicative of a late Bajocian age [26]. The age-
diagnostic calcareous nannofossils species Watznaueria barnesiae and Watznaueria fossacincta
are indicative of an early Bathonian age [25] (Figure 7). Sediments during this period consist
mainly of marls and mudstones with minor limestone interbeds, which are attributed to
the Sewa Formation.

Bathonian

This stage should correspond to the lower part of Interval IV, and the occurrence of the
Bathonian ammonites were reported [26] (Figure 7). Due to limited exposure, the boundary
between the Bathonian and the Callovian remains unclear. Sediments during this interval
consist of shallow-water limestones, which may suggest the re-development and recovery
of biotic platforms along the entire Tethyan margin after the T-OAE. Based on the lithologic
composition and bio-chronology, these sediments should belong to the Buqu Formation.
The unexposed interval is likely the Xiali Formation, which conformably overlies the Buqu
Formation based on stratigraphic contacts [13].

Callovian

This stage corresponds to the upper part of Interval IV and consists of limestones
and shales, yielding middle Callovian ammonites Hoplikosmokeras sp. [26]. Sediments
during this period are assigned to the Suowa Formation based on petrology and bio-
chronology [13,26].

5.4. Regional Chemostratigraphic Correlation and Implication for the Quse Oil Shale Age

Regional correlation of carbon isotope excursion events can provide indirect, yet
important inferences of the timing of the carbon cycle major perturbations and related
oceanic anoxic events. Recent investigations of regional to global carbon isotope correlation
revealed that the T-OAE is characterized by highly variable magnitudes of N-CIE from
−0.8‰ to −8.6‰ [2]. Within the Quse Formation, high-resolution carbon isotopes of
organic matter (δ13Corg) [6] and kerogen (δ13Ckerogen) [9] have been measured (Figure 8).
The lower Toarcian oil shales of the Quse Formation showed an abrupt N-CIE with a
maximum magnitude of δ13Ckerogen at 5.23‰ and 3‰ on average [9] (Figure 8), consistent
with the early Toarcian carbon cycle perturbation associated with the T-OAE. This is in
agreement with δ13Corg values from the same interval in the Bilong Co area with a N-CIE
average magnitude of 2.8‰ [6] (Figure 5). The Quse N-CIE exhibits a comparable pattern
with other regional sections from China, such as the Niandua and Wölong sections from
the Tibetan Himalaya [86], the Anya section in the Ordos Basin [74], and the Suobucha
section in the Southern Qiangtang Depression (Figure 8). Therefore, the N-CIE of the Quse
Formation in the Bilong Co area can commonly refer to the onset of the lower Toarcian oil
shale deposition. Additionally, the N-CIE of the Quse oil shale is comparable to the coeval
range from well-preserved T-OAE intervals in the western Tethys, including the Yorkshire
section in the UK [4,88], the Peniche section in the Lusitanian Basin in Portugal [1,31], and
the Rietheim Posidonia Shale in northern Switzerland [5], providing evidence of the Quse
oil shale depositional age during the Toarcian. It is therefore concluded that δ13Ckerogen

and δ13Corg excursions are an expression of the early Toarcian global carbon perturbation,
which assign a Toarcian age to the Bilong Co oil shales that is compatible with coeval
records sections in the eastern Tethys, as well as with far-apart sections worldwide.
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Figure 8. Regional correlation of carbon isotope profiles of kerogen [54], organic matter [6,9], and
bulk carbonate [6], showing the negative excursion that characterizes the Toarcian oceanic anoxic
event from the eastern Tethys (southern Tibet and Tibetan Himalaya in southern hemisphere) [86],
Panthalassa Ocean (southwest Japan) [89], and northwestern Tethys (the UK [4,88] and northern
Switzerland [5]).
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6. Conclusions

Based on an integrated approach of in situ carbonate U–Pb dating and invertebrate
micropalaeontology, mainly of marker ammonites, from the Bilong Co oil shale section
along with regional correlation from coeval stratigraphic sections in the Qiangtang Basin,
the following conclusions are developed.

(1) The previous investigations of age estimates are supported by the new in situ carbon-
ate U–Pb isotope dating, suggesting that the Quse oil shale in the Bilong Co area was
deposited during the Early Jurassic.

(2) Newly discovered age-diagnostic ammonite assemblage revealed that the age con-
straint for the Bilong Co oil shale is the early Toarcian, rather than the previous
suggestions of a Middle Jurassic age.

(3) Regional correlation of in situ carbonate U–Pb isotope dating along with marker
ammonites, bivalves, and calcareous nannofossils from adjoining sedimentary sections
in the Bilong Co area provide further evidence of an early Toarcian age of the oil
shale strata.

(4) New geochronologic results and regional correlation of N-CIE indicate that the Quse
oil shale provides a record of the global T-OAE in the eastern Tethys generally and the
Qiangtang Basin particularly. This result provides new significance of further regional
evaluation of source rocks in the Qiangtang Basin.
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