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Abstract: Addressing issues such as a low operational condition recognition efficiency, strong
subjectivity, and significant fluctuations in Outotec X fluorescence analysis data in copper flotation
production, a copper concentrate grade classification model is constructed based on image processing
technology and the Stacking ensemble learning algorithm. Firstly, a feature extraction model for
copper concentration flotation foam images is established, extracting color, texture, and size statistical
features to build a feature dataset. Secondly, to avoid redundancy in the feature data, which could
reduce model accuracy, a combined correlation feature selection is employed for dimensionality
reduction, with the filtered feature subset being used as the model input. Finally, to fully leverage
the strengths of each model, a Stacking ensemble learning copper concentrate grade classification
model is constructed with support vector machine (SVM), random forest (RF), and adaptive boosting
(AdaBoost) as base models and logistic regression (LR) as the meta-model. The experimental results
show that this ensemble model achieves good recognition for different grade categories, with a
precision, recall, and F1 score of 90.01%, 89.85%, and 89.93%, respectively. The accuracy of this
Stacking ensemble model, with a 7% improvement over Outotec X fluorescence analysis, demonstrates
a potential to meet the daily production needs of beneficiation plants.

Keywords: stacking ensemble learning; image processing; grade classification; copper flotation

1. Introduction

In recent years, the sustained growth of China’s economy has significantly boosted
the demand for copper, further consolidating its leading position in the global copper
consumption market [1]. However, numerous challenges are faced by China in the devel-
opment and utilization of copper resources, including the ubiquity of low-grade deposits,
the limited reserves of high-grade ores, and the relatively lagging technological and scale
development [2]. Froth flotation, a mineral processing method based on the differences
in the physical–chemical properties of mineral surfaces to separate fine-grained associ-
ated or mixed minerals, has always played a crucial role in the separation and recovery
of copper ores [3]. In practice, due to the complexity of the flotation process, the vari-
ety of influencing factors, and their high interdependence, the majority of beneficiation
plants still rely on experienced workers to judge the grade of concentrate by observing the
shape, color, and texture of the foam. This experience-based operation has drawbacks such
as strong subjectivity, low identification efficiency, and difficulties standardizing evalua-
tion criteria [4,5]. To improve this situation, some beneficiation plants have begun using
X-ray fluorescence analyzers to measure the grade of concentrates, but the accuracy of this
method is inevitably affected by factors such as the particle size and moisture content [6].
Therefore, researching and developing rapid, intelligent, and automated grade detection
methods is of great significance for optimizing flotation process control and improving
product quality.
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With the rapid advancement of computer vision and machine learning, their appli-
cations in the flotation field are increasingly widespread [7–9]. Foam image classification
and condition recognition have become hot topics in university and corporate R&D. Re-
search on modeling to predict indicators in the flotation process primarily falls into two
categories: traditional machine learning methods and deep learning. For example, Ren
et al. [10] applied the least squares support vector regression (LS-SVR) model, utilizing
color features of microscopic images to estimate the grade of copper concentrates. Tang
et al. [11] developed a BP neural network model based on the characteristics of coal slime
flotation foam images for predicting the ash content of flotation concentrates. The model
integrates features like the grayscale value, quantity of foam, and average foam diameter,
showing that the model’s mean relative error (MRE) is only 2.34%. In addition, researchers
have used features such as foam stability and collapse rate, combined with algorithms like
k-means clustering, random forests, and decision trees, to predict indicators of the flotation
process [12,13]. Compared to conventional machine learning approaches, deep learning
offers advantages in autonomously discovering and capturing high-dimensional abstract
data features [14]. For instance, Wang et al. [15] proposed a condition recognition strategy
based on image sequences, achieving an 89% accuracy rate in classifying conditions in
antimony flotation tanks. Zarie et al. [16] employed a convolutional neural network (CNN)
to classify flotation foam images under four different conditions, with an accuracy rate of
93.1%. Bao et al. [17] used transfer learning with Inception V1 and ResNet networks for
modeling three different conditions in antimony ore flotation, achieving a high accuracy
rate of 95.4%.

The above studies demonstrated how researchers utilized flotation images or foam
characteristics to construct prediction models based on single algorithms. However, in
practical flotation indicator predictions, multiple hypotheses might perform similarly on
training sets, leading to potential randomness affecting single-model predictions, which
could decrease a model’s credibility and reduce its generalization capabilities. Ensemble
learning can compensate for the shortcomings of single models by integrating multiple
independent models, thereby reducing errors caused by insufficient hypotheses or data
randomness [18]. For example, Wang et al. [19] employed Stacking ensemble learning to
construct a soil moisture content model, achieving a coefficient of determination (R2) of
0.963, which represents an improvement of 0.022 to 0.03 compared to single models. Simi-
larly, Tang et al. [20] utilized a Stacking ensemble learning model to predict NOx emission
concentrations from coal-fired boilers, demonstrating superior performance over single
models. In Stacking ensemble learning, two hierarchical levels of models are employed:
the first level consists of multiple base models, which are trained independently on the
original dataset to capture diverse features and patterns. The second level comprises a
meta-model, which utilizes the predictions of the first-level base models as input features
for further training. This hierarchical approach contributes to enhancing the predictive
accuracy of the model [21]. Additionally, ensemble learning has been extensively applied in
diverse research fields, including photovoltaic power generation forecasts [22], rock burst
predictions [23], and predictions of energy systems’ supply and demand [24].

In summary, ensemble learning, by integrating the results of multiple models, can
significantly enhance the generalization ability compared to single models and achieve
higher prediction accuracy. Nevertheless, the application of ensemble learning algorithms
for predicting flotation process indicators remains underexplored, with most studies still
favoring single-algorithm predictions. Addressing this gap, the present work, grounded
in single-algorithm modeling research, proposes a copper’s flotation concentrate grade
prediction algorithm, based on Stacking ensemble learning. This approach aims to improve
the prediction accuracy and generalization ability of copper concentrate grade classifica-
tion. Further, the study is expected to provide a foundation and theoretical support for
deeper investigations into ensemble learning applications in flotation process indicator
prediction, which in turn promotes the advancement of automation and intelligence in
flotation processes.
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2. Dataset and Methods
2.1. Copper Concentrate Grade Classification Prediction Algorithm Process

This study develops a Stacking ensemble learning model based on foam image process-
ing and combined correlation feature selection (IPCC-SELM) for copper concentrate grade
classification prediction. Figure 1 shows the IPCC-SELM modeling process, which includes
three main stages: dataset collection, flotation image processing and feature selection, and
grade classification model construction.
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Dataset collection: This stage involves synchronously capturing copper concentration
foam images and collecting samples of overflow foam from the flotation column to establish
an original dataset containing both flotation images and grade data.

Flotation image processing and feature selection: During this stage, image processing
techniques are employed to extract color, texture, and size statistical features from the
foam images, thereby forming a feature dataset. A combined correlation feature selection
approach is then applied to filter the feature subset.

Grade classification model construction: In the final stage, the selected feature subset
is utilized to build a copper concentrate grade classification model. This model, based on
the Stacking ensemble algorithm, incorporates support vector machines (SVM), random
forests (RF), and adaptive boosting (AdaBoost) as base models, with logistic regression (LR)
serving as the meta-model, and is designed to output prediction results.

2.2. Dataset Collection

In this study, the flotation foam images and concentrate grade dataset that were used
were collected from the copper concentration section of a beneficiation plant in Yunnan,
China. The collection apparatus was fixed at the copper flotation column, with the camera
positioned 70 cm from the foam surface, capturing video of the flotation foam at a frequency
of 15 min per interval. Owing to the regular anomalies and fluctuations in the readings of
the Outotec X fluorescence flow analyzer in the copper flotation section, which resulted in
data distortion, this study resorted to manual sampling of the concentrate overflow foam,
followed by laboratory analysis, to ascertain the actual grade of the copper concentrate.
Based on operational experience at the site and the concentrate’s grade, the copper flotation
foam image samples were classified into six categories: (1) ultra-high (grade ≥ 19%);
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(2) slightly high (19% > grade ≥ 17%); (3) normal (17% > grade ≥ 15%); (4) slightly low
(15% > grade ≥ 13%); (5) low (13% > grade ≥ 11%); and (6) ultra-low (grade < 11%).

2.3. Foam Image Feature Extraction

Due to the high-dimensional characteristics of flotation foam images, directly inputting
them into a classification model can lead to excessively long training times and the risk
of converging to local optima. The color, texture, and size of flotation foam hold specific
correlations with the grade of the concentrate: during the flotation process, operators
often estimate the grade based on the intensity of the foam’s color, combined with their
experience. Texture features like the roughness and wrinkling of the foam surface can
indicate the adhesion condition of mineral particles, while the area of the foam influences
the effectiveness of mineral particle attachment [25–27]. In this study, 21 color features,
10 texture features, and 4 size statistical features were extracted from copper flotation foam to
model the concentrate grade. Detailed feature parameters are provided in Sections 2.3.1–2.3.3.

2.3.1. Color Features

Color features are among the most intuitive visual characteristics of flotation foam,
offering significant stability and robustness. In the field of image processing, RGB (red,
green, blue) and HSV (hue, saturation, value) are two primary color space models. In
this study, both the RGB and HSV color models are employed to extract color features
from flotation foam images. Specifically, 21 color features are extracted, encompassing the
mean, variance (var), and skewness (ske) of six color components—red (r), green (g), blue
(b), hue (h), saturation (s), and value (v), as well as the relative mean (rel) of red, green,
and blue. The mean components of color reflect the average light intensity level across
various color channels. Variance measures the fluctuation and distribution range of the
color intensity. Skewness describes the asymmetry of color distribution, indicating the
degree and direction of deviations in color values’ distribution. Relative components are
calculated by assessing the deviation of each color channel’s intensity relative to the overall
mean grayscale value of the image. The formulas for calculating the aforementioned color
features are as follows:

mean =
1

M × N

M

∑
i=1

N

∑
j=1

C(i, j) (1)

Greymean = 0.299R + 0.587G + 0.114B (2)

rel =
mean − Greymean

Greymean
(3)

var =

(
1

M × N

M

∑
i=1

N

∑
j=1

(C(i, j)− mean)2

) 1
2

(4)

ske =

(
1

M × N

M

∑
i=1

N

∑
j=1

(C(i, j)− mean)3

) 1
3

(5)

In the formulas, C(i, j) represents the intensity of the pixel value at position (i, j) in
the foam image for a specific color component. M and N denote the resolution dimensions
of the image, and Greymean represents the overall mean grayscale value of the image.

2.3.2. Texture Features

Texture features, which quantify the statistical data of an image, represent their overall
distribution and are used to describe surface characteristics such as smoothness, wrinkling,
and patterns of lines. Currently, the gray-level co-occurrence matrix (GLCM) and color
co-occurrence matrix (CCM) are widely utilized for their second-order statistical measures
when representing texture features. This study constructs GLCMs in four orientations: 0◦,
45◦, 90◦, and 135◦. Additionally, based on the HSV color space, three CCMs are generated:
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CCMH,S, CCMH,V, and CCMS,V. Subsequently, using these two types of co-occurrence
matrices, the study calculates the mean values of various texture features: angular second
moment (Asm), entropy (Ent), contrast (Con), inverse differential moment (Idm), and texture
complexity (T), resulting in a total of 10 texture features. Asm reflects the coarseness or
fineness of the image texture, Ent measures the randomness, Idm indicates the uniformity of
local texture, and Con assesses the level of contrast in texture. The formulas for calculating
these texture features are as follows:

Asm =
L−1

∑
i=0

L−1

∑
j=0

P(i, j)2 (6)

Ent = −
L−1

∑
i=0

L−1

∑
j=0

P(i, j)log P(i, j) (7)

Con =
L−1

∑
i=0

L−1

∑
j=0

(i − j)2P(i, j) (8)

Idm =
L−1

∑
i=0

L−1

∑
j=0

P(i, j)
1 + (i − j)2 (9)

T =
Ent
Idm

(10)

In the formulas, P represents the co-occurrence matrix, and L stands for the number of
gray levels in a GLCM or quantization levels in a CCM, with a value of 8 in both cases.

2.3.3. Size Statistical Features

Extracting size statistical features from flotation foam is challenging, which is largely
attributable to the foam’s irregular shapes and adhesive properties. These characteristics
hinder accurate segmentation, thereby diminishing the precision of the feature extraction
process. In this paper, the Otsu thresholding algorithm (Otsu) is used to segment the bright
spot areas at the top of the foam. The Otsu automatically identifies the optimal threshold
in the image’s grayscale histogram, dividing the image into foreground and background
to either maximize or minimize inter-class variance. After the Otsu segmentation, the
binarized image contains some small, spurious bright spots, necessitating additional erosion
and dilation operations. Erosion helps remove these distracting bright spots, while dilation
restores the overall structure of the bright spots. Figure 2 demonstrates the process of foam
segmentation. The comparative analysis of the number of bright spots before and after the
application of erosion and dilation shows a significant reduction in spurious bright spots.
Moreover, the foam segmentation process identifies 77 bright spots, which is close to the
result obtained by manual counting, demonstrating the effectiveness and accuracy of the
segmentation approach.

Subsequent to the image segmentation process, the number of bright spots (the foam
quantity, Fq) and the number of pixels that are occupied by these bright spots (the foam spot
size, Fs) are counted. Based on these statistical measures, features such as the maximum
bright spot area (Smax), the mean area of bright spots (Smean), and the mean area of foam
(Fmean) can be calculated. The formulas for these calculations are as follows:

Fs =
M

∑
i=1

N

∑
j=1

O(i, j) (11)

Smean =
Fs

Fq
(12)

Fmean =
M × N

Fq
(13)



Minerals 2024, 14, 424 6 of 15

In the formula, O(i, j) represents the value of the pixel point (i, j) located in the
bright-spot-connected region of the segmented image.
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2.4. Combined Correlation Feature Selection

Table 1 details a total of 35 foam features that were collected through feature extraction,
organizing them from 1 to 35. However, an excessive number of features can lead to
information redundancy and even interference among features, potentially compromising
the accuracy of the predictive model. Consequently, selecting the most relevant features
and reducing the number of feature dimensions are critical steps in developing an accurate
predictive model for the concentrate grade. To achieve this, this study employs a combined
correlation feature selection method for data dimensionality reduction, ensuring a balance
between interpretability and predictive accuracy. Specifically, the Pearson correlation
coefficient and the maximal information coefficient are used to comprehensively assess the
correlation between image features and concentrate grade, thereby filtering the original
feature set. The Pearson correlation coefficient quantifies the linear correlation between
features and the target variable. Meanwhile, the maximal information coefficient focuses on
both linear and nonlinear relationships, effectively capturing complex feature associations
by measuring the maximum shared information between variables.

Table 1. Flotation foam feature parameters.

Feature Category Feature Parameter

Color features

1 b_mean, 2 g_mean, 3 r_mean, 4 h_mean, 5 s_mean, 6 v_mean,
7 b_rel, 8 g_rel, 9 r_rel, 10 b_var, 11 g_var, 12 r_var, 13 h_var,
14 s_var, 15 v_var, 16 b_ske, 17 g_ske, 18 r_ske, 19 h_ske,
20 s_ske, 21 v_ske

Texture features GLCM: 22 Asm_G, 23 Con_G, 24 Ent_G, 25 Idm_G, 26 T_G
CCM: 27 Asm_C, 28 Con_C, 29 Ent_C, 30 Idm_C, 31 T_C

Size statistical features 32 Fq, 33 Smax, 34 Smean, 35 Fmean

Figure 3 shows the Pearson correlation matrix between copper concentrate’s grade
and image features. Among the color features, the correlation coefficients (R) of b_var,
g_var, r_var, s_var, v_var, and s_ske with copper concentrate grade exceed 0.4. Notably,
significant positive correlation (R > 0.98) is observed both among b_var, g_var, r_var, and
v_var and between s_var and s_ske, indicating a partial information overlap in these groups
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of features. This emphasizes the necessity of reducing information redundancy in the model
construction process. In terms of texture features, Asm_G, Con_G, Ent_G, Idm_G, and T_G
show strong correlation with the copper concentrate’s grade (|R| > 0.53). Idm_G exhibits
the strongest negative correlation (R = −0.71) with the grade, suggesting an increase in
texture uniformity in samples with higher grades as the copper concentrate grade increases.
Furthermore, substantial correlation exists among these texture features, with Ent_G and
T_G displaying the highest correlation coefficient (R = 0.99). Regarding size statistical
features, Fq, Smean, and Fmean exhibit strong correlations with the copper concentrate’s grade
(|R| > 0.7), with Fmean showing the strongest negative correlation (R = −0.73), implying
a decrease in the mean area of foam as the concentrate grade increases. The correlation
between Smax and the concentrate grade (R = 0.22) is significantly lower than those of the
other three size statistical features, indicating that the disruption or merging of flotation
foam due to external interference is relatively random overall. Consequently, relying solely
on the size of the top bright spots is insufficient to accurately reflect the actual state of the
flotation foam. Additionally, a significant negative correlation exists between Fq and both
Smean and Fmean (|R| > 0.89).
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Figure 4 presents the statistical results of the maximum correlation coefficients between
the concentrate grade and image features. From all the features, those with an absolute
correlation coefficient (R) greater than 0.9 are selected for combination, and the remaining
features are grouped separately. Then, the features with the highest maximal information
coefficient or greater than 0.2 are chosen from each group. Table 2 shows the results of
feature selection, and the final selected feature subset includes v_mean, b_rel, g_rel, r_rel,
b_var, b_ske, s_ske, Asm_G, Idm_G, Asm_C, Idm_C, Fq, Smean, and Fmean.
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Table 2. Feature selection results.

Number Feature Number Selection Number Feature Number Selection

1 1, 2, 3, 6 6 11 22 22
2 4 - 12 23, 24, 25, 26 25
3 5 - 13 27, 28, 29 27
4 7 7 14 30 30
5 8 8 15 31 -
6 9 9 16 32 32
7 10, 11, 12, 15 10 17 33 -
8 13, 19 - 18 34 34
9 14, 20 20 19 35 35

10 16, 17, 18, 21 16 - - -

2.5. Grade Prediction Based on Stacking Ensemble Learning

Stacking ensemble learning is a machine learning method that integrates the prediction
results of multiple different base models to train a meta-model, aiming to achieve more
accurate prediction outcomes [18]. This method typically consists of two layers: the first
layer is composed of various base models, each making independent predictions on the
same dataset; the second layer trains a meta-model based on the predictions from the first
layer, thereby enhancing the model’s generalization ability and accuracy. The proposed
IPCC-SELM model in this paper integrates the SVM, RF, and AdaBoost models in the first
layer and employs LR as the meta-model in the second layer for final decision output. To
effectively avoid the risk of model overfitting, a 5-fold cross-validation method is used to
train each base model. Figure 5 illustrates the model training process.

During the Stacking ensemble learning process, the dataset, subsequent to feature
selection, undergoes partitioning into a training set (Train) and a test set (Test). The training
set is further segmented into five distinct, non-overlapping subsets. In each iteration of
training, a combination of four subsets is selected to act as the new training data, while
the fifth subset is utilized as the validation set. This cross-validation approach, which is
iteratively repeated five times, ensures that each base model within the ensemble is exposed
to diverse training–validation set combinations. Consequently, for each base model and in
every iteration of the training phase, the developed model is formulated as follows:

Modelk
i = Ai

(
Train − Traink

)
(14)
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In this formula, Modelk
i represents the model trained by the i-th algorithm Ai during

the k-th cross-validation, using the training set while excluding the validation subset Traink.
Here, i ∈ [1, 3] represents the three base models, and k ∈ [1, 5] denotes the five iterations of
cross-validation.

Subsequently, each Modelk
i conducts classification predictions on the validation set

Traink. The resulting predictions Pk
i are collected and concatenated column-wise to form Pi.

Meanwhile, the predictions Tk
i of each model on the test set are computed and aggregated

into Ti through soft voting.
Pk

i = Modelk
i

(
Traink

)
(15)

Pi =
(

P1
i , P2

i , P3
i , P4

i , P5
i

)
(16)

Tk
i = Modelk

i (Test) (17)

Ti = avg

(
k

∑
k=1

Tk
i

)
(18)

Finally, Pi and Ti are used as the training set (Strain) and the test set (Stest) for the
second layer of the Stacking model to train the meta-model and produce the final ensemble
prediction results.

Modelstacking = LR_Classi f ier (Strain) (19)

Prediction = Modelstacking (Stest) (20)
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3. Results and Discussion

To validate the effectiveness of the constructed model, this study conducts a series of
experiments based on image feature extraction and feature selection. Section 3.1 examines
the impact of combined correlation feature selection on the predictive model. Section 3.2
contrasts the single-algorithm models with the Stacking ensemble learning model. In
Section 3.3, the influence of base- and meta-model selection is explored. Section 3.4 as-
sesses the generalization capabilities of the ensemble model. The experimental dataset
comprises 2580 foam images and 2580 corresponding grade data collected from a copper
concentration flotation column at a beneficiation plant in Yunnan Province, China, with an
image resolution of 500 × 500. Of these 2580 sets, 1920 are allocated for model training and
validation, while the remaining 660 sets form the test set, utilized to evaluate the model’s
generalization capability. Each grade interval in the test set is represented by 110 samples.

The model’s performance is evaluated using a confusion matrix, precision (PRE), recall
(REC), and the F1 score (F1). The confusion matrix illustrates the model’s classification accu-
racy across different grade intervals by showing the correspondence between predicted and
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actual results. Precision, an accuracy measure, is calculated as the proportion of correctly
predicted positive samples (TP) out of all samples predicted as positive (TP + FP, with FP
indicating that the model incorrectly determines samples which are actually negative as
positive samples). A high precision implies fewer false positives in positive predictions.
The precision PREi for each grade category i is calculated using the following formula:

PREi =
TPi

(TPi + FPi)
(21)

The model’s overall precision is the average of these precision values across all
grade categories:

PRE =
1
M

(
M

∑
i=1

PREi

)
(22)

Recall measures the model’s ability to correctly identify actual positive samples
(TP + FN, with FN indicating that the model incorrectly determines samples which are
actually positive as negative samples). A high recall indicates that the model successfully
captures a large number of actual positives. The recall RECi for each grade interval is
calculated as follows:

RECi =
TP

(TP + FN)
(23)

The model’s overall recall is the average of the recall values for all grade categories:

REC =
1
M

(
M

∑
i=1

RECi

)
(24)

The F1 score, which is the harmonic mean of precision and recall, serves as a key
indicator of the model’s overall performance. The closer the F1 score is to 1, the better the
model’s performance is. The formula for the F1 score is as follows:

F1 =
2 × PRE × REC
(PRE + REC)

(25)

3.1. The Influence of Feature Selection on Prediction Results

This section conducts modeling validation to confirm the effectiveness of combined
correlation feature selection, using the original feature dataset and the feature subset
after feature selection with three algorithms: AdaBoost, SVM, and RF. Table 3 shows the
performance metrics of different models with and without feature selection processing.
It is observed that for the AdaBoost, SVM, and RF models after feature selection, the
PRE increases by 2.44%, 7.25%, and 3.44%, respectively; REC improves by 2.72%, 5.91%,
and 3.94%, respectively; and the F1 increases by 2.58%, 6.57%, and 3.69%, respectively,
compared to the models without feature selection. The experimental results demonstrate
that the models employing correlation-based feature selection outperform those without it,
indicating that such feature selection enhances the prediction accuracy of each model.

Table 3. Performance metric comparison with and without feature selection.

Metric
AdaBoost SVM RF

Y N Y N Y N

PRE (%) 80.68 78.24 81.30 74.05 82.86 79.42
REC (%) 80.45 77.73 79.55 73.64 82.88 78.94
F1 (%) 80.56 77.98 80.41 73.84 82.87 79.18
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3.2. Comparison and Analysis of Classification Results between Single-Algorithm Models and
Ensemble Learning Model

To ascertain the performance superiority of the IPCC-SELM model proposed in this
study, this section conducts training and modeling of the IPCC-SELM model against
three single-algorithm models: SVM, RF, and AdaBoost. The focus is on comparing their
classification effects on the test set. Figure 6 displays the confusion matrices of the different
models, where the horizontal axis represents the actual grade category, and the vertical
axis represents the predicted grade category. The codes I, II, III, IV, V, and VI, respectively,
represent the six grade categories: ultra-high, slightly high, normal, slightly low, low, and
ultra-low. It is observable that the three single models and the IPCC-SELM model perform
excellently in identifying samples in the ultra-high- and ultra-low-grade intervals, with the
IPCC-SELM model notably misclassifying only three samples in these extreme intervals.
This indicates that in flotation production, the foam features of ultra-high- or ultra-low-
grade samples significantly differ from those during normal operations, which aligns with
the model’s predictive classification outcomes. However, the single models have a higher
misclassification rate for slightly high- and normal-grade samples, mainly due to the high
similarity in foam morphology between these categories and the influence of the complex
production environment in the plant, leading to less-than-ideal classification results. The
SVM model exhibits a high misclassification rate in identifying slightly low-grade samples,
incorrectly categorizing 40 samples as low grade, highlighting its limitations in processing
samples with a high feature similarity. In terms of recognition accuracy, the SVM, RF, and
AdaBoost models correctly identify 525, 547, and 531 samples, respectively, while the IPCC-
SELM model accurately identifies 593 samples, with only 67 samples being misclassified.
This indicates that the IPCC-SELM model has a good recognition ability across all six grade
categories, with a higher correct identification rate than the other single models.
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Furthermore, Table 4 displays the performance metrics, comparing the IPCC-SELM
model with the single models. In terms of precision, the IPCC-SELM model outperforms
the SVM, RF, and AdaBoost models in all grade categories. Regarding recall, the IPCC-
SELM model outperforms the other models in the ultra-high-, slightly high-, normal-, and
ultra-low-grade categories. However, the PRE of the IPCC-SELM model is 80.91% and
86.36% for the slightly low- and low-grade categories, which are, respectively, lower than
that of the RF and SVM. This may be due to the significant similarity in feature expression
among samples in the slightly low- and low-grade categories, making it difficult for the
base models to accurately differentiate these samples. The confusion matrix in Figure 6
reveals that the SVM, RF, and AdaBoost models do indeed exhibit numerous instances of
mutual misclassifications in the slightly low- and low-grade categories. Since the ensemble
model relies on the predictions of base models as inputs, the poor performance of the base
models in these categories with complex feature relationships may directly impact the
performance of the ensemble model.

Table 4. Performance metrics comparison between the IPCC-SELM model and base models.

Model Category PRE (%) REC (%) F1 (%)

SVM

Ultra-high 98.92 83.64

80.41

Slightly high 74.29 70.91
Normal 76.42 85.45

Slightly low 78.67 53.64
Low 63.29 90.91

Ultra-low 96.23 92.73
Mean 81.30 79.55

RF

Ultra-high 95.15 89.09

82.87

Slightly high 78.18 78.18
Normal 80.58 75.45

Slightly low 80.17 84.55
Low 75.96 71.82

Ultra-low 87.10 98.18
Mean 82.86 82.88

AdaBoost

Ultra-high 94.39 91.82

80.56

Slightly high 72.41 76.36
Normal 71.65 82.73

Slightly low 68.52 67.27
Low 79.78 64.55

Ultra-low 97.35 100.00
Mean 80.68 80.45

IPCC-SELM

Ultra-high 99.07 97.27

89.93

Slightly high 90.00 81.82
Normal 82.93 92.73

Slightly low 83.96 80.91
Low 84.07 86.36

Ultra-low 100.00 100.00
Mean 90.01 89.85

Meanwhile, it becomes evident that the IPCC-SELM model demonstrates significant
improvements in overall key performance metrics. Compared to SVM, RF, and AdaBoost,
the IPCC-SELM model shows an enhancement in PRE of 8.71%, 7.15%, and 9.32%, respec-
tively. Additionally, the model boosts REC by 10.30%, 6.97%, and 9.39% and heightens
the F1 by 9.51%, 7.06%, and 9.36%. In the slightly high-grade category, SVM, RF, and
AdaBoost demonstrate balanced precision and recall, indicating their relative accuracy
and completeness in identifying this grade. In the normal-grade category, SVM leads,
with a PRE of 76.42% and a REC of 85.45%, surpassing both RF and AdaBoost in REC,
thus showing stronger recognition ability. In the slightly low-grade category, RF exceeds
the performance of SVM and AdaBoost, with its PRE and REC being 80.17% and 84.55%,
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respectively, indicating better performance in this grade. The experimental results suggest
that the IPCC-SELM model, by integrating the strengths of each model, achieves superior
predictive performance compared to the individual models, making the IPCC-SELM model
more effective in predictions.

3.3. The Influence of Base- and Meta-Model Selection on Prediction Results

To select suitable base- and meta-models for concentrate grade classification, different
base models and meta-models are used to construct Stacking ensemble models. Table 5
displays the performance metrics of the different Stacking ensemble models. It can be
observed that the Stacking ensemble model constructed with RF, SVM, and AdaBoost
as base models and LR as the meta-model exhibits optimal performance. Its PRE, REC,
and F1 are 90.01%, 89.85%, and 89.93%, respectively, demonstrating superior predictive
performance compared to the other models.

Table 5. Performance metrics of the different Stacking ensemble models.

Base Model Meta-Model PRE (%) REC (%) F1 (%)

RF
SVM

AdaBoost
LR 90.01 89.85 89.93

RF
SVM
LR

AdaBoost 86.33 86.05 86.18

RF
AdaBoost

LR
SVM 83.93 83.79 83.85

SVM
AdaBoost

LR
RF 84.49 84.39 84.44

From a theoretical perspective, AdaBoost enhances performance by integrating multi-
ple weak classifiers and adjusting sample weights in each iteration, particularly emphasiz-
ing the handling of misclassified samples. SVM, through a margin maximization strategy
and kernel functions, maps data to a high-dimensional space, effectively addressing linear
and nonlinear data challenges. RF, by constructing multiple decision trees and implement-
ing a voting mechanism, efficiently processes high-dimensional data while maintaining
robustness and accuracy. AdaBoost, SVM, and RF, each with strong nonlinear modeling
capabilities, can fully utilize their distinct advantages in fitting complex data within the
Stacking ensemble framework, collaboratively enhancing the overall classification per-
formance. LR is both simple and effective in modeling and has excellent capability and
interpretability in handling various data types. LR’s linear decision boundary and proba-
bilistic output allow it to integrate the predictive outputs of the base models clearly and
efficiently in ensemble learning. The experimental results demonstrate that the Stacking
ensemble model, constructed with SVM, RF, and AdaBoost as base models and LR as the
meta-model, exhibits superior predictive performance compared to other ensemble models.

3.4. Validation of the Model’s Generalization Performance

To validate the generalization ability of the IPCC-SELM, this section employs a
frequency-consistent photography and sampling method to collect 200 sets of foam images
and grade data from the copper concentration flotation column. Additionally, grade detec-
tion results from the Outotec X fluorescence flow analyzer in the copper flotation section
of the beneficiation plant are obtained from the plant’s database to serve as a reference.
Table 6 shows the predictive classification results of the IPCC-SELM model on new samples,
which are compared with and analyzed against the actual concentrate grade and fluores-
cence analysis grade. The results demonstrate that the IPCC-SELM model outperforms the
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Outotec X fluorescence analysis in ultra-high-, normal-, low-, and ultra-low-grade intervals,
with an overall predictive classification accuracy of 84.5%, which is a 7% improvement
over fluorescence analysis. This enhancement is likely due to the high misclassification
rate of Outotec X fluorescence analysis under the complex on-site environment of flotation
production and the latency factors in the analysis. The experiment proves that the IPCC-
SELM model possesses good generalization capability and has the potential to meet the
daily production needs of the beneficiation plant.

Table 6. IPCC-SELM model generalization experiment.

Method of Grade
Acquisition

Sample
Accuracy (%)

Ultra-High Slightly High Normal Slightly Low Low Ultra-Low

Actual grade 21 49 73 36 16 5 -
Outotec X 18 46 48 31 8 4 77.50

IPCC-SELM 21 38 63 28 14 5 84.50

4. Conclusions

In this study, a Stacking ensemble learning model based on image processing and
combined correlation feature selection is proposed, exploring the application of Stacking
ensemble learning in predicting the grade of copper flotation concentrate. The following
conclusions are drawn:

1. Foam image processing and correlation feature selection techniques are applied to
copper flotation foam images. This approach mitigates the dimensionality issues
associated with high-dimensional data and reduced redundancy among the features.
The experimental results indicate that using the feature subset after feature selection
for modeling enhances the model’s performance.

2. The copper concentrate grade classification model based on Stacking ensemble learn-
ing effectively incorporates the strengths of each base model and meta-model to fit
the feature data. This model solves the problem of weak data fitting ability and poor
generalization ability, which are often caused by single-algorithm modeling. The
developed IPCC-SELM model achieves a precision, recall, and F1 score of 90.01%,
89.85%, and 89.93%, respectively, outperforming other models. Compared with the RF
model, which has the best overall performance among the single-algorithm models,
the precision, recall, and F1 score of the IPCC-SELM model are improved by 7.15%,
6.97%, and 7.06%, respectively.

3. The IPCC-SELM model effectively predicts the copper’s flotation concentrate grade
intervals, demonstrating strong predictive performance and generalization capability.
The overall classification ability of this IPCC-SELM model is superior to Outotec X
fluorescence analysis, suggesting the model’s potential to meet the daily production
needs of beneficiation plants.
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