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Abstract: The dispersion and flocculation behavior of muscovite suspensions in the presence of
Ca2+ and Mg2+ are relevant for industrial processing of pre-concentrated muscovite from stone
coal, a primary source of vanadium. In this study, the dispersion and flocculation behavior were
investigated by means of sedimentation, zeta potential, and ion absorption experiments, as well as
the force between particles and ion speciation calculations. The results indicated that the dispersion
and flocculation behavior of muscovite particles without excess ions were in qualitative agreement
with the classical DLVO theory. The muscovite particles aggregated mainly due to basal surface-edge
interactions in acidic suspensions but were dispersed in alkaline suspension by electrostatic repulsion
of the total particle surface. In acidic suspensions, the ability of muscovite to form dispersions of
muscovite was increased with the decrease in the electrostatic attraction between the basal surface
and the edge caused by the compression of the electric double layers withCa2+ and Mg2+. In alkaline
suspension, the main adsorption form of Ca2+ and Mg2+ on muscovite surface was the ion-hydroxy
complexes. The flocculation behavior of muscovite was affected by the static bridge effect of the
ion-hydroxy complexes.
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1. Introduction

Muscovite is the primary vanadium-bearing mineral in stone coal [1], which is an important
resource of vanadium making up more than 87% of the domestic reserves of vanadium in China [2].
Hence, efficient processing methods of the vanadium-bearing stone coal has become increasingly
important, and it has been confirmed that the pre-concentration of muscovite from the stone coal
by roasting-flotation was an effective method [3]. Previous studies have found that the suspension
produced by the roasted stone coal and water contain large quantities of metal ions and micro-fine
particles. Metal ions and micro-fine particles can seriously reduce the separation efficiency of the
pre-concentration of muscovite by flotation [3,4]. Hence, the removal of micro-fine particles has an
important role in the pre-concentration steps of muscovite. Meanwhile, the effect of their removal
depends on the dispersion and flocculation behavior of the specific minerals, so the study of the
dispersion and flocculation behavior of muscovite is important.

The simplest framework to address the dispersion and flocculation behavior of minerals is the
classical DLVO theory presented by Derjaguin, Landau, Verwey, and Overbeek [5]. The application of
DLVO theory for fine particles and colloid has long been considered to be credible. This theory suggests
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that the total potential energy between charged interfaces is described as the sum of the Van der Waals
attraction potential and the electrostatic potential. The strength of the Van der Waals attraction potential
is related to the material itself and the distance between particles, but the roughness of the particle
surface may also contribute [6,7]. The electrostatic potential is principally influenced by the surface
charge density and the composition of ions in solution [8–11]. The surface charge determined the
magnitude of this force, while multivalent metal ions may adsorb strongly to negatively charged
interfaces, thereby reducing the magnitude of the potential [12–14].

Such interactions of metal ions adsorbed on the mineral surface have broad implications in
mineral processing. The flotation of spodumene with fatty acid anionic collector can be implemented
by adding Ca2+ and Fe3+ [15]. Ca2+ can render the positive charge of the surface of magnetite in the pH
range from 3 to 10 and reduce the dispersion ability of silicates [16,17]. It was also evidenced that Ca2+

and Mg2+ can affect the surface properties of apatite, which can reduce the recovery of flotation [18,19].
Chlorite and lizardite, but also quartz, can be floated with xanthate in the pH range from 7 to 10 by
adding Cu2+ and Ni2+ [20]. Cu2+ and Ca2+ can enhance the adsorption density of carboxymethyl
cellulose (CMC) on the surface of chlorite [21]. It has been shown that Ca2+ and Mg2+ adsorbed on the
surface of diaspore could cause the compression of the electric double layer, and result in the decrease
of the repulsion force between diaspore particles [22,23]. Previous studies have found that the valence
of cation plays a major role in the ability of dispersion of diaspore, kaolinite, illite, and pyrophyllite
with sodium carbonate and sodium hexametaphosphate suspensions [24]. The mechanism of metal
ion adsorption on the mineral surface has also been studied, relying mainly on a hydroxy complex
hypothesis and surface precipitation theory. James and Hu et al. [25,26] suggest that the key form
was the precipitate of metal hydroxide. Others studies have shown that the dominant species was
the hydrolyzed metal ions. For high valence and small radius ions, like Fe3+, the dominant species
would be in the form of hydroxide precipitate, i.e., Fe(OH)3. While for the low valence and large
radius ions, like Ca2+, the effective species would mainly be hydroxy complexes of the metal ions,
i.e., Ca(OH)+ [27].

Previous studies have been based on the effect of metal ions on the flotation behavior of minerals,
but very few studies have focused on the actual dispersion and flocculation properties. In this study,
the dispersion and flocculation behavior of muscovite influenced by Ca2+ and Mg2+ were investigated.
The objective was to improve understanding of the dispersion and flocculation behavior of muscovite
and thus improve the effect of pre-concentration of vanadium-bearing muscovite.

2. Experimental Section

2.1. Materials

Natural pure muscovite was obtained from the town of Lingshou in Hebei province, China.
The chemical composition of the sample is listed in Table 1, which is similar to the theoretical
chemical composition of muscovite (SiO2 45.2%, Al2O3 38.5%, K2O 11.8%, H2O 4.5%). The sample was
hand-picked and ground to −25 µm in an agitating mill with a zirconia ball. The particle size of the
sample was measured by BT-9300H laser particle size analyzer (Bettersize instruments Ltd., Dandong,
China), and the result is given in Figure 1. The D90 is 21.69 µm and the average particle diameter
is 10.75 µm. One fraction of the sample was further ground to about −5 µm by an agate mortar for
zeta potential measurements. The Ca2+ and Mg2+ solutions were obtained from analytical reagents of
CaCl2 and MgSO4 purchased from Sinopharm Chemical Reagent Co., Ltd. (Wuhan, China). HCl and
NaOH were used for the pH adjustment of the suspension. The pH of the suspension was monitored
using a digital pH meter. All experiments were carried out at room temperature of 22 ± 2 ◦C with
deionized water.

Table 1. Chemical composition of pure minerals (wt %).

Chemical Composition Na2O MgO Al2O3 SiO2 K2O Fe2O3

Content 0.50 0.92 30.64 46.95 10.57 5.12
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Figure 1. Particle size of the sample. 

2.2. Methods 

2.2.1. Sedimentation Test 

To evaluate the dispersion properties, 2 g of muscovite was placed into a beaker with 50 mL of 
deionized water, agitated for 10 min in UP500HE ultrasonic oscillators (Leijunda Ultrasonic 
Electronic Equipment Ltd., Nanjing, China), and transferred into a 100-mL glass measuring cylinder. 
Metal ions and HCl or NaOH were added into the measuring cylinder with water up to 100 mL. The 
cylinder was turned upside down three times and was set aside for 10 min. The upper part, 
approximately 50% of the total volume, was siphoned out to a beaker for pH measurement. The 
sediment and the upper part were collected, dried, and weighed. The degree of dispersion (D) was 
calculated as 

%100)+/( sedsusp ×= mmmD sed , (1) 

where msusp is the mass of the upper part, and msed is the mass of the sediment.  

2.2.2. Zeta Potentials Measurement 

The zeta potentials of the sample in the different suspension were measured by Zetasizer Nano 
ZS90 (Malvern Instrument Co., Malvern, UK). The sample (2 mg) was placed in 100 mL of deionized 
water, and the suspension was conditioned with Ca2+ or Mg2+ ions over the pH range from 2 to 12. 
An average zeta potential value of at least six individual measurements was recorded. 

2.2.3. Calculation of Interfacial Energy between Particles 

Based on the classical DLVO theory, the total potential energy is described as the sum of the 
Vander Waals attraction potential and the electrostatic potential [22]. 
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2.2. Methods

2.2.1. Sedimentation Test

To evaluate the dispersion properties, 2 g of muscovite was placed into a beaker with 50 mL of
deionized water, agitated for 10 min in UP500HE ultrasonic oscillators (Leijunda Ultrasonic Electronic
Equipment Ltd., Nanjing, China), and transferred into a 100-mL glass measuring cylinder. Metal ions
and HCl or NaOH were added into the measuring cylinder with water up to 100 mL. The cylinder was
turned upside down three times and was set aside for 10 min. The upper part, approximately 50% of
the total volume, was siphoned out to a beaker for pH measurement. The sediment and the upper part
were collected, dried, and weighed. The degree of dispersion (D) was calculated as

D = msed/(msusp + msed)× 100%, (1)

where msusp is the mass of the upper part, and msed is the mass of the sediment.

2.2.2. Zeta Potentials Measurement

The zeta potentials of the sample in the different suspension were measured by Zetasizer Nano
ZS90 (Malvern Instrument Co., Malvern, UK). The sample (2 mg) was placed in 100 mL of deionized
water, and the suspension was conditioned with Ca2+ or Mg2+ ions over the pH range from 2 to 12.
An average zeta potential value of at least six individual measurements was recorded.

2.2.3. Calculation of Interfacial Energy between Particles

Based on the classical DLVO theory, the total potential energy is described as the sum of the
Vander Waals attraction potential and the electrostatic potential [22].

VT = VW + VS, (2)

where VW is the Van der Waals attraction potential and VS is the electrostatic potential.
The DLVO theory can be used to model perfectly smooth surfaces of certain geometries

(i.e., flat surfaces spheres, or cylinders). Here, the muscovite was assumed as spherical particle.
The Van der Waals attraction potential was calculated as

VW = − A131

6H
× R1R2

R1 + R2
, (3)
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where A131 is the Hamaker constant, H is the distance between the particles, and R is the particle radius.
Meanwhile, the electrostatic potential was calculated as

VS =
πεR1R2

R1 + R2

(
φ2

01 +φ
2
02

)( 2φ01φ02

φ2
01 +φ

2
02

p + q

)
; (4)

p = ln
[

1 + exp (−κH)

1 − exp (−κH)

]
; and (5)

q = ln [1 − exp (−2κH)], (6)

where φ0 is approximatively replaced the measured value of zeta potential, R is the particle radius, and
the Debye length κ−1 represents the thickness of the double layer. ε is the dielectric constant [28,29].

2.2.4. Adsorption Capacity Measurement

The concentration of Ca2+ and Mg2+ ions was measured by a Prodigy 7 inductively coupled
plasma-optical emission spectrometer (Leeman Labs Inc., Hudson, NH, USA). Again, 2 g of muscovite
was mixed with Ca2+ or Mg2+ ions (1 × 10−3 mol/L) in a suspension of 100 mL in a glass measuring
cylinder, and HCl and NaOH were used for pH adjustment. The cylinder was turned upside down
three times and set aside for 10 min. The solid particles were separated by centrifugation for 12 min
with 2000 r/min, and the concentration of the Ca2+ or Mg2+ ions in the supernatant was measured.
The amount adsorbed was calculated as

Γ =

(
C0 − Ceq.

)
m

V (7)

where Γ is the unit mass mineral adsorption quantity, C0 is the initial concentration of the ions, Ceq. is
the ion concentration in the supernatant, V is volume (100 mL), and m is the quality of muscovite.

3. Results and Discussion

3.1. Sedimentation Behavior of Muscovite

The sedimentation behavior of muscovite in deionized water, with and without the Ca2+ and
Mg2+ ions, were investigated at different pH levels.

It can be seen from Figures 2 and 3 that, in the absence of excess Ca2+ and Mg2+ ions,
the sedimentation yield of the sample decreased with increasing pH, within a range from 1 to 6,
after the yield was around 50% in a pH range from 6 to 12, indicating that the muscovite particles
aggregated in an acidic solution and dispersed in alkaline suspension.

In the presence of Ca2+ (Figure 2), the sedimentation yield decreased with increasing pH to a
certain point and then increased again, with an inflexion point near pH = 4. The sedimentation yield
decreased in pH range from 2 to 4 compared with no ions, which indicated that the flocculation
behavior of muscovite was hindered by Ca2+. With pH being > 4, sedimentation yield increased as a
function of pH, indicating that the flocculation of muscovite particles was caused by the addition of
Ca2+. Increasing the concentration of Ca2+, the sedimentation yield basically remained unchanged in
acidic suspension, but increased in alkaline suspension. With the presence of Mg2+ (Figure 3), the trend
of sedimentation was basically similar to that with Ca2+. The difference was that the sedimentation
yield increased first and decreased later at around pH = 9 with 1 × 10−3 mol/L Mg2+ and at around
pH = 10 with 5 × 10−3 mol/L Mg2+.
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Figure 2. The effect of pH value on dispersion and flocculation of mineral with the presence of Ca2+. 
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Figure 3. Effect of pH value on dispersion and flocculation of mineral with the presence of Mg2+. 

3.2. Zeta Potential Analysis 

Changes in the pH of suspensions can influence the surface properties of minerals [30]. Zeta 
potentials of muscovite as a function of pH in deionized water with and without Ca2+ and Mg2+ is 
presented in Figure 4. It can be seen that the zeta potentials of muscovite were negative over a wide 
range of pH from 2 to 14 and decreased with the increase in pH, which is consistent with previous 
studies [31–33]. The trend of the decreasing zeta potential with an increase in pH is similar to the 
presence of Ca2+ and Mg2+, but the absolute value of the potential was lower and found to decrease 
with increasing ion concentration. Surprisingly, in high alkaline suspension containing Mg2+, 
namely, when the pH range from 10 to 12, the negatively charged surface became  
positively charged. 
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3.2. Zeta Potential Analysis

Changes in the pH of suspensions can influence the surface properties of minerals [30].
Zeta potentials of muscovite as a function of pH in deionized water with and without Ca2+ and
Mg2+ is presented in Figure 4. It can be seen that the zeta potentials of muscovite were negative over a
wide range of pH from 2 to 14 and decreased with the increase in pH, which is consistent with previous
studies [31–33]. The trend of the decreasing zeta potential with an increase in pH is similar to the
presence of Ca2+ and Mg2+, but the absolute value of the potential was lower and found to decrease
with increasing ion concentration. Surprisingly, in high alkaline suspension containing Mg2+, namely,
when the pH range from 10 to 12, the negatively charged surface became positively charged.

Minerals 2016, 6, 93  5 of 11 

 

2 4 6 8 10 12

50

60

70

80

90

100

Se
di

m
en

ta
tio

n 
yi

el
d/

%

pH

 No ions
 1×10-3mol/L
 5×10-3mol/L

 
Figure 2. The effect of pH value on dispersion and flocculation of mineral with the presence of Ca2+. 

2 4 6 8 10 12

50

60

70

80

90

100  No ions
 1×10-3mol/L
 5×10-3mol/L

Se
di

m
en

ta
tio

n 
yi

el
d/

%

pH  
Figure 3. Effect of pH value on dispersion and flocculation of mineral with the presence of Mg2+. 

3.2. Zeta Potential Analysis 

Changes in the pH of suspensions can influence the surface properties of minerals [30]. Zeta 
potentials of muscovite as a function of pH in deionized water with and without Ca2+ and Mg2+ is 
presented in Figure 4. It can be seen that the zeta potentials of muscovite were negative over a wide 
range of pH from 2 to 14 and decreased with the increase in pH, which is consistent with previous 
studies [31–33]. The trend of the decreasing zeta potential with an increase in pH is similar to the 
presence of Ca2+ and Mg2+, but the absolute value of the potential was lower and found to decrease 
with increasing ion concentration. Surprisingly, in high alkaline suspension containing Mg2+, 
namely, when the pH range from 10 to 12, the negatively charged surface became  
positively charged. 

0 2 4 6 8 10 12 14

-60

-40

-20

0

20

40

Ze
ta

 p
ot

en
tia

l/m
V

 No ions
 1×10-3mol/L Ca2+

 5×10-3mol/L Ca2+

 1×10-3mol/L Mg2+

 5×10-3mol/L Mg2+

pH  
Figure 4. Zeta potentials of muscovite as a function of pH in deionized water with Ca2+ and Mg2+. Figure 4. Zeta potentials of muscovite as a function of pH in deionized water with Ca2+ and Mg2+.



Minerals 2016, 6, 93 6 of 11

3.3. Calculation of Surface Energy of Particles Using Classic DLVO Theory

Assuming spherical particle geometry, the interaction energy values of the particles in the presence
or absence of Ca2+ and Mg2+ was calculated according to the classical DLVO theory, with the results
from the zeta potential measurements, and the Hamaker constant of A131 = 2.2 × 10−20 J, the dielectric
constant of ε = 6.95 × 10−10 C2·J−1·m−1, κ = 0.104 nm−1 [28,29], and R1 = R2 = 10.75/2 µm. As can
be seen from the results in Figure 5, the energy barrier increased with increasing pH, so the ability
to from a dispersion was improved with increasing pH, which was found to be consistent with the
settling experiments. However, the presence of Ca2+ and Mg2+ can reduce the surface potential and
thus reduce the interaction energy values of the particles. This should increase flocculation, but it is in
contrast to the experimental results presented earlier.
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Muscovite is a kind of layered crystal structure of mineral, which is formed from an octahedral
layer sandwiched between two identical tetrahedral (SiO4) layers. So particle–particle flocculation
may occur through three types of structural interaction: basal surface (001)—basal surface,
basal surface-edge, and edge-edge. In general, the measurement of zeta potential can represent the
mineral surface electrical property; however, considering the crystal anisotropy of muscovite, the zeta
potential of muscovite is the overall electrical properties of the basal surface and the edge. The basal
surface of muscovite has a negative charge, which is not affected by pH [31]. As a result, its value can
be approximated to the zeta potential when the pH value of the suspension is equal to the point of
zero charge of the edge (PZCedge). When the net charge of the surface is zero, the PZC is defined as a
point on the pH-scale, and the PZCedge of muscovite in theory is 6.84 [34]. The potential computation

formula of the edge is as follows: ϕedge = 0.059
(

PZCedge − pH
)

. Considering the smaller edge area
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compared to the basal surface area, the Redge was assumed to be one tenth of the Rbasal·surface(10.75/2 µm).
The interaction energy values of the particles were re-calculated, and the results are shown in Figure 6.
The results show that the interaction energies of the form of basal surface-edge were negative at
pH values of 3 and 6, which means that the particles can undergo flocculation, consistent with the
experimental phenomenon, testifying that the particles were aggregated in acidic suspension mainly
by the form of the basal surface-edge. Adding the 1 × 10−3 mol/L Ca2+ and Mg2+, the surface potential
was reduced, and the electrostatic attraction between the basal surface and the edge was then also
reduced, so the dispersion increased, which was also consistent with the experimental phenomenon.
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3.4. Metal Species in Different Solution

In the solution with different pH values, the species and the content of the species in the presence
of 1 × 10−3 mol/L Ca2+ or Mg2+ ions were analyzed and calculated using the stability constants
for hydroxide formation, and the results are shown in Figures 7 and 8, respectively. When pH < 12,
the dissociative Ca2+ and Ca(OH)+ are the key species in the solution. Ca2+ and Ca(OH)+ lowered the
absolute value of zeta potential of muscovite by compressing electric double layer [22,23], which was
consistent with the zeta potential analysis. Mg2+ and Mg(OH)+ are the key species in the solution at
pH < 9.92, and they had a similar effect to that of Ca2+ and Ca(OH)+. However, Mg(OH)2(s) is the main
species at pH > 9.92. At a pH range from 10 to 12, the zeta potential was zero, caused by Mg(OH)2(s),
and this phenomenon agrees with the results researched by Krishnan and Iwasaki [35].
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The adsorption capacity of Ca2+ and Mg2+ on muscovite is shown in Figure 9. When pH < 4,
there was less adsorption capacity of Ca2+ and Mg2+ ions on muscovite. When pH > 4, the adsorption
capacity of calcium and magnesium ions began to increase, which was consistent with the
sedimentation experiment, namely, the agglomeration increased when pH > 4. Combined with
Figures 7 and 8, it can be found that the ion and the hydroxyl complexes were the key species in the
solution; the concentration of the hydroxyl compounds and the adsorption quantity all increased
with the increase in the pH. Thus, it was confirmed that the hydroxy complex was the key form
adsorbed on the muscovite, which may make the partial surface of muscovite with a positive charge.
The flocculation of muscovite was caused by a bridging effect of the hydroxy complex, as shown in
Figure 10. With the increase of pH and the concentration of Ca2+ and Mg2+, the hydroxy complex
increased, and the bridging effect increased, so the sedimentation rate increased. Mg(OH)2(s) was the
main form when pH > 9.92, which led to the changing property of the suspension system, thus making
the anomalous changes of sedimentation rate when the pH neared 9.92.
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4. Conclusions

The conclusions from this research can be summarized as follows:

1. The dispersion and flocculation behavior of muscovite in the absence of excess Ca2+ and Mg2+

agree with the classic DLVO theory based on the crystal anisotropy. The muscovite particles were
aggregated in acidic suspension mainly by the form of basal surface-edge.

2. The hydroxy complex of Ca2+ and Mg2+ was the main adsorption form on the mineral surface.
The flocculation of muscovite was caused by a bridging effect of the hydroxy complex, which
destroyed the excellent dispersion stability in alkaline suspension.
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