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Abstract: The large Dongtangzi Zn-Pb deposit is located in the southwest of the Fengxian–Taibai (ab-
breviated as Fengtai) ore cluster in the west Qinling orogen. The origin of the deposit is controversial,
positing diverse genesis mechanisms such as sedimentary-exhalative (SEDEX), sedimentary-reformed,
and epigenetic-hydrothermal types. This study combines systematic ore geology observations with
high-precision Rb-Sr and Sm-Nd ages of 211 Ma and in situ S-Pb isotopes to constrain the timing
and origin of mineralization. In situ S-Pb isotopic studies show that the sulfide ores display a narrow
range of δ34S values from 1.1‰ to 10.2‰, with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios
of 18.07 to 18.27, 15.64 to 15.66, and 38.22 to 38.76, respectively. On the other hand, pyrites of the
sedimentary period and the granite porphyry dike have δ34S values ranging from 15.8 to 21.4‰
and from 2.1 to 4.3‰ (with 206Pb/204Pb ratios of 18.09 to 18.10, 207Pb/204Pb ratios of 15.59 to 15.61,
and 208Pb/204Pb ratios of 38.17 to 38.24), respectively. The above-mentioned S-Pb isotopic com-
positions indicate that the metallic materials involved in ore formation originated from a mixture
of Triassic magmatic hydrothermal fluid and metamorphic basement. By integrating the regional
geology, mineralization ages, and S-Pb isotopic studies, we propose that the Dongtangzi Zn-Pb
deposit is the product of epigenetic hydrothermal fluid processes, driven by Late Triassic regional
tectono-magmatic processes.

Keywords: Rb-Sr and Sm-Nd isotopic dating; in situ S-Pb isotopes; ore genesis; Zn-Pb deposit;
Dongtangzi; west Qinling orogen

1. Introduction

The Fengxian–Taibai (abbreviated as “Fengtai”) ore cluster, located in the west Qinling
orogen, forms part of the giant Qinling Pb-Zn-Au metallogenic belt, which is itself a
subsidiary component of the Qinling orogenic belt. Several large and medium-sized Zn-Pb
deposits are present, including, from west to east, the Fengya, Yindongliang, Qiandongshan–
Dongtangzi, Bafangshan–Erlihe, and Yinmusi deposits, along with many other small-sized
deposits and occurrences. Moreover, there are two large Au deposits, known as Baguamiao
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and Shuangwang, along with many small-sized Au deposits, and several small Cu deposits.
The total reserve contains over 5 Mt of Pb + Zn and there is more than 200 t of gold in the ore
cluster [1,2]. The large Dongtangzi Zn-Pb deposit, located in the southwest of the Fengtai
ore cluster (Figure 1), contains over 1.5 Mt of Pb + Zn, with an average grade of 7.7 wt% Zn
and 1.7 wt% Pb [3]. The Dongtangzi Zn-Pb deposit was discovered in the late 1950s and
was formerly known as the Qiandongshan deposit. Around 2002, the newly discovered,
concealed west area of the Qiandongshan main ore body was called the Dongtangzi mine
section. After the year 2004, the two mine sections were merged under one name and
collectively called the Dongtangzi Zn-Pb deposit. Previous research work has mainly
focused on the Qiandongshan mine section, while less work has been carried out on the
Dongtangzi mine section. Since the 1980s, extensive investigations have been conducted
into the Dongtangzi Zn-Pb deposit to understand its geological characteristics and ore-
controlling structures [3–6], stable isotope and trace element geochemistry [7–11], and ore
genesis [5,11–17]. Despite decades of research, the origin of the ore remains contentious.
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Figure 1. Sketch maps of (a) tectonic units of China and (b) west Qinling orogenic belt, along with a 

geological map of (c) the Fengxian–Taibai (abbreviated as “Fengtai”) ore cluster (modified from 
Figure 1. Sketch maps of (a) tectonic units of China and (b) west Qinling orogenic belt, along with a
geological map of (c) the Fengxian–Taibai (abbreviated as “Fengtai”) ore cluster (modified from Wang
X. et al., 1996; Hu Q.Q. et al., 2020 [18,19]). Notes: F1: Xiangzihe–Huangbaiyuan Fault (Shang-Dan
suture zone); F2: Xiushiyan–Guanyinxia Fault; F3: Wangjialeng–Erlangba Fault; F4: Daohuigou–
Zheliyuan Fault; F5: Jiudianliang–Jiangkou Fault.
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Many researchers [5,15,20] believe that it is a sedimentary exhalative (SEDEX) deposit
developed in the Devonian period. Others contend that it is of epigenetic origin [3,16–18,21]
and a product of Triassic tectonic–hydrothermal processes. Due to the lack of precise
geochronology data and comprehensive isotopic geochemistry studies, particularly the lack
of in situ technique analysis, the metallogenic processes of the Dongtangzi Zn-Pb deposit
remain poorly understood. Therefore, this study presents a comprehensive identification of
its deposit geology, along with Rb-Sr and Sm-Nd geochronology and in situ S-Pb isotopic
studies, aiming to further constrain the genesis of the Dongtangzi Zn-Pb deposit. The new
results in this study, provide valuable information about the timing of Zn-Pb mineralization
and the source of ore-forming materials. They also allow us to refine the origin of the
Dongtangzi Zn-Pb deposit, which will be an essential factor for understanding the Zn-Pb
metallogeny throughout the entire Fengtai ore cluster and the west Qinling Zn-Pb belt.

2. Regional Geology

The Qinling orogen was formed during the convergence and collision of the North
China and Yangtze blocks (Figure 1a), resulting in a multi-stage composite orogenic belt
composed of two suture zones and three tectonic belts [22]. The three tectonic units are,
from north to south, the North Qinling belt, the South Qinling belt, and the north mar-
gin of the Yangtze block [22]. The northern suture zone is the Early Silurian Shangdan
suture (Figure 1b), and the southern is the Late Triassic Mianlue suture (Figure 1b). The
Fengtai ore cluster is located in the middle-west of the South Qinling belt (Figure 1c),
which is bordered by the NWW-trending faults of the Xiangzihe–Huangbaiyuan fault (F1,
part of the Shangdan suture) in the north and the Jiudianliang–Jiangkou fault (F5) in the
south (Figure 1c). There are three NWW-trending faults inside the ore cluster called the
Xiushiyan–Guanyinxia (F2), Wangjialeng–Erlangba (F3), and Daohuigou–Zheliyuan (F4)
faults (Figure 1c). The basic tectonic setting of the Fengtai ore cluster is a compound fold
with well-developed secondary folds and faults. The tectonic style is a large-scale transpres-
sional strike–slip duplex system resulting from regional sinistral strike–slip faulting [23].

The Fengtai ore cluster is hosted by Middle-Upper Devonian siliciclastic and carbonate
rocks (Figure 1c) deposited in a littoral–neritic depositional environment and subsequently
metamorphosed under low greenschist facies conditions. This vertical succession com-
prises, from bottom to top, fine clastic rocks and metasandstone of the Middle Devonian
Macaogou Formation (D2m), followed by carbonate rocks of the Middle Devonian Gu-
daoling Formation (D2g), clastic–carbonate rocks of the Upper Devonian Xinghongpu
Formation (D3x), and fine clastic rocks of the Upper Devonian Jiuliping Formation (D3j).
Around the periphery of the ore cluster, high-grade meta-sedimentary rocks and volcanic
rocks of the Proterozoic Qinling Group (Pt1q) and Danfeng Group (Pt1d) appear to the
north; carbonate and clastic rocks of the Lower Carboniferous (C1) period and breccia
with siltstone of the Lower Cretaceous (K1) period appear to the northwest (Figure 1c);
and marine carbonate rocks with continental clastic rocks of the Carboniferous (C) period
and limestone of the Lower Triassic Liufengguan Group (T1l) appear to the southwest
(Figure 1c).

Intense Triassic magmatic activity has been recorded in the ore cluster. The Xiba
intermediate–felsic pluton, trending NWW, is positioned to the southeast of the cluster
(Figure 1c), comprising medium-fine-grained granodiorite, monzogranite, quartz diorite,
and tonalite, with transitional contact relations. A small Huahongshuping granodioritic
intrusive stock is located in the north (Figure 1c). In addition, numerous dikes of diorite,
granite porphyry, and lamprophyre commonly develop throughout the ore cluster (mainly
concentrated adjacent to the Pb-Zn and Au deposits), filling the NE- or NWW-trending
faults, with a thickness of tens of centimeters to several meters.
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3. Ore Deposit Geology
3.1. Structures

The “M”-shaped Qiandongshan–Dongtangzi brachyanticline is the principal ore-
hosting structure, striking about 280◦ (Figure 2). The hinge of the anticline plunges west-
wards at angles between 27◦ and 37◦. There are EW-, NW-, and NE-trending faults in the
mine area. The EW-trending reverse faults are the largest in scale and are developed mostly
in the interface between the Gudaoling Formation and Xinghongpu Formation (Figure 2).
The NW- and NE-trending faults are of smaller size but more abundant, belonging to the
“X”-type conjugate shear faults formed under regional shearing events, cutting through the
main orebody with small fault displacements.
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Figure 2. Geological map and composite cross-sections of the Dongtangzi Zn-Pb deposit (after Qi
et al., 1993; Tang, 2013; Wu et al., 2016; Wang et al., 2023 [3,15,24]). Note: 1. The Upper Section of the
Xinghongpu Formation (D3×2); 2. Upper member of the Lower Section of Upper Devonian Xinghongpu
Formation (D3x1

3); 3. Middle member of the Lower Section of Upper Devonian Xinghongpu Formation



Minerals 2024, 14, 297 5 of 29

(D3x1
2); 4. Lower member of the Lower Section of Upper Devonian Xinghongpu Formation (D3x1

1);
5. The Upper Section of the Middle Devonian Gudaoling Formation (D2g2); 6. Diorite porphyry dike;
7. Granite porphyry dike; 8. Fault; 9. Geological boundary; 10. Prospecting line and its number;
11. Zn-Pb orebody and its number.

3.2. Rocks

The strata within the mine area contain the Upper Section of the Middle Devo-
nian Gudaoling Formation (D2g2) and the Upper Devonian Xinghongpu Formation (D3x)
(Figure 2). The EW-striking upper section of the Gudaoling Formation hosts the main ore-
body (Figures 2 and 3), which is comprised of microcrystalline biolithite and carbonaceous
microcrystalline limestone, intensively silicified at the top by meters to tens of meters in
thickness. The Xinghongpu Formation is comprised of two lithologic sections, namely
the Lower Section (D3x1) and the Upper Section (D3x2), respectively. The Lower Section
(D3x1) is comprised of three members, including the lower (D3x1

1) ferrodolomitic phyllite
with sericite phyllite and thin layers of carbonaceous limestone, the middle (D3x1

2) fer-
rodolomitic phyllite with thin layers of limestone and silty sericite phyllite, and the upper
(D3x1

3) carbonaceous phyllite with thin layers of carbonaceous biolithite. Among them, the
carbonaceous limestone of the lower member (D3x1

1) hosts a small scale of Zn-Pb orebody
(Figure 3). The Upper Section (D3x2) consists mainly of chlorite sericite phyllite, with less
ferrodolomitic sericite phyllite at the bottom (Figure 3).
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Figure 3. Stratigraphic column of the Dongtangzi Zn-Pb deposit. The thickness of the lithologic
section is from Wang J.L. et al., 1996 [5].

The intrusive dikes occur throughout the mine area. There are several diorite porphyry
dikes and granite porphyry dikes, filling the NE-trending and NWW-trending faults,
respectively. The diorite porphyry dikes crosscut the main orebody, while the granite
porphyry dikes—with zircon U-Pb ages of 226~221 Ma (LA-ICP-MS; [25])—are roughly
parallel to the main orebody (Figures 3 and 4a). The main minerals of the granite porphyry
dikes are plagioclase (30%), potash feldspar (35%), quartz (30%), biotite (3%), pyrite, zircon,
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sphene, etc. (Figure 4b,c). The existence of cataclastic quartz suggests that the dike was
deformed after its emplacement (Figure 4b,c).
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Figure 4. Rocks of the Dongtangzi Zn-Pb deposit. (a) The NWW-trending granite porphyry dike
crosscutting the main orebody. (b,c) Subhedral granular quartz phenocrysts in the granite porphyry
((b): plane-polarized light; (c): cross-polarized light). (d) Breccia type ore. The brecciated carbonaceous
limestone with disseminated sulfides inside and ankerite at the edges, cementing by medium–coarse-
grained aggregates of quartz–dolomite–polymetallic sulfides. (e) Veinlet ore. Quartz–sulfide–ankerite
veins crosscut the brecciated carbonaceous limestone. (f) Sphalerite-rich massive ore cement the breccia
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of dolomitized rocks. (g) Pyrite-rich massive ore with metasomatic remnant of alterated carbonates.
(h,i) The euhedral granular pyrite was metasomatized by sphalerite and galena within the pyrite-
rich ore ((h)—plane-polarized light; (i)—reflected light). (j) The fragmented pyrite metasomatized
by sphalerite (reflected light). Abbreviations: Sp—sphalerite; Gn—galena; Py—pyrite; Q—quartz;
Ank—ankerite; Cc—calcite; Carb—carbonate.

3.3. Orebodies

Controlled by the Qiandongshan–Dongtangzi anticline, the main orebody occurs at
the contact zone between the Devonian Gudaoling Formation (D2g) and the Xinghongpu
Formation (D3x) (Figures 2 and 3), which is composed of the No.1 orebody (north subsidiary
anticline) and the No.2 orebody (south subsidiary anticline), accounting for more than
90% of the total Zn-Pb reserves. The No.1 orebody extends by 2.35 times its depth [26].
The other orebodies occur within the fault fracture zones and irregular tensile fractures in
limestone, or within interlayer fractures in phyllite, on a relatively small scale with unstable
occurrences (Figures 2 and 3). The eastern part of the No.1 orebody occurs in the northern
flank of the anticline and the saddle of the northern subsidiary anticline, and there is a
trend of pinching out westward (Figure 2). The No. 2 orebody, located on the southern
flank of the anticline, is larger in scale in the west part within the Dongtangzi mine section
(Figure 2). The orebodies in the north flank of the anticline are thinner and the wall rocks are
strongly foliated, while the orebodies in the south flank of the anticline are thicker, without
the preservation of any foliated structures. In addition, within the carbonaceous limestone
near the footwall of the No. 2 orebody, a cryptoexplosive breccia pipe was discovered,
with different sizes of angular–sub-angular breccias, composed of granite porphyry, quartz
vein, altered rock, and massive sulfide ore, cemented with argillaceous and carbonaceous
mineral aggregates (Figure 5a).
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Figure 5. Cryptoexplosive breccia and skarn in the Dongtangzi Zn-Pb deposit. (A) Cryptoexplosive
breccias, with different sizes of angular–sub-angular breccias, composed of alterated granite porphyry,
quartz aggregate, alterated carbonaceous limestone, and massive sulfide ores, cemented by argillaceous
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and carbonaceous mineral aggregates; (B) brecciated ore beside the granite porphyry dike;
(C,D) ankerite is replaced by tremolite, which occurs at the edge of fine-grained disseminated
sphalerite and galena aggregate ((C): cross-polarized light; (D): reflected light). Note: Sp–sphalerite;
Q—quartz; Gn—galena; Ank—ankerite; Tr—tremolite.

The ore minerals mainly comprise sphalerite, galena, pyrite, chalcopyrite, and ar-
senopyrite. The gangue minerals include quartz, ankerite, dolomite, calcite, siderite,
sericite, chlorite, and apatite. The ore structures are mainly veinlets (Figure 4e), banded,
brecciated (Figure 4d,f), blocky (Figure 4g), banded, and disseminated. Extensive vein
filling and metasomatic mineralization can be observed in all the orebodies. The ore tex-
tures include granular (Figure 4h,i), metasomatic (Figure 4h–j), fragmented (Figure 4j), and
wrinkling pressure shadow texture. The wall rock alteration is widely and intensively
developed throughout the floor and roof rocks, including silicification, dolomitization,
calcitization, pyritization, sericitization, and graphitization. In addition, tremolitization is
developed in the ore beside the granite porphyry dikes (Figure 5b–d).

3.4. Mineralogy Assemblage and Paragenetic Sequence

Based on a systematic observation of the mineral assemblages, ore structure and
texture, hydrothermal alteration, and crosscutting relationships of the multistage veins
in the Dongtangzi Zn-Pb deposit, the paragenetic association can be divided into two pe-
riods, namely the sedimentary period and the hydrothermal mineralization period. The
hydrothermal mineralization period can be further divided into three stages (Figure 6):
Stage I, a polymetallic sulfide–ankerite–quartz stage; Stage II, a quartz–pyrite-rich sulfide–
ankerite stage; and stage III, a quartz–carbonate–sulfide stage.
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3.4.1. Sedimentary Period

There is no obvious Zn-Pb mineralization in the sedimentary period, and syn-sedimentary
pyrites (Py0) are observed, which are mostly metasomatized by sulfides and quartz during
the hydrothermal period (Figure 7a–c). The primary sedimentary textures are mostly de-
stroyed by the structural deformation and metamorphism; syngenetic minerals are largely
replaced, deformed, and cemented by hydrothermal minerals during the hydrothermal
mineralization period.
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Figure 7. Microfabric characteristics of the ore in the Dongtangzi Zn-Pb deposit. (a,b) Metasomatic
residual skeleton texture of pyrite (Py0) replaced by the Stage I sphalerite (Sp1), under reflected light.
(c) Droplet chalcopyrite (Cp), irregular galena (Gn), and metasomatic residual Py0 are developed in the
massive sphalerite (Sp1), under reflected light. (d) Densely disseminated pyrite (Py2) + arsenopyrite
(Asp2) developed in the ferrodolomite siliceous rock, under reflected light. (e,f) The ankerite in the
siliceous rock is replaced by quartz, forming skeletal crystal texture, back-scattered electron (BSE)
image. (g) Ankerite (Ank) in the siliceous rocks are metasomatized by quartz (Q) and sphalerite, BSE
image. (h) Micro-fine aggregates of quartz, sericite (Ser), and ankerite in the siliceous rocks, with
sphalerite filling in cracks, BSE image. (i) Scanning electron microscopy (SEM) images show that
the surface of the quartz developed triangular pores, with tightly cemented grains, flat edges, and
crystal textures. (j) Cathode luminescence (CL) image of the ankerite siliceous rock. The residual
of metasomatized calcite is orange colored, while the ankerite is black, and the quartz is deep
bluish purple. (k,l) The silicate rocks are metasomatized by quartz and sphalerite ((k)—cathode
luminescence, (l)—reflected light).
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3.4.2. Hydrothermal Mineralization Period
Stage I: A Polymetallic Sulfide–Ankerite–Quartz Stage

Stage I is rich in sphalerite and galena, with locally enriched pyrite, accompanied
by less chalcopyrite, and is mainly hosted by silicified carbonaceous limestone. The
sphalerite is fine-grained and mainly dark brown in color. The galena and pyrite are also
fine-grained, cementing the breccia of the carbonaceous altered rock (Figure 8a). The
Stage I ore developed silicification, dolomitization, chloritization, and local sericitization,
replacing the banded marl along the bedding, or filling the tension fractures within the
carbonaceous limestone (Figure 8g). Carbonates are extensively metasomatized by quartz
and sulfides (Figure 7e–g), and some quartz and sulfides retain the skeletal crystal structure
of carbonates (Figure 7e,f). Stage I is the main mineralization stage, which is generally
affected by later tectonic deformation, developing fragmentation and local recrystallization
(Figures 4d, 7f and 8a).
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Figure 8. Ore of the different mineralization stages in the Dongtangzi Zn-Pb deposit. (a) The Stage I
massive and brecciated ores intersected by the Stage II quartz–pyrite–ankerite veins. (b) The granite
porphyry dike is crosscut by the Stage II quartz–pyrite–sphalerite vein. (c) The Stage II pyrite-rich
ore is crosscut by Stage III quartz–calcite veins. (d) The Stage II pyrite–ankerite vein is crosscut
by the Stage III calcite veins. (e) The Stage III coarse-grained calcite–pyrite vein. (f) The Stage III
quartz–pyrite–sphalerite veins are arranged in echelon, crosscutting the Stage I ores. (g) The Stage
I quartz–sphalerite–galena–pyrite–ankerite parallel veins crosscutting the carbonaceous alterated
rocks. Note: Sp: sphalerite; Q: quartz; Gn: galena; Ank: ankerite; Sil: siliceous rock.
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No obvious sedimentary mineralization characteristics have been found in the ore of
the Dongtangzi Zn-Pb deposit. The sheet-like sericite among the quartz grains is irregular
(Figure 7h), without obvious orientation, and does not have the typical sedimentary texture
of the directional arrangement of argillaceous minerals. The quartz grains are crystalline
and there is tight cementation between grains (Figure 7i), with no obvious rounded grain
texture, showing no syn-sedimentary characteristics, thereby indicating that the quartz
in the altered rocks may occur as a result of hydrothermal fluid running through fracture
systems of different scales. Most of the quartz in the altered rocks was obviously formed
by metasomatism, as the calcite (the orange region in Figure 7j) is replaced by ankerite
(the black region in Figure 7j) and quartz (the blue-purple region in Figure 7j), while
the ankerite (Figure 7k,l) is replaced by quartz (the blue-purple region in Figure 7k) and
sphalerite (Figure 7k,l). All of the above evidence suggests that the altered rocks were
formed by epigenetic hydrothermal replacement of carbonate rocks, rather than by the
sedimentary-exhalative processes suggested by some researchers [8,15,27,28].

Stage II: A Quartz–Pyrite-rich Sulfide–Ankerite Stage

The Zn-Pb mineralization scale of Stage II is smaller than that of Stage I, but is
more enriched in pyrite, which locally intersects and replaces the Stage I ore, silicified
carbonaceous limestone (Figure 8a), and silicified phyllite. Meanwhile, the granite porphyry
dikes with scattered pyritization are crosscut by the stage II quartz vein (Figure 8b). The
quartz–pyrite–ankerite veins are accompanied by polymetallic sulfides such as sphalerite,
galena, chalcopyrite, and arsenopyrite, which are generally coarse-grained. The color of
the Stage II sphalerite is obviously lighter than that of Stage I, being light yellowish brown
in color, and medium-to-fine-grained. According to the interspersion relationship, the
NWW-trending granite porphyry dike locally crosscuts the Stage I orebody and is cut
through by the quartz–sulfide vein of Stage II, indicating that it was emplaced at a time
between Stages I and II. No apparent replacement can be observed on the pyrite (Py2)
and arsenopyrite (Asp2) in the altered rocks (Figure 7d). Dolomitization, pyritization, and
silicification are well-developed in the wall rocks during Stage II (Figure 8c,d).

Stage III: A Quartz–Carbonate–Sulfide Stage

The Stage III quartz–carbonate–sulfide veins are widely developed in the whole
deposit, forming NE-trending joint veins or en echelon veins (Figure 8f), hosted by car-
bonaceous limestone and phyllite. They mainly consist of coarse-grained quartz and calcite
(Figure 8e), with coarse-to-medium-grained ankerite, pyrite, galena, and sphalerite. The
Stage III veins are small in scale, which crosscut the wall rocks and the ore veins of the
first two stages (Figure 8c,d). The wall rock alteration is weak, including silicification,
pyritization, and carbonation.

4. Samples and Analytical Methods

All samples utilized in this work were collected from underground tunnels at diverse
depths within the Dongtangzi Zn-Pb deposit. After making the polished thin sections,
comprehensive microscopic observation was carried out to preliminarily characterize the
morphology, textures, and paragenesis of ore-related minerals. Subsequently, representative
samples were chosen for further analyses (Table 1). A subset of these samples underwent
crushing, with sulfide minerals, including sphalerite, galena, and pyrite, meticulously
hand-picked under a binocular microscope. The purity of individual mineral separations
exceeded 99%, and all mineral isolations underwent thorough cleaning in an ultrasonic bath.
Concurrently, other portions of the samples were polished into thin sections, facilitating
high-precision in situ LA-MC-ICP-MS sulfur and lead isotope analyses.
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Table 1. Samples description of the Dongtangzi Zn-Pb deposit.

No. Sample Position Stage Type Description

1 D216.3-1
960 m elevation,

north–south of the
No.2 ore body

I Siliceous rock
Siliceous rock with pyrite of the sedimentary

period, intersected by the hydrothermal Stage I
quartz–pyrite–galena veins

2 D22
1010 m elevation,
south flank of the

No.2 ore body
I Disseminated ore Lamellar carbonaceous altered rock, with

disseminated medium-fine grained sphalerite

3 D28-4
960 m elevation,

south flank of the
No.2 ore body

I Banded ore Fine-grained quartz–ankerite–pyrite veins are
zebra-striated in carbonaceous altered rocks

4 D29-1
960 m elevation,

south flank of the
No.2 ore body

I Vein type ore Quartz–dolomite–sphalerite–pyrite–galena veins
developed in carbonaceous limestone

5 D45
960 m elevation,

south flank of the
No.2 ore body

I Massive,
brecciated ore

Medium-coarse-grained massive
sphalerite–pyrite–dolomite aggregate, locally

cementing breccias of carbonaceous altered rock

6 D48
860 m elevation,

saddle part of the
No.2 ore body

I Disseminated ore Fine-grained sphalerite, galena, pyrite, and
dolomite are densely disseminated in altered rocks

7 DTZ-2-2
1060 m elevation,
saddle part of the

No.2 ore body
I

Mineralized
carbonaceous

limestone

Quartz–calcite veins are interspersed with
carbonaceous limestone, with black aphanitic

sphalerite developed at the edges

8 DTZ-1
1060 m elevation,
south flank of the

No.2 ore body
I

Mineralized
carbonaceous

phyllite

The carbonaceous phyllite contains lumpy,
disseminated sphalerite, galena, and pyrite

9 DTZ-3-4
1060 m elevation,
north flank of the

No.2 ore body
I Massive ore Fine-grained black-brown lumpy sphalerite, with

less quartz, pyrite, and galena

10 D41
860 m elevation,

south flank of the
No.2 ore body

I Disseminated ore
Fine-grained sphalerite and ankerite are densely

disseminated in grayish-black carbonaceous
altered rocks

11 D213.2
960 m elevation,

north flank of the
No.2 ore body

I Mineralized
siliceous rock

Gray-black siliceous rock with disseminated
fine-grained pyrite

12 D51-1
795 m elevation,

south flank of the
No.2 ore body

I Disseminated ore Fine-grained sphalerite, galena, pyrite, and
dolomite are densely disseminated in altered rocks

13 D61-1
910 m elevation,

saddle part of the
No.2 ore body

I Disseminated ore
Medium-fine-grained dense disseminated

sphalerite, pyrite, and arsenopyrite are developed
in silicified carbonaceous limestone

14 D229-1
960 m elevation,

south flank of the
No.2 ore body

I Banded ore Banded ankerite–sphalerite–pyrite–galena veins
developed in altered carbonaceous limestone

15 D36
910 m elevation,

south flank of the
No.2 ore body

Granite porphyry
dike

NWW-trending granite porphyry dike, nearly
parallel to the ore body, with scattered pyrite

16 D55
960 m elevation,

south flank of the
No.1 ore body

II Disseminated ore
Quartz–dolomite stockwork developed in the
limestone, with fine-grained arsenopyrite and
pyrite aggregate developed at the contact area
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Table 1. Cont.

No. Sample Position Stage Type Description

17 D58
960 m elevation,

south flank of the
No.1 ore body

II Disseminated ore Silicified limestone with disseminated pyrite,
interspersed by quartz–dolomite stockwork

18 D107-3
795 m elevation,

south flank of the
No.2 ore body

II Massive ore

The massive medium-fine-grained
pyrite–sphalerite–arsenopyrite–ankerite
aggregates, interspersed by the Stage III
coarse-grained calcite and galena veins

19 D109
795 m elevation,

south flank of the
No.2 ore body

II Massive ore
Pyrite-rich massive ore, micro-fine grained pyrite

aggregates, cementing carbonaceous
altered breccia

20 D205.2
795 m elevation,

south flank of the
No.2 ore body

II Vein type ore
Veinlets composed of quartz, calcite, pyrite,

sphalerite, and galena, crosscutting the
altered rocks

21 D26
960 m elevation,

saddle part of the
No.2 ore body

III Vein type ore
The medium-fine-grained lumpy sphalerite,

galena, and calcite vein developed in the
altered carbonatite

22 D230
960 m elevation,

south flank of the
No.2 ore body

III Disseminated ore Veinlet-disseminated ore, mineralized siliceous
rock crosscutting by quartz–calcite-pyrite veins

23 D37-2
910 m elevation,

north flank of the
No.1 ore body

III Gold bearing ore The altered marl, with disseminated pyrite,
interspersed with quartz-dolomite-pyrite vein

24 D223.3
795 m elevation,

south flank of the
No.2 ore body

III Gold bearing ore Dense disseminated pyrite is developed in the
altered rock, with quartz–calcite aggregates

4.1. CL and SEM

Thin sections of samples collected from different mining levels, representing different
stages of mineralization, were selected for cathodoluminescence (CL) and scanning electron
microscopy (SEM) imaging. CL investigation was carried out at State Key Laboratory of
Geological Processes and Mineral Resources, China University of Geosciences, using an
FEI Quanta 600 (MLA) with EDX and Gatan CL detectors (Gatan, Inc., Warrendale, PA,
USA). SEM investigation was carried out at the Institute of Geology, Chinese Academy of
Geological Sciences, using a FEI NOVA nanoSEM (Thermo Fisher Scientific, Brno, Czech
Republic) equipped with an Oxford X-Max 50 detector (Oxford Instruments, Oxford, UK).

4.2. In Situ S Isotope Analysis

Representative sphalerite, pyrite, and galena crystals of hydrothermal stage I to stage
III, pyrite of sedimentary period, and pyrite of granite porphyry dike were selected for
in situ LA-MC-ICP-MS sulfur isotope analysis by using a Resonetics-S155 excimer ArF
laser ablation system with the Nu Plasma II multicollector ICP-MS (produced by Aus-
tralian Scientific Instrument, Australia) at the State Key Laboratory of Geological Processes
and Mineral Resources, China University of Geosciences, Wuhan. Detailed test methods
followed Fu et al. (2016) and Zhu et al. (2016, 2017) [29–31]. The energy fluence of the
laser was approximately 3 J/cm2. For single spot analysis, the diameter was 33 µm with
a laser repletion rate of 8 Hz. The true sulfur isotope ratio was calculated by correction
for instrumental mass bias by linear interpolation between the biases calculated from
two neighboring standard analyses. Isotope data are reported in delta notation (‰) in
comparison with Vienna Cañon Diablo Troilite (V-CDT):

δ34SV-CDT = [((34S/32S)sample/(34S/32S)V-CDT) − 1] × 103



Minerals 2024, 14, 297 14 of 29

where (34S/32S) sample is the measured 34S/32S ratio in the sample and (34S/32S)V-CDT is
defined as 0.044163 [32]. The precision of 34S/32S analysis is less than 0.00003 (1δ). An in-
house pyrite standard named WS-1 was used to calibrate the mass bias for S isotopes [30].
This consists of a natural pyrite crystal from the Wenshan polymetallic skarn deposit,
Yunnan Province, China. The 34SV-CDT value (0.3 ± 0.1%) for WS-1 natural pyrite was
determined using the CF-IRMS method on a MAT 253 isotope ratio mass spectrometer
(Thermo Finnigan, Bremen, Germany) at the Institute of Mineral Resources, Chinese
Academy of Geological Sciences, Beijing. Standards were measured before and after every
four spot analyses. We also use the pyrite standard to obtain the data of galena and
sphalerite, and these data should be considered as rough results due to no proper standard.

4.3. In Situ Pb Isotope Analysis

Twenty-six analysis spots, including pyrite, galena, and sphalerite of hydrothermal
stages I~III and pyrite of the granite porphyry dike, were selected for in situ LA-MC-
ICP-MS lead isotope analysis. The examination was conducted utilizing a 193 nm laser
ablation system (RESOlution M-50, ASI) interfaced with a Nu Plasma II multicollector
ICP-MS (Wrexham, UK) at the State Key Laboratory of Continental Dynamics, Department
of Geology, Northwest University, Xi’an. Homogeneous nano-particulate pressed sulfide
powder tablets (PSPTs) served as reference materials to ensure measurement accuracy.
Instrument parameters were optimized using the NIST610 standard (Pb = 426 µg/g) [33]
to achieve maximal analytical sensitivity, signal stability, and optimal peak shape and
alignment. Analytical signals were deduced using the Time Resolved Analysis (TRA) mode,
with an integration time of 0.2 s. Each measurement spot encompassed a 30 s background
measurement, followed by 50 s of ablation for signal collection, and an additional 120 s
for wash time to mitigate memory effects. Galena laser ablation operated at a frequency
of 2 Hz with a spot size of 9 µm, while for bismuthinite, the frequency was 6 Hz with a
spot size of 30 µm, respectively. The 202Hg, 203Tl, 204Hg+204Pb, 205Tl, 206Pb, 207Pb, and
208Pb ion beams were collected by corresponding Faraday cups. The 204Hg/202Hg natural
abundance ratio (0.229883) was used to calculate and determine the interference from the
204Hg species on the 204Pb intensity obtained. Analytical procedures, reference material
PSPTs, and data processing have been previously described in detail by Chen et al. (2014),
Yuan et al. (2015), and Bao et al. (2017) [33–35].

4.4. Rb–Sr Isotope Analyses

The sulfide samples of Stage I were rinsed several times in distilled water, dried,
and crushed to 40–60-mesh size. The individual minerals of sphalerite and pyrite were
handpicked under a binocular microscope, with purity levels of >98% being used for
analysis. Sulfide grains were crushed to <200 mesh using an agate ball mill, then washed
in an ultrasonic bath and dried. For Rb–Sr isotope analyses, powder weighing 0.2–0.3 g of
each sample were dissolved in Teflon beakers with a mix of HF and HNO3 acids. Rb–Sr
have been separated for isotopic analysis by adopting the resin of AG50W×8 and different
eluent reagents. Firstly, REEs are separated from Rb–Sr by using the normal method of
cation−exchange chromatography with eluent of HCl. Then, Rb and Sr were separated
using a cation–ion exchange column.

Sulfide samples underwent Rb–Sr isotopic analyses using a VG 354 mass spectrometer
(VG Instruments Group Limited from UK) equipped with five collectors at the Center
of Modern Analysis, Nanjing University. The chemical separation and mass spectro-
metric procedures are outlined by Wang et al. (2006) [36]. 87Sr/86Sr is normalized to
86Sr/88Sr = 0.1194, to correct for instrumental fractionation. During the period of this study,
measurements for the American Standard Reference Material NBS 987 Sr standard gave
87Sr/86Sr = 0.710236 ± 0.000007 (2σ).
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4.5. Sm–Nd Isotope Analyses

The carbonate minerals of ankerite, dolomite, and calcite in the Dongtangzi Zn-Pb deposit
were systematically collected from hydrothermal mineralization period sphalerite–galena–
pyrite–quartz–ankerite–dolomite–calcite veins within the main orebody, with six samples
from Stage I, two from Stage II, and one from Stage III, respectively. These carbonate
minerals were separated from the ore samples after crushing and were powdered in an
agate mill before Sm–Nd isotopic analysis.

Powders of carbonate mineral specimens underwent dissolution utilizing purified
0.5 M dilute acetic acid at an ambient temperature over a four-hour duration. After cen-
trifugation, acid-insoluble residues underwent digestion employing a mixture of HNO3,
HF, and HClO4, rendering them amenable for Nd isotopic analyses. The Nd solutions were
subjected to separation through conventional ion exchange techniques. The isotopic com-
positions of the refined Nd solutions were quantified utilizing a VG 354 mass spectrometer
equipped with five collectors at the Center of Modern Analysis, Nanjing University. A
comprehensive account of the experimental methodology can be found in the reports by
Wang Y.X. et al. (2007) [37].

5. Results
5.1. In Situ S Isotopic Compositions

A total of 50 spots were assessed for the in situ sulfur isotope study, covering pyrite
from the sedimentary period (n = 4); sulfides from the hydrothermal period in Stage I
(n = 23), Stage II (n = 4), and Stage III (n = 15), and pyrite in the granite porphyry dike
(n = 4). The results are listed in Table 2.

Table 2. In situ S isotopic composition of the sulfides from the Dongtangzi Zn-Pb deposit.

Sample/Point No. Stage Mineral δ34S (‰)

D216.3/1

Sedimentary period

Pyrite 16.9
D216.3/2 Pyrite 15.8
D216.3/5 Pyrite 19.9
D216.3/6 Pyrite 21.4

D216.3/3 Hydrothermal I Sphalerite 7.3
D216.3/4 Sphalerite 8.7

D41/1 Sphalerite 9.1
D41/2 Pyrite 8.6
D41/3 Sphalerite 9.3
D41/4 Sphalerite 9.4
D41/5 Sphalerite 8.8
D51/1 Pyrite 8
D51/2 Galena 2.7
D51/3 Sphalerite 7.3
D51/4 Sphalerite 7
D51/5 Sphalerite 8
D51/6 Galena 1.4
D51/7 Galena 2.7
D51/8 Pyrite 7.1
D51/9 Sphalerite 7.1
D61/1 Pyrite 5.3
D61/2 Sphalerite 8.6
D61/3 Galena 1.1
D61/4 Sphalerite 8.8
D61/5 Sphalerite 8.9

D213.2/1 Sphalerite 8.3
D213.2/2 Sphalerite 8.8
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Table 2. Cont.

Sample/Point No. Stage Mineral δ34S (‰)

D36.1/1

Granite porphyry dike

Pyrite 2.1
D36.1/2 Pyrite 4.3
D36.1/3 Pyrite 3.7
D36.1/4 Pyrite 2.5

D205.2/1 Hydrothermal II Pyrite 7.4
D205.2/2 Chalcopyrite 6.4
D205.2/3 Pyrite 7.3
D205.2/4 Chalcopyrite 6.5

D26/1 Hydrothermal III Sphalerite 9.9
D26/2 Galena 4.4
D26/3 Sphalerite 9.5
D26/4 Galena 4.8
D26/5 Sphalerite 9.9
D26/6 Pyrite 10.2
D26/7 Sphalerite 9.3
D26/8 Galena 4.6

D223.3/1 Pyrite 8.9
D223.3/2 Pyrite 3.8
D223.3/3 Pyrite 5
D223.3/4 Pyrite 4.4
D223.3/5 Pyrite 8.7
D223.3/6 Pyrite 7.2
D223.3/7 Pyrite 8.3

The measured δ34S data of pyrite from the sedimentary period and the granite por-
phyry dike vary from 15.8 to 21.4‰ (averaging 18.5‰), and from 2.1 to 4.3‰ (averaging
3.2‰), respectively. On the other hand, those of the sulfides from the three hydrothermal
mineralization stages vary from 1.1 to 9.4‰ (averaging 7.1‰), from 6.4 to 7.4‰ (averaging
6.9‰), and from 3.8 to 10.2‰ (averaging 7.3‰), respectively, showing a relatively restricted
range, indicating that there are no significant differences in the source of the sulfur during
the hydrothermal mineralization stages.

5.2. In Situ Pb Isotopic Compositions

All the sulfides analyzed have similar lead isotope values and the radioactive lead
content is low (Table 3). The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios in Stage
I are 18.074–18.107, 15.641–15.663, and 38.217–38.764, respectively. Those in Stage II are
18.073–18.082, 15.652–15.659, and 38.301–38.324, respectively. For the Stage III, the ratios
are 18.078–18.265, 15.645–15.654, and 38.293–38.310, respectively. For the granite porphyry
dike, the ratios are 18.091–18.101, 15.585–15.610, and 38.169–38.241, respectively.

Table 3. In situ Pb isotopic composition of the sulfides from the Dongtangzi Zn-Pb deposit.

Sample/Point No. Stage Mineral 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb

D36/1 Granite porphyry dike Pyrite 38.189 ± 0.010 15.595 ± 0.004 18.091 ± 0.011
D36/2 Pyrite 38.241 ± 0.009 15.61 ± 0.004 18.101 ± 0.003
D36/3 Pyrite 38.169 ± 0.005 15.585 ± 0.002 18.092 ± 0.002
D51/2 Hydrothermal I Pyrite 38.448 ± 0.005 15.663 ± 0.002 18.076 ± 0.003
D51/3 Pyrite 38.286 ± 0.004 15.652 ± 0.001 18.078 ± 0.002
D51/4 Pyrite 38.324 ± 0.004 15.65 ± 0.002 18.074 ± 0.002
D51/1 Sphalerite 38.764 ± 0.026 15.662 ± 0.005 18.075 ± 0.001
D51/1 Galena 38.336 ± 0.008 15.661 ± 0.003 18.084 ± 0.001
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Table 3. Cont.

Sample/Point No. Stage Mineral 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb

D51/2 Galena 38.319 ± 0.007 15.654 ± 0.003 18.105 ± 0.002
D51/3 Galena 38.234 ± 0.006 15.647 ± 0.002 18.096 ± 0.002
D51/4 Galena 38.234 ± 0.009 15.646 ± 0.003 18.086 ± 0.002
D61/1 Galena 38.217 ± 0.004 15.643 ± 0.002 18.107 ± 0.005
D61/2 Galena 38.222 ± 0.007 15.642 ± 0.002 18.102 ± 0.003
D61/3 Galena 38.218 ± 0.005 15.641 ± 0.002 18.096 ± 0.002
D61/4 Galena 38.293 ± 0.001 15.647 ± 0.001 18.087 ± 0.002
D61/5 Galena 38.291 ± 0.004 15.645 ± 0.001 18.090 ± 0.003

D205-2/1 Hydrothermal II Pyrite 38.307 ± 0.024 15.652 ± 0.009 18.074 ± 0.002
D205-2/2 Pyrite 38.324 ± 0.006 15.659 ± 0.002 18.074 ± 0.002
D205-2/3 Pyrite 38.314 ± 0.005 15.655 ± 0.002 18.073 ± 0.002
D205-2/4 Pyrite 38.321 ± 0.005 15.659 ± 0.002 18.082 ± 0.001
D205-2/5 Pyrite 38.301 ± 0.007 15.65 ± 0.003 18.080 ± 0.001

D26/1 Hydrothermal III Galena 38.301 ± 0.007 15.646 ± 0.003 18.097 ± 0.002
D26/2 Galena 38.306 ± 0.005 15.649 ± 0.024 18.086 ± 0.003
D26/3 Galena 38.299 ± 0.006 15.646 ± 0.002 18.091 ± 0.004
D26/4 Galena 38.293 ± 0.003 15.645 ± 0.001 18.265 ± 0.005
D26/5 Galena 38.310 ± 0.003 15.654 ± 0.001 18.078 ± 0.002

5.3. Rb–Sr Isochron Age

The analytical data are listed in Table 4. The Rb contents of the samples are low, rang-
ing from 0.235 × 10−6 to 1.207 × 10−6, and the Sr contents are also low, ranging from
0.3105 × 10−6 to 5.218 × 10−6. The 87Rb/86Sr values range from 0.528 to 6.971. The 87Sr/86Sr
values have a wide range, from 0.71204 to 0.73148. Regression and age calculations of isochrons
were performed using Isoplot/Ex Version 3.00 software [38] and with λ = 1.42 × 10−11 a−1,
using 1% errors for 87Rb/86Sr ratios and 0.05% errors for 87Sr/86Sr ratios at a confidence
level of 95%. The analytical data yielded an isochron age of 211.6 ± 2.6 Ma for mineralization
in Stage I, with an initial 87Sr/86Sr ratio of 0.71046 ± 0.00012 and an MSWD value of 0.31
(Figure 9a).

Table 4. Analytical data of Rb–Sr isotope ratios and Rb–Sr contents.

Sample No. Mineral Stage Rb (µg/g) Sr (µg/g) 87Rb/86Sr 87Sr/86Sr 2σ

DTZ-2-2 Spalerite I 0.4932 2.7590 0.5278 0.712041 0.000008
DTZ-1 Pyrite I 1.2070 5.2180 0.6794 0.712506 0.000008
DTZ-1 Galena I 0.2347 0.3742 1.8150 0.715902 0.000009
DTZ-1 Spalerite I 0.7834 1.6930 1.3620 0.714581 0.000010

DTZ-3-4 Galena I 0.3728 0.3105 3.5470 0.721159 0.000008
DTZ-3-4 Spalerite I 0.9346 0.3957 6.9710 0.731475 0.000009

Considering the potential for physical deformation of the ore, there exists a plausible
scenario in which the determined ages might be influenced by tectonic overprint, necessitat-
ing further investigation of this aspect. The assessment of 1/Rb versus 87Rb/86Sr diagrams
provides a way through which discern whether the initial (87Sr/86Sr)i values remained
constant throughout the sulfide growth process [39], thereby enabling an evaluation of data
integrity. In the present investigation, the absence of covariation between 1/Rb values and
87Rb/86Sr (Figure 9b) signifies that the isochron age data are meaningful, offering a reliable
age of the ore formation.
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5.4. Sm-Nd Isochron Age

All 143Nd/144Nd ratios determined for the ankerite, dolomite, and calcite samples of
the hydrothermal mineralization stages analyzed during this study were normalized to
146Nd/144Nd = 0.7219, with results and analytical uncertainties (2σ) given in Table 5. The
147Sm/144Nd values for carbonate minerals from Stage I range from 0.0731 to 0.7195, with
corresponding 143Nd/144Nd values ranging from 0.511851 and 0.512739.

Table 5. The Sm-Nd isotopic data of the stage I carbonates from the Dongtangzi Zn-Pb deposit.

Sample No. Mineral Stage Sm (×10−6) Nd (×10−6) 147Sm/144Nd 143Nd/144Nd

D22 Dolomite I 0.1605 3.527 0.1351 0.511943 ± 9
D28-4 Ankerite I 0.6537 2.678 0.7195 0.512739 ± 7
D29-1 Dolomite I 0.4058 4.634 0.2586 0.512081 ± 8

D45-31 Dolomite I 0.1325 5.336 0.0731 0.511851 ± 8
D45-32 Dolomite I 0.3536 5.781 0.1803 0.511982 ± 7

D48 Dolomite I 0.2953 4.013 0.2175 0.512024 ± 9
D55 Dolomite II 0.4831 3.907 0.3656 0.512229 ± 14
D58 Calcite II 0.5029 2.694 0.5498 0.512501 ± 8
D58 Dolomite II 0.1847 5.325 0.1023 0.511875 ± 9

Regression and age calculations of isochrons were performed using Isoplot/Ex Version
3.00 software [38]. The ratio errors of 147Sm/144Nd and 143Nd/144Nd were 1% and 0.03%,
respectively. The carbonate minerals yielded an isochron age of 211 ± 4 Ma (Figure 10a),
with a mean square of weighted deviate (MSWD) value of 7.3 and an initial 143Nd/144Nd
ratio of 0.511731 ± 0.000009 (Figure 10a). The nonlinear relationship between the plots on
the 1/Nd vs. 143Nd/144Nd diagram (Figure 10b) excludes the possibility of a mixing line.
Thus, the Sm-Nd isochron age may represent the mineralization age.
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6. Discussion
6.1. Sources of Sulfur and Metals
6.1.1. Source of Sulfur

The sulfur isotopic compositions of sulfides extracted from mineral deposits tradition-
ally serve as discerning indicators of sulfur sources, offering insights into ore formation
conditions and genesis. Alterations in δ34S values are commonly associated with shifts
in source, temperature, pH, and oxygen fugacity (fO2) [40–42]. The array of δ34S values
within a specific region furnishes valuable information regarding the dynamics of sulfide
precipitation, sulfate reduction processes, and the extent of isotopic fractionation, as well
as discerning whether the fluid system was open or closed, contingent on a limited or
unlimited sulfate supply [41,43,44].

Many views about the sulfur source of Zn-Pb deposits in the Fengtai ore cluster
have been proposed, such as (1) a mixed source of reduced sulfur in seawater sulfate and
sulfur in deep-sea hydrothermal fluids, via the decomposition of metal sulfide complexes
in hydrothermal fluids or a combination of metal chloride complexes in hydrothermal
fluids with basinal H2S [45]; (2) a mixture of 32S-concentrated sulfur formed via a biological
reduction with sulfur extracted from the sulfate and sulfide in the sedimentary formation [5];
and (3) seawater sulfate mixed with sulfur that leached from the basement rock [46].
However, previous works have not separately studied different sulfides from different
mineralization stages, and no in situ analysis has been conducted, meaning that the mixing
of sulfides from different stages and sources has been unavoidable.

Using the most advanced in situ LA-ICP-MS analysis method, in this work, sulfur
isotopic compositions of sulfides from different episodes were obtained. Pyrite from
the sedimentary period is 34S enriched (δ34S 15.8‰~21.4‰), which is identical to the
seawater sulfate from the Middle Devonian period [47]. The sulfides from the hydrothermal
mineralization period have δ34S values ranging from 1.1‰ to 10.2‰, with peak values
ranging from 6‰ to 10‰ (Figure 11), partly overlapping that of the granite porphyry dike
pyrite (2.1‰~4.3‰) (Table 2, Figure 11). The δ34S values obtained in this work can be
divided into two main end members: magmatic source (2.1 to 4.3‰) and seawater sulfate
source (15.8 to 21.4‰). Moreover, the δ34S values of the ore sulfides are between the two
end members (1.1‰~10.2‰), indicating a mixed source of magmatic sulfur and seawater
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sulfate. Wilkinson and Hitzman (2014) [48] put forward the hypothesis that magmatic
heat, originating from the sub-crustal emplacement of mid-crustal sills, may serve as a
catalyst for the regional fluid flow associated with Irish-type deposits. Similarly, Slack
et al. (2015) [49] demonstrated that the ore-forming fluid of the black shale-hosted Red
Dog Zn-Pb-Ag deposit emanated from hydrothermal fluids that leached from mafic and
ultramafic rocks at depth. Therefore, contemporaneous magmatic activities at depth could
have functioned as a primary or partial source of sulfur in carbonate-hosted Pb-Zn deposits,
including the Dongtangzi Zn-Pb deposit.
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and (b) sulfur isotopic composition histogram of sulfides of the Dongtangzi Zn-Pb deposit. Note:
The data of pyrite in the wall rock of the Dongtangzi deposit (gray dots) are from Wang J.L. et al.
(1996) [5], and the others are obtained from this work. The data of the Bafangshan–Erlihe, Yinmusi–
Guanmengou and Yindongshan deposits are from Hu Q.Q. (2015a) [21], and the data of the Middle
–Late Devonian and Triassic Marine sulfate are from Claypool et al. (1980) [49].

Compared with pyrite from the hydrothermal mineralization period (averaging 7.2‰),
pyrite from the sedimentary period is remarkably rich in heavy sulfur (averaging 18.5‰),
showing a seawater sulfate source, while the values of pyrite in the granite porphyry dike
(averaging 3.2‰) are closer to those of mantle-derived sulfur. The veined Stage I spha-
lerite in the siliceous rock ranges from 7.3 to 8.7‰ (sample D216.3), while the syngenetic
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disseminated pyrites from the siliceous rock are the richest in heavy sulfur, ranging from
15.8 to 21.4‰ (sample D216.3), indicating that the sulfides from different stages had not
reached isotopic equilibrium, even being hosted in the same thin section. In general, if
δ34Spyrite > δ34Ssphalerite > δ34Sgalena, then the fractionation of S isotopes among minerals
reached equilibrium [50]. The δ34S values of the sulfides from the hydrothermal mineraliza-
tion period show δ34Ssphalerite > δ34Spyrite > δ34Sgalena (Table 2, mineral pairs from samples
D51, D61, and D26), demonstrating that sphalerite and galena have reached equilibrium,
but pyrite and sphalerite have not. This disequilibrium between pyrite and sphalerite could
be explained by the mixing of magmatic sulfur during hydrothermal crystallization.

Wang X. et al. (1996) [19] obtained a range of 165–320 ◦C for the homogenization
temperature of the fluid inclusions in quartz and sphalerite from the main mineralization
stage of the Dongtangzi Zn-Pb deposit. Usually, the thermochemical sulfate reduction (TSR)
reaction that occurs at around 200 ◦C will cause about 10‰ sulfur isotope fractionation
between sulfates and reduced sulfurs [51,52]. As the temperature increases, the degree of
sulfur isotope fractionation caused by the TSR reaction gradually decreases, and there is
generally no obvious sulfur isotope fractionation between sulfide minerals and reduced
sulfur during mineral precipitation [53]. Holser and Kaplan (1966) [54] first proposed
that the δ34S values of seawater reached a minimum in the Middle Devonian period and
then rapidly reached a maximum in the late Devonian period (about 17‰ in the Middle
Devonian VS. about 30‰ in the Late Devonian period). The rapid increase in global
seawater sulfur isotope values during the Devonian and Early Triassic periods was possibly
due to the rapid precipitation of pure sulfide minerals [47].

If the sulfur in the Pb-Zn sulfides of the Dongtangzi deposit mainly comes from
Devonian seawater sulfate, then the δ34S values of sulfides formed by the seawater sulfate
TSR reaction at around 200 ◦C would be around 12‰ (the light blue area in Figure 11a),
which is obviously higher than the measured δ34S values (1.1‰~10.2‰, Figure 11a,b). A
single TSR process in Devonian seawater sulfate would not result in such a low sulfur
isotopic composition; hence, a great deal of light sulfur must have been involved during
the mineralization processes. Possible sources include the following: (1) magmatic sulfur
since some of the Pb-Zn sulfides have consistent sulfur isotope compositions, with pyrite
in the granite porphyry dike (2.1 to 4.3‰, Figure 11), as obtained in this study; (2) sulfides
enriched in light sulfur isotopes through a biogeochemical reduction reaction (BSR) in
the seawater sulfate during sedimentation, which is supported by the light sulfur isotope
enriched pyrite (δ34S < 0‰) found in the wall rock of the Dongtangzi deposit (−1.5~−1.1‰,
Figure 11a); and (3) the seawater sulfate of the Triassic sedimentary basin distributed to
the south of the Fengtai ore cluster, because Triassic seawater sulfate is relatively enriched
in light sulfur isotopes, which could potentially generate sulfides via TSR (around 8‰;
the light blue area in Figure 11a) with similar δ34S ranges to the Pb-Zn sulfides in the
Dongtangzi deposit (1.1‰~10.2‰, Figure 11a). During the Middle Triassic period, the west
Qinling orogenic belt experienced a rapid transformation from Yangtze-type stable shallow
carbonate sedimentation to Tethys-type deep-sea thick turbidite sedimentation. The Tethys-
type rift basin opened in the Middle Triassic period, and rapidly closed between the
Middle Triassic and early Late Triassic period, developing complexly folded deformation
in the rigid massif, sandwiched between the two ancient blocks [55]. This rapid basin
closure during Triassic is conducive to the deposition of evaporites, and the subsequent
folding deformation provided the possibility of dissolution, infiltration, and long-distance
transportation of these evaporites. To the southeast of the Fengtai ore cluster, abundant
evaporites are developed in the sedimentary rocks of the Middle Triassic Jialingjiang
Formation in the northern margin of the Yangtze Block, adjacent to the south Qinling belt,
such as the Wadaozi, Huodigou, and Zuoxigou gypsum deposits [56,57].

In short, the sulfur associated with the Zn-Pb mineralization of the Dongtangzi deposit
has a mixed source of magmatic sulfur and seawater sulfate of evaporites from regional
sedimentary formation, precipitated by TSR.
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6.1.2. Source of Lead

Given the markedly diminished concentrations of thorium (Th) and uranium (U)
in sulfide minerals, particularly in galena, the accrued influence of U and Th on radio-
genic lead (Pb) isotopes within sulfides is deemed negligible, as attested by previous
studies [58–60]. Consequently, the lead isotopic ratios derived from galena, sphalerite, and
pyrite in the Dongtangzi deposit could represent the isotopic composition of the associated
hydrothermal fluids.

Earlier studies suggested that the metals of the Dongtangzi Zn-Pb deposit originated
from host Devonian to Carboniferous carbonate rocks [19], and/or from deep magmatic
hydrothermal fluid [11]. The lead isotopic composition of the major deposits in the Fengtai
ore cluster (e.g., the Qiandongshan, the Yindongliang, the Bafangshan, and the Yinmusi)
exhibit a relatively uniform and stable nature, with variations typically smaller than 1% [5].
These findings indicate the presence of stable and normal lead with a high µ-value, sug-
gesting a mixed source of lead originating from the crust within the orogenic belt. Qi et al.
(1993) [15] further noted that the sulfur and lead in the lead–zinc deposits of the Fengtai
ore cluster originated from two distinct source regions; that is, the sulfur was derived from
sea water while the lead originated from the basement rock. Wang X. et al. (1996) [19]
proposed that the primary Pb-Zn source of the Pb-Zn deposits in the Fengtai ore cluster
was the high-uranium crust rather than the mantle. This ore displayed characteristics of
mixed lead, while the source region exhibited typical features associated with orogenic
belts. Wang J.L. et al. (1996) [5] further postulated that the initially enriched lead in the
ancient strata within the source region underwent leaching by subterranean hot water and
was subsequently transported along growth faults to the seafloor, where mineralization
occurred. The anomalous lead observed in the ore was attributed to the incorporation of
crustal lead during later modification processes [5]. However, prior investigations failed to
differentiate sulfides from different mineralization stages and were not conducted in situ,
resulting in the unavoidable mixing of lead from various stages and sources within the
same sample.

In this study, the in situ Pb isotope compositions of sulfides from different mineral-
ization stages in the Dongtangzi deposit demonstrate a consistent and stable lead isotope
composition across different hydrothermal mineralization stages. The narrow range of
the bulk isotopic data suggests a single source or else a well-mixed source of Pb (Table 3,
Figure 12) [61]. However, the lead isotopic composition of the ore sulfides is different from
that of pyrite found in the granite porphyry dikes (Figure 12), indicating that they may have
different source regions. In other words, the ore sulfides are close to the upper crust, while
the pyrite of the granite porphyry dikes are close to the orogenic belt (Figure 12a). This
suggests that the primary origin of the lead–zinc elements may be from upper-crust sources
rather than from magmatic sources. The lead isotope composition diagram illustrates that
the ore sulfides of the Dongtangzi deposit and Triassic granitic rocks such as the Xiba
intrusion in the west Qinling orogen (Figure 12) have similar lead isotope compositions,
indicating that they may share the same source area. Meanwhile, the lead isotope com-
positions of the ore sulfides partially overlap with those of the Neoproterozoic Yaolinghe
Group and Bikou Group metamorphic basement rocks (Figure 12) beneath the Fengtai ore
cluster. Such Pb isotopic signatures rule out contributions of Pb from the Paleozoic Mianlue
oceanic crust (Figure 12).
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Figure 12. Comparison diagram of lead isotopes of the Dongtangzi Zn-Pb deposit. Plots of
206Pb/204Pb vs. 207Pb/204Pb (a,b) and 206Pb/204Pb vs. 208Pb/204Pb (c,d). Trends for the upper
crust (U), orogenic belt (O), mantle (M), and lower crust (L) are taken from Zartman and Doe
(1981) [62]. Data for the Triassic granites from west Qinling orogenic belt are from Zhang et al. (2006),
Zhang et al. (2007a, b), Qin et al. (2007, 2008a, 2008b, 2010) [63–66]; the Neoproterozoic Yaolinghe
and Bikou meta-volcanic rocks are from Xia et al. (2007, 2008) [67,68]; and the Paleozoic Mianlue
oceanic crust are from Xu et al. (2002) [69]. Py0: pyrite of sedimentary period; Py1, Py2: pyrite of the
Stage I and Stage II; Sp1: sphalerite of the Stage I; Gn1, Gn3: galena of the Stage III.

These findings suggest that the metallic materials involved in ore formation originate
from a mixture of Triassic magmatic hydrothermal fluid and metamorphic basement. The
remarkably homogeneous lead isotope composition of the ore sulfide (Table 3, Figure 12)
mirrors that of global Mississippi Valley-type (MVT) or SEDEX-type Pb-Zn deposits [70,71],
indicating the thorough mixing of ore-forming fluids within the source region.

6.2. Timing of the Ore Formation

The isotope dating of ore minerals is the best method through with to determine the
age of a hydrothermal deposit. Obtaining the age of associated gangue minerals can further
determine the metallogenic age. Since different mineral phases have different chemical
potential, paragenetic minerals with different chemical properties precipitated from the
same ore forming fluid may have different Rb/Sr and Sm/Nd values. Consequently,
for the dating of hydrothermal deposits, the hydrothermal mineral assemblage proves
more advantageous than a single-mineral species [72]. The sulfide Rb–Sr isochron dating
method has been widely used for dating Pb-Zn deposits [73–82]. Moreover, calcium-bearing
minerals such as calcite and fluorite in hydrothermal deposits are ideal objects for Sm-Nd
isotopic dating [83–88].

The temporal evolution within a hydrothermal deposit may span several million years,
contrasting with a narrower timeframe of hundreds of thousands of years for a cohort of
paragenetic hydrothermal minerals. Therefore, in the context of Rb–Sr or Sm-Nd isochron
dating, the paragenetic minerals could be treated as having formed synchronously [72].

In order to eliminate submicroscopic fluid inclusions that might have contaminated
the results, single sulfide mineral particles were ground to sizes below 200 mesh, followed
by ultrasonic cleaning, effectively mitigating the interference from fluid inclusions within
the minerals. Following the discriminant diagram proposed by Pettke et al. (1996) [89], the
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constancy of the initial 87Sr/86Sr values during sulfide mineral growth can be determined
by utilizing a 1/Rb-87Rb/86Sr relation diagram, thus assessing the validity of the data.
The 1/Rb-87Rb/86Sr relation diagram (Figure 9b) demonstrates that the data points do
not exhibit linear correlation. The Rb and Sr contents vary across distinct single-mineral
sphalerite, galena, and pyrite samples, while the 87Sr/86Sr and 87Rb/86Sr values remain
relatively stable. This observation indicates that the initial 87Sr/86Sr values of sphalerite,
galena, and pyrite remain essentially unchanged during their growth, lending geological
significance to the derived isochron ages, and effectively representing the primary min-
eralization age. The fundamental premise of Sm-Nd isochron dating for hydrothermal
minerals is homogeneity, contemporaneity, and closure of the isotopic system. To ensure
the basic conditions of contemporaneity and homogeneity of all samples, in this study, the
samples were carbonates associated with the ore sulfides of the main ore-forming stage
(mineralization Stages I and II). Additionally, there is no linear relationship between 1/Nd
and 143Nd/144Nd (Figure 11b), indicating that the isochron formed by the nine data points
(Figure 11a) has practical significance and could represent the primary ore-forming age.

The isochron ages of sulfides Rb-Sr (211.6 ± 2.6 Ma, Figure 10a) and carbonates Sm-Nd
(211 ± 4 Ma, Figure 11a) are closely consistent within the error range, indicating that the
main mineralization stage of the Dongtangzi Pb-Zn deposit occurred at about 211 Ma; that
is, during the Late Triassic period.

The ages of some Zn-Pb and Au deposits in the Fengtai ore cluster have been reported.
For instance, the Bafangshan–Erlihe Zn-Pb-Cu deposit has yielded a pyrite Re-Os isochron
age of 226 ± 17 Ma [90] and a sphalerite Rb–Sr isochron age of 220.7 ± 7.3 Ma [91]. A quartz
40Ar–39Ar isochron age of 222.1 ± 3.5 Ma [92], a muscovite 40Ar–39Ar age of 209.5 ± 1.4 Ma,
and Sm-Nd isochron ages of 209~208 Ma [93] have been obtained for the large Baguamiao
gold deposit. Moreover, a sphalerite Rb-Sr isochron age of 210.2 ± 2.4 Ma [23] has been
determined for the Chaima gold deposit. In addition, to the west of the Fengtai ore
cluster, the giant Changba–Lijiagou Pb-Zn deposit has a sulfide Rb-Sr isochron age of
222.3 ± 2.2 Ma [77]. The large Liba gold deposit has yielded a mica 40Ar–39Ar age of
216.4 ± 1.5 Ma [94].

Similar ages have been obtained from the igneous rocks of the Fengtai ore cluster. For
example, the NWW-trending granite porphyry dike of the Dongtangzi deposit has yielded
a zircon U-Pb age of 221.3 ± 1.4 Ma [25]; the granite porphyry dike and the NE-trending
diorite dikes crosscutting the main orebody of the Bafangshan–Erlihe deposit and those
within the mine area have yielded zircon U-Pb ages of 217.9 ± 4.5 Ma and 221 ± 3 Ma [21],
respectively. Furthermore, the monzonitic granite and granodiorite of the Xiba pluton
(Figure 1c) yielded zircon U-Pb ages of 219 ± 1 Ma and 218 ± 1 Ma, respectively [95]. The
ages of the Taibai and Baoji plutons to the north of the Fengtai ore cluster are 216 Ma [96]
and 216 to 210 Ma [97], respectively. The main ages of the west Qinling magmatic belt lie
within a similar age range of approximately 220 Ma to 205 Ma [63,98]. In summary, the ages
of the polymetallic deposits in west Qinling range from 231 to 197 Ma and are concentrated
at around 220~200 Ma. On the other hand, the ages of the magmatic rocks range from 248
to 195 Ma and are concentrated at around 230~200 Ma [16].

The ages described above indicate that the Zn-Pb metallogenic events, magmatic
activities, and regional tectonic processes of the west Qinling orogenic belt are consistent in
time [23,99] and are closely related to the collisional processes that occurred between the
Qinling micro-block and the Yangtze block along the Mianlue suture zone during the Late
Triassic to Middle Jurassic periods [99,100].

6.3. Ore Genesis

As mentioned above, the M-shaped anticline structure hosting the Dongtangzi Zn-Pb
deposit could be regarded as the first-order ore-controlling factor. Structural deformation,
hydrothermal fracture filling, hydrothermal replacement mineralization, and intense wall
rock alteration occurred after sedimentation and diagenesis. Additionally, the foreland
basin environment that formed the ore-hosting Devonian carbonate and clastic rocks [55] is
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totally different from that of the SEDEX Pb-Zn deposits in the world, which formed in intra-
and/or epicratonic rifts and passive margin environments [71,101]. Therefore, the Zn-Pb
enrichment in this area should be dominated by epigenetic hydrothermal mineralization
rather than syngenetic exhalative sedimentary processes.

By combining the results of the Rb-Sr and Sm-Nd chronology and in situ S-Pb isotopic
research conducted in this study, the genesis of the Dongtangzi Zn-Pb deposit can be
attributed to epigenetic hydrothermal fluid processes driven by Late Triassic regional
tectono-magmatic activities. This work has promising implications for our understanding
of the analogous Zn-Pb deposits of the west Qinling orogenic belt, given their similar
geological settings and metallogenic characteristics.

7. Conclusions

The in situ S-Pb isotopic analysis of sulfides from different episodes indicates that
the sulfur and Zn-Pb of the Dongtangzi Zn-Pb deposit originated from mixed sources of
magmatic fluid and regional metamorphic basement via TSR reaction.

The Stage I ore sulfides and the associated carbonate minerals yielded Rb-Sr and
Sm-Nd isochron ages of 211.6 ± 2.6 Ma and 211 ± 4 Ma, respectively.

The Dongtangzi Zn-Pb deposit is an epigenetic hydrothermal deposit driven by Late
Triassic regional tectono-magmatic activities, corresponding with the collisional processes
that occurred between the Qinling micro-block and the Yangtze block along the Mianlue
suture zone.
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