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Abstract: The Beizhan iron deposit (468 Mt at an average grade of 41% Fe) is the largest iron deposit in
the Awulale iron metallogenic belt of Western Tianshan, northwest China. The high-grade magnetite
ores are hosted in the Carboniferous volcanic rocks with extensive development of skarn alteration
assemblages. While considerable progress has been made in understanding the characteristics of
Beizhan and its genetic association with volcanic rocks, the genetic models for ore formation are poorly
constrained and remain controversial. This study combines detailed petrographic investigations with
in situ LA-ICP-MS analyses of trace elements and Fe-O isotope compositions of magnetite to elucidate
the origin of magnetite and the conditions of ore formation. The trace element concentrations in
magnetite unveil intricate origins for various ore types, implying the precipitation of magnetite
from both magmatic and hydrothermal fluids. The application of the Mg-in magnetite thermometer
(TMg-mag) reveals a notable temperature divergence across different magnetite varieties, spanning
from relatively higher temperatures in magmatic brecciated magnetite (averaging ~641 and 612 ◦C)
to comparatively lower temperatures in hydrothermal platy magnetite (averaging ~552 ◦C). The iron
isotopic composition in massive and brecciated magnetite grains, characterized by lighter δ56Fe values
(ranging from −0.078 to +0.005‰ and −0.178 to −0.015‰, respectively), suggest a magmatic or high-
temperature hydrothermal origin. Conversely, the heavier δ56Fe values observed in platy magnetite
(+0.177 to +0.200‰) are attributed to the influence of pyrrhotite, signifying late precipitation from
low-temperature hydrothermal fluids. Additionally, the δ18O values of magnetite, ranging from +0.6
to +4.6‰, provide additional evidence supporting a magmatic–hydrothermal origin for the Beizhan
iron deposit. Overall, the identified genetic associations among the three magnetite types at Beizhan
provide valuable insights into the evolution of ore-forming conditions and the genesis of the deposit.
These findings strongly support the conclusion that the Beizhan iron deposit underwent a process of
magmatic–hydrothermal mineralization.

Keywords: magnetite; trace elements; Fe-O isotopes; magmatic–hydrothermal process; Beizhan iron
deposit; Western Tianshan

1. Introduction

The Awulale iron metallogenic belt (AIMB) in Western Tianshan, NW China, hosts sev-
eral large-tonnage magnetite deposits that are closely associated with the coeval Carbonif-
erous calc-alkaline volcanic and plutonic rocks (Figure 1) [1]. These deposits collectively
have a total resource exceeding 1200 million metric tons (Mt) of Fe [2] with a significant
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proportion of high-grade ores, providing attractive targets for the exploration and exploita-
tion of iron in China. As a group, these deposits share many geological, mineralogical, and
geochemical similarities with the volcanic-hosted iron oxide–apatite (IOA) deposits and
magnetite-only deposits in, for example, the Chilean iron belt [3–8] and Southeast Mis-
souri, USA [9–11]. Although the genetic link between volcanic processes and ore deposit
formation seems to be unequivocal, the large variability of mineralogical characteristics
found in these deposits has resulted in several disagreements regarding their origin and
classification [12].
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Figure 1. (a) Geological map of the Western Tianshan region in NW China showing the Awulale iron
metallogenic belt and the major volcanic-hosted iron deposits (simplified from [13,14]). Inset map
shows the location of Western Tianshan within the Central Asian Orogenic Belt (modified from [15]).
(b) Geological map of the eastern part of the Awulale iron metallogenic belt showing the location of
the Beizhan iron deposit (modified from [13]).
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The Beizhan iron deposit, with a total resource of 468 Mt at 41% Fe [16], ranks among
the largest iron deposits in the AIMB. It was previously considered to be a submarine
volcanic-hosted iron deposit [2] or an iron skarn deposit [13,16,17]. Pan et al. [18] pro-
posed that the iron ores in the carbonate rocks at Beizhan are sedimentary in origin and
overprinted by later hydrothermal mineralization. More recently, Li et al. [19] identified co-
existing IOA and iron skarn ores proximal to a dioritic–granitic intrusion and suggested that
the IOA ores likely formed from high-temperature hydrothermal fluids from the dioritic
intrusion, while the iron skarn ores originated from a relatively low-temperature and more
evolved hydrothermal fluid. These varying interpretations highlight the complexity of the
iron mineralization at Beizhan and emphasize the need for a better understanding of the
ore-forming processes.

In this study, we investigated the chemistry of magnetite by using an electron probe
micro analyzer (EPMA) and laser ablation inductively coupled mass spectroscopy (LA-
ICP-MS) to classify compositional types of magnetite and unravel the genesis of iron
mineralization at Beizhan. The formation temperatures of magnetite were obtained by
applying the Mg-in magnetite thermometer (TMg-mag) [20], which further gives key insights
into the ore-forming processes. Furthermore, we use the Fe and O isotopes of magnetite to
fingerprint the source of metals and ore fluids in the deposit.

2. Geological Background
2.1. Geologic Setting of Western Tianshan

Western Tianshan represents the western segment of the Tianshan orogenic belt, which
forms part of the southwestern margin of the Central Asian Orogenic Belt (CAOB) [15].
It is subdivided, from north to south, into four tectonic terranes—the North Tianshan
Accretionary Complex, the Yili Block, the Central Tianshan Arc Terrane, and the South
Tianshan Accretionary Complex—each separated from the other by major suture zones
and regional-scale strike–slip faults (Figure 1a) [21–24].

The Yili Block is underlain by a Precambrian basement, which comprises Proterozoic
gneisses, schists, carbonates, and clastic rocks [14,21,24]. Granitic gneisses with U–Pb zircon
ages of 1609 ± 40 Ma [25] and 919 ± 6 Ma [26] were reported in the northern margin of the
Yili Block and represent the oldest magmatic events in Western Tianshan. These basement
rocks are overlain by Mesoproterozoic to Phanerozoic marine sedimentary and volcanic
sequences and intruded by numerous Neoproterozoic to Permian granitoids [14,24]. The
closure of three Paleozoic oceans (the Terskey, South Tianshan, and North Tianshan oceans)
during the Neoproterozoic to Paleozoic led to the amalgamation of the Yili Block with other
terranes and the eventual formation of the Tianshan orogenic belt [24,27,28].

A large variety of mineral deposits are associated in space and time with the Late
Paleozoic volcanic and subvolcanic rocks (Figure 1a), including porphyry Cu–(Mo) deposits,
epithermal Au deposits [29], and volcanic-hosted iron oxide deposits [2,30].

2.2. Iron Mineralization in Western Tianshan

In the eastern section of Western Tianshan, a cluster of iron oxide deposits constitute
an approximately 250 km long and 20 km wide iron belt, referred to as the Awulale iron
metallogenic belt (Figure 1a). The AIMB has a collective resource of 1200 Mt [2] and
represents one of the most substantial accumulations of high-grade iron ore in China [31].

These iron deposits primarily occur within the Carboniferous volcanic rocks of the
Dahalajunshan Formation. Most iron deposits, such as Zhibo, Beizhan, and Chagangnuoer,
are dominated by Ti-poor magnetite as the only economically extractable metal, except
for the Dunde deposit, where significant zinc and gold mineralization occur around the
magnetite ore bodies. Magnetite mineralization in these deposits was accompanied by
extensive alteration, primarily involving Ca, Na, and K metasomatism, but differ in terms of
alteration assemblages [32–36], possibly related to the differences in chemical composition
of host rocks and ore-forming fluids. Several proposed genetic models for these deposits
include skarn, volcanic–hydrothermal, hydrothermal replacement of volcanic rocks, and
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exhalative–sedimentary in origin [13,16,37,38]. Based on in situ trace element and Fe isotope
analysis of magnetite from the Zhibo and Chagangnuoer deposits, Günther et al. [12]
proposed that most massive ores have an ortho-magmatic origin, while re-precipitated
skarn-type iron ore is of hydrothermal origin.

The distribution of these deposits appears to be controlled by several volcano-
hydrothermal centers in the region. Iron ore mineralization in lavas is typically observed
in close proximity to the volcanic vent, while in pyroclastic–sedimentary rocks, it tends
to occur at a more distal location [39]. Radiometric dates, including the Ar-Ar ages of
muscovite, the Re-Os ages of pyrite, the Sm-Nd ages of garnet, and the U-Pb ages of titanite,
demonstrate that iron mineralization mainly occurred around 330–300 Ma [33,36,40,41],
overlapping ages for the host volcanic rocks [42–45]. The close spatial and temporal associ-
ation, coupled with geological and geochemical evidence, strongly support a genetic link
between the ore deposit and the host volcanic rocks [41].

3. Geology of the Beizhan Iron Deposit

The Beizhan iron deposit is situated on the northern limb of the Gongnaisi synclino-
rium, located in the eastern sector of the AIMB (Figure 1b) [32,40]. The deposit has un-
dergone significant folding and faulting, resulting in complex crustal structures (Figure 2).
Nine major compressional faults have been identified within the deposit. The presence of
a volcano in the deposit is evidenced by effusive eruptions of andesitic lavas, explosive
eruptions of tuff units, and the development of caldera structures, which are associated
with the development of ring faults and dikes [46].
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up geological map showing the main magnetite orebodies in the Beizhan iron deposit (modified
from [16,48]). (c) Selected cross section of the Beizhan iron deposit (modified from [17,40]).
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The Carboniferous Dahalajunshan Formation that hosts the deposit comprises basaltic
andesite, andesite, dacite, rhyolite, limestone, basaltic tuff, and andesitic–rhyolitic tuff
(Figure 2). Zircon U-Pb dating of the basaltic andesite and dacite has provided ages of
320.6 ± 2.2 Ma and 329.1 ± 1.0 Ma [49,50]. The volcanic rocks have been intruded by
Late Carboniferous K-feldspar granite, diabase dike, and diorite. The geochemical and
geological features of these igneous rocks suggest that the volcanic suites erupted in a
continental arc setting, while the Late Carboniferous granites, diabase, and diorite dikes
formed in an extensional setting [51].

The Beizhan deposit comprises six magnetite orebodies (L1–L6) that are generally
concordant with the wall rocks. L3 is the dominant orebody and contains ~99% of the total
ore resources of the deposit. The total iron content (TFe) of the ore body varies from 23% to
64.3%, with an average of 40.5%. The orebody is lensoid, veined, and stratiform, strikes
northwest, and dips 37◦ to 40◦ to the north (Figure 2c). It extends over a strike length
of about 880 m and a vertical extent of over 300 m, with a thickness up to 295 m in the
deeper levels.

The magnetite mineralization dominantly occurs as massive, disseminated, brecciated,
and vein ores (Figures 3 and 4). The massive ores represent the high-grade component of
the mineralization and are composed predominantly of euhedral to subhedral granular
magnetite with interspersed pyrite and silicate minerals (Figures 3a–c and 4a,b). Dissemi-
nated ores are widespread in the mineralization zones but commonly occur in proximity to
massive ores or in the host rock surrounding the veins (Figure 3d,e). In disseminated ores,
magnetite occurs as disseminated subhedral to anhedral grains intergrown with gangue
minerals (Figure 4c). Platy magnetite is also present in disseminated ores in association
with platy pyrrhotite (Figure 3f). The brecciated ores are defined by subangular fragments
of volcanic rocks embedded in a magnetite matrix, with locally observed potassic and silicic
alteration in the host rock fragments (Figure 3g,h and Figure 4d). Locally, magnetite occurs
as veins and fracture fillings in altered country rocks (Figure 3i).

The gangue minerals are predominantly composed of calcite, ankerite, chlorite, serpen-
tine, tourmaline, epidote, actinolite, and phlogopite with minor garnet, diopside, forsterite,
titanite, and apatite. Pyrrhotite and pyrite are the most common sulfides, while chalcopyrite
is typically present in trace amounts (Figure 4e,f).

The paragenetic sequence of the Beizhan iron deposit was subdivided into four stages
based on field and petrographic observations (Figure 5). The skarn stage (I) is characterized
by the development of skarn minerals, including garnet, diopside, and forsterite. The
magnetite stage (II) represents the primary stage of magnetite mineralization, accompanied
by minor precipitation of hematite, apatite, actinolite, and tremolite. The sulfide stage (III) is
marked by veins of sulfide minerals such as pyrrhotite, pyrite, sphalerite, and chalcopyrite,
often closely associated with magnetite ore. The chlorite-carbonate stage (IV) is represented
by the formation of carbonate, chlorite, and serpentine, along with small quantities of
magnetite and hematite.
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Figure 3. Photographs of the different ore types in the Beizhan iron deposit. (a) Massive mag-
netite (Mag) ores at the contact between altered host rock and marble. (b) Massive magnetite ore.
(c) Massive magnetite ore with fracture infill of garnet (Grt) skarn. (d) Disseminated magnetite in
garnet–epidote (Ep) skarn. (e) Disseminated magnetite in calcite (Cal)–epidote veins in proximity to
massive ores. (f) Platy magnetite in association with platy pyrrhotite (Po). (g) Contact between host
volcanic rock and magnetite ore, where volcanic breccias are cemented by magnetite. (h) Volcanic
breccias in the magnetite matrix. (i) Veins of magnetite in the epidote skarn.
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Figure 4. Photomicrographs showing magnetite from the Beizhan deposit. (a) Euhedral to subhedral
magnetite (Mag) in massive ore. (b) Massive magnetite with interstitial phlogopite (Phl). (c) Fine-
grained disseminated magnetite in calcite (Cal) veins. (d) Volcanic breccias cemented by magnetite.
(e) Magnetite with interstitial pyrrhotite (Po) and pyrite (Py). (f) Magnetite that is replaced by
pyrrhotite and chalcopyrite (Ccp).
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4. Analytical Methods
4.1. Electron Microprobe Analyses

Major element analyses of magnetite were conducted utilizing a JEOL JXA-8230
electron microprobe at the Institute of Mineral Resources, Chinese Academy of Geological
Sciences, Beijing. The analytical parameters were set with an acceleration voltage of 15 kV,
a beam current of 20 nA, and a defocused electron beam diameter of 5 µm. Calibration
standards included both natural and synthetic minerals, including Woll MAC (Si and Ca),
jadeite (Na), kyanite (K), and synthetic TiO2, Fe2O3, MgO, and Mn3O4. Data reduction was
executed through the ZAF correction method of the JEOL microprobe system. Analytical
precision is better than 0.01%.

4.2. In Situ Magnetite Trace Element Analyses

In situ trace element analyses of magnetite were completed using a high-mass-
resolution Agilent 7500a ICP-MS, coupled with a New Wave UP 193SS laser ablation
system at the LA-ICP-MS laboratory, China University of Geosciences, Beijing. The laser
ablation system utilized a beam spot of 50 µm and an energy beam of 8.5 J/cm2. Helium
was employed as the carrier gas with a flow rate of 0.8 L/min, while argon served as the
make-up gas with a flow rate of 1.15 L/min. Nitrogen gas was introduced at a flow rate
of 15 L/min into the central gas flow (Ar + He) of the argon plasma to enhance detection
limits and improve precision. Standard analyses were performed three times before and
after each run of ten analyses to ensure accuracy and reliability. The preferred element con-
centration values for the USGS reference glasses were derived from the GeoReM database.
External calibration was achieved using the NIST SRM 612 standard glass, while internal
standardization was based on Fe. The raw data obtained from the ICP-MS instrument
were exported and processed using the Glitter 4.4 software. The detection limits for most
elements were considerably below 0.1 ppm.
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4.3. Magnetite Thermometry Calculation

Canil and Lacourse [18] established a method for quantitatively estimating temper-
ature based on the trace element concentrations of magnetite. This method, known as
magnetite thermometer (TMg-mag), utilizes Mg and Fe concentrations to express temperature
as follows:

TMg-Mag (◦C) = −8344 (±320)/[ln XMg − 4.13 (±0.28)] − 273

where
XMg = Mg/(Mg + Fetotal)

The error associated with this temperature calculation is ±50 ◦C. The calibration is
based on the analysis of magnetite in equilibrium with fluid-saturated and undersatu-
rated silicate melts in over 300 experiments from 27 different phase equilibrium studies,
encompassing compositions ranging from basalt to granite.

4.4. Fe-O Isotope Analyses

Iron isotopes in magnetite were analyzed at the Iron Isotope Laboratory of the Univer-
sity of Science and Technology of China. Dissolution of separated magnetite crystals was
carried out using 0.8 mL of high-purity hydrofluoric acid (HF) and 0.4 mL of high-purity
nitric acid (HNO3). The analytical procedure was described in detail by Huang et al. [52].
Iron isotopic compositions were calculated using the International Atomic Energy Agency
reference material IRMM-014, with the formula as follows:

δ56Fe = [(56Fe/54Fe) sample/(56Fe/54Fe) IRMM-014 − 1] × 1000 (‰)

The average standard deviation of sample measurements (2σ) was 0.04‰.
Oxygen isotopes in magnetite were analyzed at the Key Laboratory of Isotope Geology,

Ministry of Land and Resources, using a Finnigan MAT-253 mass spectrometer. Oxygen
extraction followed the BrF5 analytical method as described by Clayton and Mayeda [53].
The liberated oxygen was then reacted with a hot platinized graphite rod at 700 ◦C, pro-
ducing CO2. Oxygen isotopic compositions were determined by analyzing the CO2 gas
using a mass spectrometer. Reference materials GBW 04409 and NBS-28 were used as
standards. The analytical precision for δ18O values was reported as ±0.2‰ (2σ). All the
oxygen isotopic data were reported relative to the Vienna Standard Mean Ocean Water
(V-SMOW) reference standard, following this formula:

δ18O = [(18O/16O) sample/(18O/16O) VSMOW − 1] × 1000 (‰)

5. Results
5.1. Mineral Chemistry of Magnetite

The major element compositions of the three magnetite types are presented in Table 1.
The FeOTotal content exhibits a general decreasing trend from platy magnetite and brecciated
magnetite to massive magnetite, with average values of 93.53 wt.%, 93.26 wt.%, and
91.74 wt.%, respectively. In contrast, the content of Al2O3; and MgO display an opposing
trend, progressively increasing from platy magnetite (averaging 0.15 wt.% and 0.11 wt.%) to
brecciated magnetite (averaging 0.33 wt.% and 0.30 wt.%) and finally to massive magnetite
(averaging 0.79 wt.% and 0.33 wt.%). Other minor elements such as TiO2 and Cr2O3 had
low concentrations, typically less than 0.1 wt.%.

The trace element compositions of magnetite are presented in Table 2 and illustrated
in Figure 6. Notably, the content of Ti and V in brecciated magnetite is about 1990 ppm
and 87 ppm, respectively, which is around four times higher than those in the other two
magnetite types. Likewise, the Cr, Co, and Zn contents exhibited notable enrichment
in brecciated magnetite, approximately two times higher relative to those in the other
magnetite varieties.
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Table 1. Electron microprobe major element data of magnetite from the Beizhan iron deposit.

Sample TiO2 Al2O3 TFeO MnO MgO CaO CoO ZnO Cr2O3 NiO V2O3 P2O5 Total TMg-Mag Type

ZK41-03-01 0 0.15 92.88 0.12 0.10 0 0.15 0 0.05 0 0.02 0 93.46 ~529 Platy
ZK41-03-02 0.14 0.13 93.29 0.08 0.11 0 0.12 0.02 0.08 0 0.01 0 93.99 ~537 Platy
ZK41-04-03 0.10 0.14 94.04 0.09 0.19 0 0.03 0.31 0.02 0 0 0 94.91 ~581 Platy
ZK41-04-04 0.06 0.16 94.19 0.04 0.13 0 0.16 0.02 0.06 0 0 0.03 94.85 ~552 Platy
ZK41-05-03 0.02 0.19 93.33 0.06 0.15 0 0.08 0.01 0.05 0 0.04 0.01 93.93 ~560 Platy
ZK41-05-04 0.11 0.14 93.47 0 0.01 0 0.17 0 0.04 0 0 0.01 93.95 ~403 Platy
ZK42-01-01 0.03 0.11 93.51 0.07 0.26 0 0.03 0 0.06 0 0.06 0.01 94.14 ~612 Brecciated
ZK42-01-02 0 0.07 93.16 0.12 0.19 0 0.12 0.20 0.02 0 0 0 93.87 ~582 Brecciated
ZK42-01-03 0.07 0.24 93.67 0.03 0.34 0 0.16 0.14 0 0 0.01 0 94.67 ~637 Brecciated
ZK42-02-01 0.40 1.04 90.53 0.25 0.73 0 0.02 0.13 0.03 0 0.03 0 93.14 ~723 Brecciated
ZK42-02-02 0.02 0.23 94.37 0.14 0.21 0 0.09 0 0 0 0 0 95.06 ~590 Brecciated
ZK42-02-03 0.01 0.11 93.72 0.01 0.21 0 0.08 0.11 0.06 0 0 0 94.31 ~592 Brecciated
ZK42-02-04 0 0.62 93.23 0.06 0.35 0 0.02 0 0 0 0 0 94.29 ~641 Brecciated
ZK42-04-01 0.12 1.08 92.66 0.11 0.67 0 0.13 0.18 0.01 0 0.01 0.05 94.99 ~710 Brecciated
ZK42-04-02 0.08 0.86 92.67 0.06 0.41 0 0.06 0.06 0.04 0 0 0 94.23 ~656 Brecciated
ZK42-06-01 0.04 0.08 94.67 0.10 0.09 0 0.19 0.11 0.07 0 0.09 0.02 95.45 ~519 Brecciated
ZK42-07-01 0 0.15 93.60 0.04 0.15 0 0.15 0 0.02 0 0.02 0 94.13 ~565 Brecciated
ZK42-07-02 0 0.05 92.97 0.10 0.15 0 0.12 0.08 0 0 0.05 0 93.51 ~564 Brecciated
ZK42-07-03 0.02 0.11 93.11 0.01 0.20 0 0.10 0 0.02 0 0.06 0 93.63 ~587 Brecciated
ZK42-07-04 0.07 0.07 93.72 0.04 0.13 0 0.10 0 0.03 0 0.02 0 94.17 ~550 Brecciated
ZK42-07-05 0 0.13 93.29 0.05 0.38 0 0.11 0 0.03 0 0.06 0 94.05 ~648 Brecciated
ZK31-02-01 0 0.85 91.90 0.07 0.33 0.09 0.10 0.06 0.04 0 0 0 93.45 ~636 Massive
ZK31-02-02 0 0.94 92.37 0.09 0.38 0.12 0.03 0.06 0.03 0.02 0 0.03 94.06 ~649 Massive
ZK31-02-03 0.03 1.00 90.40 0 0.42 0.18 0.11 0 0.01 0 0 0 92.16 ~663 Massive
ZK31-03-01 0.08 0.15 92.75 0.06 0.23 0.02 0.14 0.09 0.05 0 0.01 0 93.56 ~600 Massive
ZK31-03-02 0.03 0.11 93.58 0.06 0.16 0 0.14 0.08 0.06 0 0.03 0 94.23 ~566 Massive
ZK31-04-01 0.02 1.21 91.03 0.16 0.49 0.22 0.07 0.16 0.05 0 0 0.02 93.41 ~678 Massive
ZK31-04-02 0.01 1.05 91.63 0.05 0.37 0.17 0.11 0 0.02 0 0 0 93.42 ~648 Massive
ZK31-05-01 0.04 0.01 94.75 0.04 0 0 0.07 0.11 0.05 0 0 0.01 95.08 / Massive
ZK31-05-02 0.03 0.93 91.26 0.02 0.31 0.07 0.08 0.06 0.03 0 0.02 0.01 92.83 ~631 Massive
ZK31-05-03 0.08 1.09 90.09 0.08 0.47 0.15 0.20 0.25 0.04 0 0.05 0 92.49 ~673 Massive
ZK31-06-01 0.03 1.11 89.33 0.02 0.46 0.15 0.05 0.19 0.04 0 0 0.01 91.37 ~672 Massive
ZK31-06-02 0.08 0.97 91.83 0 0.34 0.08 0.06 0.10 0.04 0 0 0.01 93.50 ~639 Massive

Table 2. LA-ICP-MS trace element data of magnetite from the Beizhan iron deposit.

Sample Sc Ti V Cr Co Ni Cu Zn Ga Zr Nb Mo Sn Hf Ta Type

ZK41-03-01 0.64 282.46 7.65 9.38 5.60 2.20 0.26 418.03 9.70 1.22 0.96 0.20 6.82 0.38 0.07 Platy
ZK41-03-02 0.53 176.53 7.45 7.71 7.28 2.93 0.30 697.60 11.05 0.36 0.99 0.25 8.13 0.26 0.09 Platy
ZK41-03-03 0.44 336.39 10.14 10.89 6.52 2.85 0.34 941.90 13.82 0.47 0.83 0.23 7.34 0.37 0.08 Platy
ZK41-04-01 0.53 421.53 30.41 38.45 6.82 2.81 0.29 613.17 11.60 0.43 0.46 0.20 5.43 0.24 0.10 Platy
ZK41-04-02 0.47 466.02 29.53 6.81 5.86 2.35 0.24 136.21 10.38 0.18 0.31 0.26 2.80 0.20 0.07 Platy
ZK41-04-03 0.33 442.89 25.74 19.50 73.71 35.00 517.02 26.69 8.92 0.11 0.14 0.21 2.12 0.18 0.06 Platy
ZK41-05-01 0.39 473.04 12.40 3.30 10.79 2.10 0.29 882.64 10.87 0.53 0.50 0.26 7.13 0.35 0.11 Platy
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Table 2. Cont.

Sample Sc Ti V Cr Co Ni Cu Zn Ga Zr Nb Mo Sn Hf Ta Type

ZK41-05-02 0.50 662.30 34.76 4.56 4.17 1.75 0.37 49.58 9.81 0.34 0.74 0.24 3.91 0.31 0.10 Platy
ZK41-05-03 0.46 730.17 41.72 4.14 4.35 1.40 1.21 616.72 10.07 0.38 0.72 0.28 5.65 0.35 0.11 Platy
ZK41-06-01 0.51 571.12 20.53 3.24 9.97 2.13 0.37 128.27 10.23 0.31 0.48 0.22 5.28 0.25 0.07 Platy
ZK41-06-02 0.29 428.32 11.61 4.74 5.30 2.11 0.30 922.96 10.20 0.57 0.48 0.24 7.64 0.23 0.07 Platy
ZK41-06-03 0.48 555.79 13.24 13.54 6.89 2.13 1.45 152.03 17.23 0.50 1.00 0.27 5.69 0.32 0.10 Platy
ZK42-02-01 0.34 1146.47 72.52 19.77 6.13 2.04 0.75 635.54 16.08 1.35 0.12 0.53 12.01 0.54 0.11 Brecciated
ZK42-02-02 0.38 1736.27 96.88 7.26 6.59 1.34 9.91 502.35 15.21 0.90 0.12 0.35 7.15 0.46 0.18 Brecciated
ZK42-02-03 0.37 1018.27 65.96 5.49 7.23 1.39 0.64 1133.63 16.24 1.37 0.34 0.35 10.80 0.48 0.17 Brecciated
ZK42-02-04 0.40 3603.95 101.89 47.09 10.75 1.49 0.67 2262.27 19.76 1.12 0.76 0.56 13.75 0.43 0.13 Brecciated
ZK42-02-05 0.39 3189.08 118.26 7.67 7.54 1.93 0.54 277.54 13.23 0.84 0.58 0.29 8.17 0.51 0.13 Brecciated
ZK42-04-01 0.44 2983.27 87.77 184.77 134.20 1.68 4.95 634.58 13.39 0.86 0.45 0.26 9.19 0.27 0.10 Brecciated
ZK42-04-02 0.27 1786.39 80.94 15.52 18.70 1.61 1.99 593.40 13.50 0.56 0.41 0.22 9.31 0.38 0.09 Brecciated
ZK42-04-03 0.48 2044.46 79.23 6.32 36.13 1.62 0.58 501.83 13.39 0.54 0.25 0.25 6.97 0.36 0.09 Brecciated
ZK42-07-01 0.33 1210.06 85.46 19.06 9.09 1.95 9.59 202.70 11.93 0.47 0.22 0.31 7.51 0.36 0.11 Brecciated
ZK42-07-02 0.44 2053.26 92.67 13.08 8.02 1.50 0.48 784.53 12.84 0.41 0.21 0.34 9.00 0.57 0.10 Brecciated
ZK42-07-03 0.57 1217.75 93.59 22.26 6.55 1.30 4.93 107.02 12.36 0.97 0.41 0.33 11.21 0.50 0.14 Brecciated
ZK42-07-04 0.43 1744.03 78.77 27.95 9.71 1.59 0.54 1068.63 14.67 0.76 0.28 0.53 10.68 0.48 0.19 Brecciated
ZK42-08-01 0.28 1284.94 73.94 3.67 6.86 1.32 27.21 904.37 13.37 0.99 0.53 0.28 9.80 0.32 0.08 Brecciated
ZK42-08-02 0.43 3415.51 90.62 3.25 9.70 2.60 98.65 643.39 13.27 4.03 4.15 0.26 20.10 0.39 0.30 Brecciated
ZK42-08-03 0.34 2035.45 93.64 3.34 7.82 1.89 0.38 1013.83 13.44 0.58 0.30 0.27 9.64 0.30 0.08 Brecciated
ZK42-08-04 0.29 1377.26 78.73 5.53 9.18 1.92 29.14 925.35 13.23 0.63 0.28 0.28 10.02 0.35 0.10 Brecciated
ZK31-02-01 0.51 458.74 9.84 3.39 3.14 3.59 0.39 287.80 7.16 4.69 1.48 0.17 10.61 0.38 0.07 Massive
ZK31-02-02 0.41 389.33 5.77 2.78 5.07 3.42 0.24 836.37 7.67 5.29 1.42 0.18 12.14 0.24 0.07 Massive
ZK31-02-03 0.50 366.19 5.52 3.27 4.80 4.12 0.27 829.07 7.40 4.67 1.47 0.21 12.22 0.33 0.06 Massive
ZK31-02-04 0.41 334.47 7.11 3.72 3.76 4.04 0.44 403.96 9.29 4.69 2.09 0.30 16.03 0.30 0.09 Massive
ZK31-03-01 1.19 592.44 22.44 5.42 1.84 0.65 0.23 26.54 4.83 6.99 6.78 0.16 13.79 0.24 0.09 Massive
ZK31-03-02 0.80 528.51 20.16 38.63 2.70 0.79 0.69 49.77 6.53 7.13 6.56 0.15 16.32 0.16 0.17 Massive
ZK31-03-03 0.26 316.14 24.04 5.79 3.02 0.77 0.29 25.73 4.23 0.99 0.92 0.24 4.75 0.26 0.09 Massive
ZK31-03-04 0.76 811.66 48.73 10.25 4.17 1.79 1.06 46.38 10.17 4.90 2.37 0.49 12.12 0.56 0.17 Massive
ZK31-04-01 0.64 271.96 9.26 3.03 2.89 4.09 0.37 193.31 9.52 6.68 3.14 0.21 21.33 0.27 0.09 Massive
ZK31-04-02 0.32 183.61 7.27 3.76 3.67 4.07 0.35 649.99 9.14 1.92 1.41 0.24 14.37 0.27 0.10 Massive
ZK31-04-03 2.33 848.01 26.11 12.04 10.44 10.73 1.10 990.74 32.26 14.37 7.71 0.71 61.43 0.99 0.28 Massive
ZK31-04-04 0.37 136.42 6.79 2.57 4.46 3.17 0.28 244.20 8.37 3.95 1.61 0.16 15.32 0.28 0.07 Massive
ZK31-05-01 0.38 968.21 48.69 5.13 11.80 3.73 0.94 70.64 13.30 1.35 0.11 0.35 7.01 0.40 0.09 Massive
ZK31-05-02 0.21 584.19 27.25 1.81 6.20 1.60 0.27 184.03 7.27 0.30 0.38 0.11 5.59 0.11 0.05 Massive
ZK31-05-03 0.18 465.31 21.58 3.02 5.43 1.71 0.49 50.42 7.20 1.16 0.14 0.14 2.70 0.16 0.06 Massive
ZK31-05-04 0.31 501.09 42.54 3.78 3.99 1.36 0.25 67.35 6.41 3.03 0.52 0.19 4.75 0.18 0.06 Massive
ZK31-05-05 0.25 516.80 25.82 5.63 2.14 1.55 0.93 81.81 6.81 4.00 0.26 0.18 4.46 0.19 0.06 Massive
ZK31-06-01 0.31 348.29 13.23 4.77 2.62 2.83 0.19 285.45 5.52 2.09 0.58 0.12 7.67 0.22 0.04 Massive
ZK31-06-02 1.27 566.77 24.74 10.79 10.42 10.15 0.82 212.52 25.45 14.48 5.17 0.57 43.15 0.84 0.22 Massive
ZK31-06-03 0.21 81.93 6.33 2.58 3.69 3.59 0.22 294.73 7.74 2.07 1.20 0.15 12.27 0.23 0.08 Massive
ZK31-06-04 0.28 85.20 6.16 2.91 3.94 3.11 0.29 603.86 7.33 4.05 1.67 0.25 15.06 0.22 0.06 Massive
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In contrast, platy magnetite displayed the highest Cu content, while the Sr content
was predominantly enriched in massive magnetite. For the remaining trace elements,
no significant differences were observed among the various magnetite types. The rare
earth element content across the different magnetite types was relatively modest; however,
brecciated magnetite showed a narrow concentration range, while platy magnetite exhibited
slightly greater variability. Massive magnetite demonstrated the most extensive variations
compared to the other two magnetite types.

5.2. Precipitation Temperature of Magnetite

The precipitation temperatures of various magnetite types from the Beizhan deposit
are illustrated in Figure 7a. Additionally, the average concentrations of Ti, V, and Ga in
these magnetite types are plotted in Figure 7b. The calculated temperatures for magnetite
precipitation in the Beizhan deposit span a range from approximately 403 ◦C to 723 ◦C.
Specifically, the massive and brecciated magnetite yield a similar temperature range, span-
ning approximately 566 to 678 ◦C (with an average of 612 ◦C) and 519 to 723 ◦C (with an
average of 641 ◦C), respectively, both higher than those of platy magnetite, ranging from
approximately 403 to 581 ◦C, with an average of 552 ◦C (except for an erratic value of
403 ◦C).
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5.3. Fe-O Isotopic Composition of Magnetite

The Fe-O isotopic compositions of various magnetite types from the Beizhan iron
deposit are provided in Table 3 and Figure 8a,b. For the brecciated ores, the δ56Fe values
range from −0.178‰ to −0.015‰, with an average value of −0.073‰. The massive ores
exhibited δ56Fe values of −0.078‰ to +0.005‰, with an average value of −0.049‰. Platy
ores displayed δ56Fe values of +0.177‰ to +0.200‰, averaging at +0.189‰.

Table 3. Iron and oxygen isotope compositions of magnetite from the Beizhan iron deposit.

Sample δ56FeIRRM-014 (‰) δ57FeIRRM-014 (‰) δ18OV-SMOW‰ Ore Type Data Source

ZK34 −0.015 −0.001 1.2 Brecciated magnetite This study
ZK-35 −0.178 −0.260 2.3 Brecciated magnetite This study
ZK-28 −0.025 −0.077 4.5 Brecciated magnetite This study
ZK-33 −0.074 −0.100 2.4 Massive magnetite This study
ZK-31 0.005 −0.026 2.5 Massive magnetite This study
ZK-40 −0.078 −0.122 4.6 Massive magnetite This study

14WBZ-14 −0.047 −0.160 1.5 Massive magnetite This study
ZK-39 0.200 0.283 0.6 Platy magnetite This study
ZK-41 0.177 0.289 2.7 Platy magnetite This study
bei10 −0.065 −0.096 - Vein magnetite Wang [56]
bei14 −0.120 −0.177 - Vein magnetite Wang [56]
bei15 −0.121 −0.178 - Vein magnetite Wang [56]
bei19 0.018 0.027 - Massive magnetite Wang [56]
bei20 −0.061 −0.090 - Massive magnetite Wang [56]

11BZ-32 −0.181 −0.267 - Vein magnetite Wang [56]
ZK702-278.5 - - 5.2 - Yang et al. [17]

BZ-001 - - 5.0 - Yang et al. [17]
BZ-8t-1 - - 4.9 - Yang et al. [17]
BZ-1t-1 - - 5.3 - Yang et al. [17]

ZK005-655.2 - - 2.4 - Yang et al. [17]
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The δ18O values of magnetite exhibited notable variations, ranging from +0.6‰ to
+4.6‰. Specifically, the δ18O values of three brecciated magnetite samples were +1.2‰,
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+2.4‰, and +4.5‰, with an average value of +2.7‰. The δ18O values of four massive
magnetite samples were +1.5‰, +2.4‰, +2.5‰, and +4.6‰, with an average of +2.8‰.
Platy magnetite samples exhibited δ18O values of +0.6‰ and +2.7‰, with an average
of +1.7‰.

6. Discussion
6.1. Origin of the Beizhan Magnetite

The magnetite in the Beizhan deposit contains significantly lower contents of TiO2,
Cr2O3, and V2O5 compared to iron deposits formed through magmatic processes, such
as Kiruna-type and Chilean-type iron ore deposits. In the Al+Mn vs. Ti+V diagram
(Figure 9a,c) [60], the massive magnetite samples predominantly cluster within the skarn
magnetite deposit region, revealing constrained contents of Ti, V, Al, and Mn [61]. Con-
versely, in the case of platy ores, magnetite more closely aligns with IOCG-type and
skarn-type magnetite deposit regions. These platy magnetite grains exhibit lower trace
element contents, the incorporation of which into the magnetite structure appears to be
temperature-dependent. This observation implies that the genesis of this magnetite type
may be associated with lower-temperature hydrothermal processes [61].
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magnetite from the Beizhan iron deposit (after [60] and modified by [62]). The different fields of
temperature are adapted from [63,64].

Magnetite in the brecciated ores exhibit a broad distribution, suggesting a more
complex and diverse origin. Similarly, in the Ni/(Cr+Mn) vs. Ti+V diagram (Figure 9b),
the measured points of magnetite grains show relatively low Ti+V concentrations and low
Ni/(Cr+Mn) values, indicating a skarn type. These characteristics align with hydrothermal
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genetic features, which are further corroborated in the Ti vs. V diagram (Figure 10a). In the
Ti vs. Ni/Cr diagram (Figure 10b), the magnetite data extend across both hydrothermal
and magmatic origin fields, implying that the magnetite in the Beizhan deposit carries
information related to both hydrothermal and magmatic origins.
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The higher concentrations of Ti and Cr observed in brecciated magnetite are indicative
of early crystallization compared to the other two types of magnetite, as both Ti and Cr are
considered compatible elements within magnetite (Figure 11a). In addition, in magmatic
deposits, there is typically a coupling relationship between Ni and Cr, with Ni/Cr ratios
mostly being ≤1. These patterns in the element distribution characteristics within the
magnetite suggest that the formation of magnetite in the Beizhan deposit is not solely the
result of magmatism (Figure 11b). Instead, it is likely that the genesis of magnetite is linked
to magmatic–hydrothermal fluid processes.
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Figure 11. Binary diagrams of (a) Cr vs. Ti, (b) Ni vs. Cr, (c) Sn vs. Ga for magnetite from the Beizhan iron
deposit, the different types magnetite from the typical porphyry (magmatic), porphyry (hydrothermal),
skarn, Ag-Pb-Zn (hydrothermal), and BIF-iron ore (hydrothermal–metamorphic) [64,67].

Furthermore, the content of Sn can serve as an additional petrogenetic indicator, with
Sn and Ga concentrations having been proposed for distinguishing between low- and high-
temperature hydrothermal and magmatic magnetite [64,67]. The magnetite plots within the
hydrothermal regions, specifically across the Ag-Pb-Zn hydrothermal and skarn hydrother-
mal fields, are shown in the Sn vs. Ga diagram (Figure 11c). This further underscores a
hydrothermal source for the magnetite. Taken together, these findings collectively suggest
a complex origin for the Beizhan deposit, one that involves the interaction of magmatic
and hydrothermal fluids in its formation.
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The trace element distribution characteristics, particularly the low Ti content, in mag-
netite from the Beizhan iron deposit exhibit significant distinctions from typical magnetite
deposits formed by magmatic processes, such as Fe-Ti-V deposits and Fe-Ti-P deposits.
However, these characteristics bear a resemblance to those of hydrothermal deposits, specif-
ically IOA-type and Porphyry-type deposits (Figure 12). A comparison of the element
distribution characteristics in Beizhan deposit magnetite with those found in hydrother-
mal deposits reveals a consistent trend. Magnetite in the Beizhan iron deposit is notably
enriched in immobile elements like Zr, Hf, Zn, Co, Sc, and others, elements commonly
associated with hydrothermal fluids. Conversely, the magnetite displays depletion in
highly incompatible elements like Si, Ca, and so forth, which are typically linked with
magmatic magnetite deposits.
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These findings further support the interpretation that the Beizhan deposit has under-
gone a hydrothermal overprint. The enrichment of immobile elements and the depletion
of incompatible elements in the magnetite provide evidence that the formation of the
Beizhan iron deposit is closely linked with hydrothermal processes, rather than being solely
attributed to a magmatic origin.

6.2. Thermal Evolution of the Mineralization

Application of the Mg-in magnetite thermometer (TMg-mag) reveals a substantial tem-
perature discrepancy among different magnetite types within the Beizhan deposit. Specifi-
cally, it indicates that massive and brecciated magnetite crystallized at higher temperatures,
with averages of approximately 641 ◦C and 612 ◦C, respectively, while platy magnetite
exhibits a relatively lower crystallization temperature, averaging around 552 ◦C (Figure 7a,
Table 1). This decreasing temperature trend correlates with trace element concentrations
such as Ti, V, and Ga. These elements demonstrate elevated levels in deposits with a
predominantly hydrothermal origin, while they exhibit comparatively reduced levels in
deposits associated with magmatic or magmatic–hydrothermal sources (Figure 7b). The
Al+Mn vs. Ti+V diagram (Figure 9c) further reflects this changing trend in the formation
temperature of magnetite, with magnetite plots consistent with the gradual decrease in
temperatures from brecciated and massive to platy magnetite.

A combination of magmatic and hydrothermal processes, as revealed by TMg-mag,
helps elucidate the thermal evolution of the Beizhan deposit (Figure 13). The earlier
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brecciated magnetite and the following massive magnetite exsolved in stage 2 and stage
3 (at temperatures around 800 to 600 ◦C and below 600 ◦C, respectively) as a result of
cooling alongside the Fe-rich magmatic–hydrothermal fluid. The latest platy magnetite
precipitated from low-temperature hydrothermal fluids in stage 3 (<600 ◦C), which mostly
occurs with the injection of fluids, leading to complex magnetite growth and pervasive
replacement horizons [69].
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In summary, the thermal evolution of the Beizhan deposit can be reconstructed by
the magnetite thermometry (TMg-mag), which provides a quantitative estimation of cooling
trends in variable types of ores. It delineates a transition from magmatic or magmatic–
hydrothermal conditions (massive and brecciated ore) to purely hydrothermal conditions
(platy ore).

6.3. Source of Ore Components

Previous studies have demonstrated that the iron isotopic system is susceptible to
isotopic fractionation during the Earth’s magmatic processes [71–74]. During the partial
melting of the mantle, iron isotopes tend to be incompatible and are concentrated in sil-
icate minerals and magmas [75,76]. Knipping et al. [3] suggested that light Fe isotopes
are predominantly enriched in fluid, while heavy Fe isotopes are enriched in magmatism.
The marked variation in Fe isotopic compositions of magnetite from the Beizhan deposit
indicates substantial fractionation of Fe isotopes during the formation of magnetite ores.
The δ56Fe values of massive (−0.078 to +0.005‰) and brecciated (−0.178 to −0.015‰)
magnetites closely resemble those of Fe-skarn magnetites found in hydrothermal Fe de-
posits, such as the Dannemora (−0.43 to +0.01‰) [77], Xinqiao (−0.37 to +0.13‰) [78],
and Chagangnuoer deposits (−0.40 to +0.10‰) [12] and the Zankan Fe deposit (−0.30 to
+0.50‰) [79]. This suggests a similar lighter magmatic–hydrothermal fluid source for the
massive and brecciated magnetite ores.
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In contrast, the Fe isotopic composition of platy (+0.177 to +0.200‰) magnetite, which
is interpreted as having a low-T hydrothermal crystallization history based on its trace
element behavior and magnetite thermometry, significantly deviates from the δ56Fe range
of magmatic/high-T origin (Figure 14). Mineral assemblages and paragenetic relationships
suggest that sulfides formed after magnetite precipitation. Platy magnetite often occurs
together with pyrrhotite, which possesses the lightest Fe isotope composition in Fe skarn
deposits [80]. The precipitation of pyrrhotite causes the fluid to become enriched in heavy
Fe isotopes, and the subsequently precipitated platy magnetite thus has a heavier Fe isotopic
composition. The formation of hydrothermal magnetite in skarn deposits is commonly
associated with the dissolution–reprecipitation process [81,82]. During such a process, the
primary magnetite may exchange Fe isotopes with the fluid, whose Fe isotopic composition
is influenced by the pathways of pyrrhotite formation.
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The orange box denote the isotope ranges of magmatic or high-T origin [68,70,77,83,84].

Considerable research has focused on the variability in δ18O values of magnetite
from different ore types of iron deposits, indicating the potential for using δ18O values
to distinguish deposit types and infer their genesis [17,56,59,85,86]. Magnetite formed
through magmatism typically exhibits a relatively narrow range of δ18O values, usually
falling between +1‰ and +4‰ [5,59,70,83,87]. Oxygen isotope analyses of magnetite
samples extracted from different types of iron ore in the Beizhan iron deposit (massive,
brecciated, and platy type) predominantly yield δ18O values ranging from +0.6 to +4.6‰,
which are highly consistent with those of magnetites found in the iron oxide deposits
in the AIMB (Zhibo, Chagangnuoer, and Songhu iron deposits) [35,36]. Furthermore,
these δ18O values closely resemble those observed in the El Laco and Kiruna deposits
(Figure 15) [5,7,8,10,70,87].

Magnetite samples with δ18O values ranging between +0.9 and +4.0‰ are typical for
magnetite that is in equilibrium with intermediate to felsic magmas or magmatic fluids
at high temperatures (~800–1000 ◦C; i.e., ortho-magmatic magnetite), while values below
+0.9% are indicative of hydrothermal fluids at low temperatures [12,87]. Most of the
magnetite samples from the Beizhan deposit, except for one massive magnetite with a δ18O
less than +0.9‰ and two magnetite samples (brecciated and platy magnetite) with values
greater than +4.0‰ that exhibit δ18O values between +0.9‰ and +4.0‰, classifying them
as ortho-magmatic magnetite. This suggests that they were in equilibrium with magmas or
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magmatic fluids at high temperatures. The prevalence of hydrothermal alterations in the
Beizhan iron deposit supports the superposition of low-temperature hydrothermal fluids in
the late stage, contributing to the modification of the magnetite formed in the early stage.
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Figure 15. Comparison of δ18O values for magnetite from the Beizhan iron deposit with other volcanic-
hosted iron deposits. Also included are δ18O values (gray diamonds) for magnetite from the Beizhan
deposit [17]. Data of Zhibo, Chagangnuoer, and Songhu iron deposits are from [17,33,35,36,38,57].
Data of Chilean iron belt, El Laco, Kiruna, and Grängesberg, are from [7,87]. Range of plutonic
material, volcanic material, and low-T hydrothermal magnetite are from [70]. The cutoff line at δ18O
= +0.9‰ demarcates magnetite derived from silicate magma or magmatic–hydrothermal fluid [7,8].
The yellow box (+1 to +4‰) is typical δ18O values for ortho-magmatic magnetite [10,68].

The δ18O data strongly support the idea of a magmatic–hydrothermal origin with a
dominance of hydrothermal processes. This hypothesis is further reinforced by the trace
element signature of the magnetite and the extensive evidence of hydrothermal alterations
within the Beizhan iron deposit. The prevalence of low-temperature hydrothermal fluids in
the late stage appears to have played a significant role in modifying the magnetite formed
during the early stages of deposit formation.

7. Conclusions

The in situ LA-ICP-MS magnetite trace element composition in the Beizhan deposit
suggests a complex origin involving the interaction of both magmatic and hydrothermal
fluids. The trace element distributions, particularly Ti, V, Sn, Ga, Ni, Cr, etc., coupled with
the enrichment of immobile elements and depletion of incompatible elements, indicates the
involvement of magmatic–hydrothermal processes in the formation of the Beizhan deposit.

Utilizing magnetite thermometry (TMg-mag) to determine crystallization temperatures
for the three ore types, our findings reveal a significant temperature difference between the
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relatively higher-temperature brecciated magnetite (average ~641 and 612 ◦C, respectively)
and the relative lower-temperature platy magnetite (average ~552 ◦C). This tempera-
ture discrepancy indicates a cooling trend and signifies a transition from magmatic or
magmatic–hydrothermal conditions (as observed in massive and brecciated ore) to purely
hydrothermal conditions in the case of platy ore.

Stable Fe and O isotope values of magnetite from the Beizhan deposit shed light on
the source of ore-forming materials. The δ56Fe values for brecciated and massive magnetite
fall within the ranges −0.178 to +0.005‰, indicating a magmatic–hydrothermal reservoir.
However, the δ56Fe values (+0.177 to +0.200‰) for platy magnetite reveal a magmatic
source, contrary to the low-T hydrothermal origin inferred from in situ trace element
data. This inconsistency is proposed to be reconciled by considering the magmatic source
associated with crystallized pyrrhotite, known for its lightest Fe isotope composition.
Furthermore, the δ18O values of magnetite (+0.6 to +4.6‰) in the Beizhan deposit suggest
that low-temperature hydrothermal fluids in the late stage may have modified the magnetite
formed in the early stage.
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