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Abstract: Merelaniite is a new mineral from the tanzanite gem mines near Merelani, Lelatema
Mountains, Simanjiro District, Manyara Region, Tanzania. It occurs sporadically as metallic dark
gray cylindrical whiskers that are typically tens of micrometers in diameter and up to a millimeter
long, although a few whiskers up to 12 mm long have been observed. The most commonly associated
minerals include zoisite (variety tanzanite), prehnite, stilbite, chabazite, tremolite, diopside, quartz,
calcite, graphite, alabandite, and wurtzite. In reflected polarized light, polished sections of merelaniite
are gray to white in color, show strong bireflectance and strong anisotropism with pale blue and
orange-brown rotation tints. Electron microprobe analysis (n = 13), based on 15 anions per formula
unit, gives the formula Mo4.33Pb4.00As0.10V0.86Sb0.43Bi0.33Mn0.05W0.05Cu0.03(S14.70Se0.30)Σ15, ideally
Mo4Pb4VSbS15. An arsenic-rich variety has also been documented. X-ray diffraction, electron
diffraction, and high-resolution transmission electron microscopy show that merelaniite is a member
of the cylindrite group, with alternating centered pseudo-tetragonal (Q) and pseudo-hexagonal (H)
layers with respective PbS and MoS2 structure types. The Q and H layers are both triclinic with
space group C1 or C1. The unit cell parameters for the Q layer are: a = 5.929(8) Å; b = 5.961(5) Å;
c = 12.03(1) Å; α = 91.33(9); β = 90.88(5); γ = 91.79(4); V = 425(2) Å3; and Z = 4. For the H layer,
a = 5.547(9) Å; b = 3.156(4) Å; c = 11.91(1) Å; α = 89.52(9); β = 92.13(5); γ = 90.18(4); V = 208(2) Å3;
and Z = 2. Among naturally occurring minerals of the cylindrite homologous series, merelaniite
represents the first Mo-essential member and the first case of triangular-prismatic coordination in the
H layers. The strongest X-ray powder diffraction lines [d in Å (I/I0)] are 6.14 (30); 5.94 (60); 2.968 (25);
2.965 (100); 2.272 (40); 1.829 (30). The new mineral has been approved by the IMA CNMNC (2016-042)
and is named after the locality of its discovery in honor of the local miners.
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1. Introduction

Merelaniite, from Merelani, Tanzania, was first identified unknowingly in 2012 by Simonoff and
Wise as thin wires of “molybdenite” piercing chabazite crystals [1–3]. Subsequent Raman spectroscopy
and energy-dispersive X-ray spectrometry by one of the authors (JAJ) indicated that the phase was
likely a new mineral. It is plausible that it is the same or very similar to the phase noted by Zakrzewski
et al. in 1982 as an “unnamed Pb-Mo sulfide” from the Sätra mine in Sweden [4], since listed by
Smith and Nickel [5] as valid unknown “UM1982-13-S:MoPb”, and perhaps also valid unknown
“UM1971-18-S:MoPbSb” from Kayrakty, Kazakhstan [6].

During the years 2011–2014, spurred by the discovery of a very large wurtzite crystal (now in the
Natural History Museum, London BM 2012,220; [7]) and the subsequent identification of extremely
large alabandite crystals from the same mineralogical assemblage, two of the authors (JAJ and MSR)
started performing systematic analyses of the sulfides available on the mineral market from the
graphite and tanzanite producing mines of the Merelani region in Tanzania. This review culminated
in the publication of a collector-based overview in The Mineralogical Record [7], and the identification
of several exotic and/or unusually well crystallized sulfide phases. In amongst these phases the
authors noted the presence of what they termed ‘incompletely characterized sulfide whiskers’.
These “whiskers” were described as tightly coiled metallic cylinders with a chemical composition
predominant in molybdenum, lead, and sulfur. They were found alongside many different mineral
species from the assemblage, yet at the time, they defied a simple explanation. It is this phase
that is herewith described as the new mineral merelaniite, which is identified as the first naturally
occurring molybdenum-essential member of the cylindrite group of minerals. The new mineral has
been approved by the Commission of New Minerals, Nomenclature and Classification (CNMNC)
of the IMA (2016-042) and is named after the township of Mererani, known more commonly in
the mineral and gemological communities as “Merelani”, in honor of the local miners, past and
present, living and working in the region. Samples from the holotype specimen, all of which were
extracted from crevices on a single unusually large (11 cm) alabandite crystal from Simon Harrison
(initially assigned numbers 3665 and 3666), have been deposited in the collections of the Natural
History Museum (London), the A. E. Seaman Mineral Museum, the Smithsonian Institution’s National
Museum of Natural History (cataloged under NMNH 177015), and one of the authors (JAJ under
numbers 3665 and 3666). Those in the Natural History Museum (London) are cataloged under BM
2016,100, and include polished grains embedded in a microprobe block, as well as isolated fragments
of whiskers used for the crystallographic, chemical and optical studies. Those in the A. E. Seaman
Mineral Museum (cataloged under DM 31323, DM 31324, and DM 31325) include polished sections
embedded in epoxy mounts used for optical studies, as well as a small cluster of whiskers with
graphite. The crystals used for the X-ray crystallographic investigations are kept at the Department of
Earth Sciences, University of Firenze, Italy. Initial Raman and chemical studies were performed on a
specimen in the collection of the Smithsonian Institution (temporary research number 3323, and now
also cataloged under NMNH 177015).

2. Occurrence and Geological Setting

The new mineral merelaniite (Figures 1–3) occurs rarely and sporadically on specimens extracted
from the gem mines in the Merelani hills near the town of Arusha, Lelatema Mountains, Manyara
Region, Tanzania (approximated by 3◦35′0 S, 37◦0′30 E). Unfortunately, due to the nature of the
opportunistic artisanal mining across this region for the tanzanite variety of zoisite, the tsavorite
variety of grossular, and more recently the rare sulfides, the exact geological location of any specimen
known to contain merelaniite is undocumented and unknown. All the specimens so far identified
that contain merelaniite have been obtained through the secondary mineral markets. The specimens
were originally sold for other more obvious and desirable minerals, and were unaccompanied by any
further detailed locality information. It may be noteworthy in tracking down an exact locality that most
merelaniite specimens have been identified since the assumed sulfide-rich “zone” that produced the
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wurtzite and alabandite crystals that became available to collectors (around 2011–2013). Merelaniite
has likely not been recorded in situ due to its rarity, small size, and cursory visual similarity to graphite,
which is ubiquitous in the region.

The relevant regional geology of the Merelani region is dominated by ultrahigh temperature
(granulite facies) metamorphism of organic rich sedimentary “black shale” deposits rich in
vanadium [8–10]. Four phases of deformation have been identified in one study [8] with temperatures
in the first phase estimated as high as 1000 ◦C with pressures up to 10–12 Kbar. The formation
mechanism of the large sulfide crystals has not been extensively studied to date, but association with
ubiquitous well-crystallized “flake” graphite would hint at high temperatures and stable crystallizing
conditions being relevant. The partial coating of the sulfides and later infilling of cracks and voids by
lower-grade metamorphic phases such as the zeolites and prehnite indicates these multiple phases
of reworking and deformation may be particularly relevant to the growth of merelaniite, potentially
placing it between the highest initial deformation and one or more of the retrograde events. It is beyond
the scope of this new-mineral description to determine a conclusive paragenetic model or to describe
the geology of the Merelani hills in more detail; for the latter, references [9,11] are recommended.

Although merelaniite is clearly rare, given the amount of prehnite, diopside, wurtzite,
and alabandite material on the market at the moment, the authors suspect that many other specimens
(c.102) containing trace amounts of merelaniite already exist extracted from the mines. Merelaniite
has been recorded so far in association with, calcite, chabazite, diopside, graphite, quartz, fluorapatite,
prehnite, stilbite, tremolite, laumontite, titanite, zoisite (tanzanite), alabandite, clausthalite, pyrite,
and wurtzite (Figures 1–3). Simple paragenetic associations distinguish merelaniite as forming after
alabandite-wurtzite, yet prior to quartz, calcite, prehnite, fluorapatite, zoisite, and zeolites, which
have all been observed to fully or partially encapsulate fully-formed merelaniite whiskers (Figures 1–3
show many but not all of these associations). The merelaniite whiskers on the holotype specimen were
found in crevices loosely attached to the surfaces of large alabandite crystals, intimately associated
with masses of loosely aggregated yet well-formed graphite crystals (Figure 4).
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Figure 1. Optical photographs of merelaniite and some associated minerals: (a) 0.73-mm-long 
“cylindrical” whisker of merelaniite associated with tremolite, prehnite, and chabazite (private 
collection); (b) Whisker of merelaniite (0.9-mm section), associated with calcite, showing undulating 
diameters (Simon Harrison collection; sample 3941); (c) 2.5-mm section of a 5-mm-long merelaniite 
whisker (maximum diameter 0.18 mm) showing naturally unraveled ribbons, some partially 
enclosed in calcite, and associated with yellow prehnite (Simon Harrison collection; sample 3941). 

Figure 1. Optical photographs of merelaniite and some associated minerals: (a) 0.73-mm-long
“cylindrical” whisker of merelaniite associated with tremolite, prehnite, and chabazite (private
collection); (b) Whisker of merelaniite (0.9-mm section), associated with calcite, showing undulating
diameters (Simon Harrison collection; sample 3941); (c) 2.5-mm section of a 5-mm-long merelaniite
whisker (maximum diameter 0.18 mm) showing naturally unraveled ribbons, some partially enclosed
in calcite, and associated with yellow prehnite (Simon Harrison collection; sample 3941).
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Seaman Mineral Museum collection DM 31315; ex. Simon Harrison collection.). 

 

Figure 3. Optical photograph of whiskers of merelaniite to 2.8 mm long associated with crystals of 
stilbite and graphite (sample 3665c), found in a small crevice on an 11-cm long alabandite crystal 
(private collection). 
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(Sample 3666i-190i.); (b) Section of a merelaniite-graphite cluster showing well-formed graphite 
crystals (Sample 3666i-190h.); (c,d) Merelaniite whiskers showing partially un-wound layers. 
(Sample 3666-196a.); (e,f) Individual whiskers showing conical ends and undulating diameters 
(samples 3666i 190d and 3666 196c). Images taken using a Hitachi S-4700 field-emission SEM 
(Hitachi, Tokyo, Japan). 

3. Detailed Description 

3.1. Appearance and Physical Properties 

Merelaniite occurs individually and in clusters as dark gray metallic whiskers of circular 
cross-section (Figures 1–5). On further inspection, especially by scanning electron microscopy, the 
whiskers are revealed to be composed of tightly coiled layers and are perhaps better described as 
“scrolls” (Figure 5c,d), although this is not often visible under optical microscopy. It is similar in its 
appearance to other minerals of the cylindrite-type. 

 
Figure 5. SEM (Hitachi S-4700) images of merelaniite (Smithsonian Institution specimen NMNH 
177015, reference 3323). (a) Merelaniite cylinder partially exposed from enclosing calcite; (b) 
Close-up image of the surface showing visible growth-layer steps; (c,d) The same merelaniite 
whisker after being broken, showing the curved lamellar (scroll) structure. 

Figure 4. Scanning electron microscope (SEM) images of samples taken from the holotype
specimen. (a) Cluster of merelaniite whiskers with one notably larger cylinder, associated with
graphite. (Sample 3666i-190i.); (b) Section of a merelaniite-graphite cluster showing well-formed
graphite crystals (Sample 3666i-190h.); (c,d) Merelaniite whiskers showing partially un-wound layers.
(Sample 3666-196a.); (e,f) Individual whiskers showing conical ends and undulating diameters
(Samples 3666i 190d and 3666 196c). Images taken using a Hitachi S-4700 field-emission SEM (Hitachi,
Tokyo, Japan).

3. Detailed Description

3.1. Appearance and Physical Properties

Merelaniite occurs individually and in clusters as dark gray metallic whiskers of circular
cross-section (Figures 1–5). On further inspection, especially by scanning electron microscopy,
the whiskers are revealed to be composed of tightly coiled layers and are perhaps better described as
“scrolls” (Figure 5c,d), although this is not often visible under optical microscopy. It is similar in its
appearance to other minerals of the cylindrite-type.
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The whiskers commonly have a varying diameter along their length (Figure 1b,c and Figure 4c–f),
and in some examples parts of the individual lamella can be observed “peeling” away from the main
cylinder or scroll (Figures 1c and 4c,d), a process which may in part lead to the undulations observed.
The whiskers regularly terminate in a conical shape (Figures 1a and 4e,f). When viewed end on under
scanning electron microscopy, broken whiskers reveal the lamellar nature of the scroll-like structure
(Figure 5c,d). As a member of the extended cylindrite group of minerals, traditional crystals are not
observed. Instead the scroll-like whiskers are the manifestation of a single tightly coiled flat crystal.

In the holotype specimen, the richest known example found to date, some whiskers were a little
over 10 mm in length, with 12 mm being the longest individual recorded so far. The thickness, however,
is never more than 100 µm. More regularly the whiskers are no more than a millimeter in length and
just tens of microns in width.

Although merelaniite has been found on a number of different specimens, most of the whiskers
studied during this investigation and all of those designated as “part of holotype” were isolated from
just one specimen, an extremely large alabandite crystal (11 cm in maximum dimension), that contained
a crevice filled with a chaotic mass of loosely bound merelaniite whiskers inter-grown with equally
loosely aggregated graphite crystals (see reference [7] (Figure 5d,g, pp. 42–25), and reference [10]
(p. 43)), along with some rounded brown titanite crystals and colorless diopside crystals (the graphite,
titanite and diopside crystals all range in size from one to a few hundred micrometers across). It is our
understanding that this specimen is now in private hands; however, before it was purchased a volume
of whiskers from the main crevice and a smaller crevice were removed for study by JAJ with permission
of its then owner, Simon Harrison. Samples were subsequently passed to MSR and LB for further
study. The whiskers removed from this sample (initially numbered 3665 and 3666) and used during
the characterization of the material are deposited within several institutional mineral collections as
noted in the Introduction.

The physical characteristics of merelaniite are summarized as follows:

• Habit: massive
• Forms: needles—cylindrical whiskers (tightly packed scrolls)
• Twinning: None observed
• Color: dark-gray, metallic
• Streak: dark-gray to black
• Luster: metallic; opaque
• Fluorescence: not fluorescent in SW or LW UV light
• Hardness (Mohs): impossible to determine accurately due to size and scroll-like lamellar nature

of the material
• Tenacity: malleable, flexible
• Cleavage: perfect on {001}
• Fracture: splintery
• Density (meas.): not determined due to paucity of material
• Density (calc.) = 4.895 g·cm−3 (from ideal formula, unit-cell volumes of the two pseudo-layers

and Z = 1)

3.2. Optical Properties

In reflected polarized light, polished sections of merelaniite show the following:

• Color: grayish-white
• Internal reflections: none
• Pleochroism: weak
• Bireflectance: strong. Pale gray (axial sections) to almost white (longitudinal sections) (Figure 6a,b

and Figure 7a,b)
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• Anisotropism: strong in generally neutral rotation tints. Polished samples showed blue and pale
orange-brown tints in slightly uncrossed polarizers (Figure 6c,d and Figure 7c).
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Reflectance measurements of merelaniite, using a WTiC standard in air were performed using 
ONYX software on a Zeiss Axiotron microscope (Carl Zeiss AG, Oberkochen, Germany) in 
conjunction with a J & M TIDAS diode-array spectrophotometer (J & M Analytik AG, Essingen, 
Germany). Merelaniite shows greatest reflectance and bireflectance toward the blue end of the 
spectrum. Tabulated data along with interpolated COM (Commission on Ore Mineralogy) values 
(highlighted) are presented in Table 1. The interpolated reflectance percentages (R1 and R2, 
respectively) at the four COM wavelengths are 36.8, 46.3 (470 nm); 35.6, 44.1 (546 nm); 34.8, 42.3  
(589 nm); and 34.3, 39.9 (650 nm). 

Figure 6. Reflected light microscope images of longitudinal sections of a polished merelaniite whisker
(0.06 mm diameter) (Nikon Optiphot-Pol petrographic microscope): (a) Polarizer and analyzer both
aligned vertically, parallel to the whisker axis; (b) Polarizer and analyzer both aligned vertically,
perpendicular to the whisker axis; (c,d) Analyzer aligned vertically and polarizer slightly plus/minus
un-crossed. It is not certain if the core of the whisker reflects more brightly due to a possible chemical
difference between the core and outer region or is simply because the layers in the core are parallel to
the polished surface. (A. E. Seaman Mineral Museum collection DM 31324, reference 3666ax2).
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Reflectance measurements of merelaniite, using a WTiC standard in air were performed using
ONYX software on a Zeiss Axiotron microscope (Carl Zeiss AG, Oberkochen, Germany) in conjunction
with a J & M TIDAS diode-array spectrophotometer (J & M Analytik AG, Essingen, Germany).
Merelaniite shows greatest reflectance and bireflectance toward the blue end of the spectrum. Tabulated
data along with interpolated COM (Commission on Ore Mineralogy) values (highlighted) are presented
in Table 1. The interpolated reflectance percentages (R1 and R2, respectively) at the four COM
wavelengths are 36.8, 46.3 (470 nm); 35.6, 44.1 (546 nm); 34.8, 42.3 (589 nm); and 34.3, 39.9 (650 nm).
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Table 1. Reflectance measurements of merelaniite using a WTiC standard taken in air. Measurements of
R1 and were taken on an axial cross-section, and R2 measurements were taken on a longitudinal section.
Interpolated COM (Commission on Ore Mineralogy) values are highlighted in boldface italics font.

λ nm R1 R2

400 37.6 47.6
420 37.4 47.2
440 37.2 46.8
460 36.9 46.5
470 36.8 46.3
480 36.6 46.1
500 36.3 45.7
520 36.0 45.1
540 35.7 44.4
546 35.6 44.1
560 35.4 43.5
580 35.0 42.7
589 34.8 42.3
600 34.6 41.8
620 34.4 41.0
640 34.3 40.2
650 34.3 39.9
660 34.2 39.6
680 34.1 39.2
700 34.0 39.0

3.3. Raman Spectroscopy

Raman spectroscopy was performed on a curved surface of a cylindrical whisker freshly exposed
from enclosing calcite (piece of sample 3323) using dilute acetic acid, and on the polished sections of the
samples shown in Figures 6 and 7. The spectra shown in Figure 8 were collected at Miami University
(Oxford, OH, USA) using a Renishaw inVia Raman spectrometer (Renishaw plc, Wotton-under-Edge,
Gloucestershire, UK) in backscattering geometry, with unpolarized incident laser radiation at 633-nm
and 785-nm wavelengths, respective diffraction gratings with 1800 lines/mm and 1200 lines/mm,
a 50× objective lens, and a laser spot size of approximately 2 µm. A neutral density filter was used
to reduce the power of the laser at the sample to less than 3 mW to avoid sample heating effects
(peak shifts and broadening) and sample damage. Laser-induced damage was observed at higher
power levels that led to the occurrence of intense but spurious bands at 319, 870, and 930 cm−1.

Although the relative intensities vary to some degree with respect to sample and excitation
wavelength, all of the spectra show prominent Raman peaks at 324, 379, 390, and 401 cm−1, with the
peak at 401 cm−1 typically being the most intense. A less prominent peak is also observed in most
spectra near 350 cm−1. An intense broad band manifests between 133 and 245 cm−1, while less intense
broad bands are centered near approximately 450, 570, and 780 cm−1. The broad band at 570 cm−1

appears to be two bands centered at 568 and 621 cm−1 when using 785-nm radiation. Raman shifts
greater than 900 cm−1 were not observed in any spectra except for several reproducible bands at 916,
1176, 1374, and 1619 cm−1 that can be seen in the spectrum of a polished whisker (3666ax2) excited
with 633-nm radiation midway between the whisker axis and the surface. These peaks did not manifest
from this sample using 785-nm radiation. Preliminary spectra were taken at Michigan Technological
University with a LabRAM HR800 Raman spectrometer (HORIBA Jobin Yvon, Edison, NJ, USA) in
backscattering geometry using polarized 633-nm radiation. These showed only slight changes in the
relative peak intensities upon rotation of the whisker axis from parallel to perpendicular relative to
the incident direction of polarization of the laser. Note that the spectrum from the brightly reflecting
region near the whisker axis (3666ax2 core) is virtually indistinguishable from the spectrum from the
natural surface of whisker 3323. A comparative search of Raman spectra of minerals in the RRUFF
database using the CrystalSleuth program [12] yielded no satisfactory matches.
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Figure 8. Representative Raman spectra, independently scaled and vertically shifted for clarity, from
the surface of sample 3323, and from polished samples 3666ax2 and 3666cr2 using 633-nm and 785-nm
incident radiation. The “3666cr2 middle” spectrum was taken from a region of the cross section shown
in Figure 7 midway between the center and the surface. Spectra “3666ax2 rim” and “3666ax2 core”
were taken from the longitudinal section of the whisker shown in Figure 6 from regions between the
axis and the surface (rim), and from the brightly reflecting core, respectively.

In backscattering geometry, bulk MoS2 exhibits three Raman peaks at approximately 33.5, 383.6
and 408.7 cm−1, corresponding to E2

2g (interlayer shear), E1
2g (in-plane), and A1g (out-of-plane)

vibrational modes, respectively [13]. The E1
2g and A1g peaks systematically broaden and shift to

approximately 386 (E1
2g) and 403 cm−1 (A1g), as the number of MoS2 layers decreases from bulk to

few-layers and ultimately to monolayer thickness. MoS2 also exhibits several other strong first-order
and second-order Raman peaks due to resonant Raman scattering when incident laser wavelengths 633
and 594 nm are employed [13,14]. On the other hand, while the high symmetry of bulk PbS precludes
first-order Raman scattering, polycrystalline PbS thin films and PbS nanocrystals exhibit a broad
band at 206 cm−1, and overlapping broad bands at 410 and 462 cm−1 [15]. Although merelaniite’s
Raman spectra have some qualitative resemblance to the first-order Raman spectra of MoS2 and
other dichalcogenides, further studies of polarized Raman scattering using different excitation laser
wavelengths will be necessary in order to more fully characterize its Raman spectrum.

3.4. Chemical Data

Several merelaniite whiskers (n = 5) from the loose pieces of BM 2016,100 were mounted
onto a low-adhesive substrate, carefully placing the whiskers so as to mount them in a variety of
perpendicular, inclined, and parallel orientations relative to the long axis of the whisker. They were
then set in epoxy resin and polished using aluminum oxide abrasives to produce a flat surface
(Probe Block P19396 of specimen BM 2016,100). Several of the perpendicular and parallel whiskers
set successfully. Of those, two (one parallel and one perpendicular to the polished surface) were
selected for electron microprobe analysis based on their superior homogeneity. Electron backscatter
imaging showed clearly that other whiskers had increased chemical heterogeneity compared with the
two selected and were therefore less suitable for chemical analysis. The two fragments studied were
each about 50 µm in diameter, and the one set parallel was several hundred µm in length. Transects
across each sample were performed using a CAMECA SX100 Microprobe (CAMECA, Gennevilliers,
France) in WDS mode at the Natural History Museum in London using an accelerating voltage
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of 20 kV, a beam current of 20 nA, and a spot size of 1 µm. Full spectrometer scans were performed
beforehand in order to ascertain exactly which elements were present within the sample. The elements,
S (ZnS), V [Pb5(VO4)3Cl], Mn (MnTiO3), Fe (Fe-metal), As (GaAs), Mo (Mo-metal), Sb (Sb-metal),
W (W-metal), Pb (PbSe), Se (PbSe), Bi and Te (Bi2Te3), and Cu (Cu-metal) were sought and calibrated
against appropriate standards (shown in parentheses). Obvious candidates, Ge and Zn, based on
associated mineralogy present were sought for but found to be entirely lacking across all five samples.
Te and Fe were observed in some samples, but not those ultimately chosen for the characterization
of merelaniite.

A total of 41 spot analyses were performed over the two whiskers; 20 on the whisker in
perpendicular orientation (Figure 9) and 21 on the whisker aligned in a parallel orientation.
All 20 analyses on the perpendicular sample could be seen to correspond to the same phase but
showed minor variations in total that are likely due to the analysis of micro-voids and epoxy which
can be seen to exist between the scroll-like layers on the sample image (Figure 9). Only totals over
95% (by weight) were used to determine average quantitative data and those between 90%–95% were
used to spot chemical trends. Totals under 90% were not included in the analysis. The whisker aligned
parallel shows a bimodal composition, the “core” of which is the same as the 20 analyses from the
perpendicular specimen. Combining all the analyses with totals above 95% resulted in 13 being used
for the determination of an “average” empirical formula. It should be noted that using all 25 results
that were above 90% produces an almost identical stoichiometry. Analyses from the 13 best data points
are presented in Table 2, where corrections were applied for overlaps of Te/Sb, Bi/Pb, Bi/As, Sb/Bi,
Sb/As, Sb/Mo, Pb/Mo, Pb/Bi, As/Bi, Mo/S, Mo/Pb, and Mo/Bi.
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V 2.26 2.16–2.41 0.09 Pb5(VO4)3Cl 
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Pb 42.40 40.00–44.41 1.37 PbSe 
Se 1.25 1.09–1.56 0.12 PbSe 

Figure 9. Polished axial section of a merelaniite “whisker” used for chemical analysis. The red spots
indicate the areas analyzed across the transect. Note the scroll-like form and the clear voids between
the individual layers which are attributed to have led to the weight% totals being a little under 100%.
Sample BM 2016,100; probe block P19396.

The empirical formula calculated on the basis of 15 anions per formula unit is Mo4.33Pb4.00As0.10

V0.86Sb0.43Bi0.33Mn0.05W0.05Cu0.03(S14.70Se0.30)Σ15. The simplified formula is Mo4Pb4VSbS15, with a
metal:sulfide (M:S) ratio of 2:3.
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Table 2. Chemical data (wt %) for merelaniite.

Constituent Mean wt % Range SD Standards

S 24.05 23.60–24.42 0.25 ZnS
V 2.26 2.16–2.41 0.09 Pb5(VO4)3Cl

Mn 0.05 0.00–0.23 0.08 MnTiO3
As 0.39 0.23–0.87 0.16 GaAs
Mo 21.10 20.05–22.48 0.67 Mo
Sb 2.59 2.44–2.80 0.11 Sb
W 0.55 0.39–0.62 0.06 W
Pb 42.40 40.00–44.41 1.37 PbSe
Se 1.25 1.09–1.56 0.12 PbSe
Bi 3.56 3.05–4.12 0.33 Bi2Te3
Cu 0.01 0.00–0.05 0.02 Cu

Total 98.20 95.94–100.54 1.62 N/A

3.5. Crystallography

Single-crystal X-ray studies were carried out at the CRIST centre of the University of Florence,
Italy, using an Oxford Diffraction Xcalibur diffractometer (Oxford Diffraction, Oxford, UK) equipped
with a CCD detector, and using graphite-monochromatized MoKα radiation (λ = 0.71073 Å).

All the members of the cylindrite homologous series (see Appendix A and references [16–19]) exhibit
a combination of a pseudo-tetragonal (pseudo-quadratic layer, labeled Q) with a pseudo-hexagonal
layer (labeled H). The Q layer is a (100) slab of the PbS/NaCl archetype, two to four atoms thick
(for instance, two in cylindrite, four in franckeite); the H layer is a CdI2-type layer that can be
one-octahedron thick (as in cylindrite) or two-octahedra thick (as in cannizzarite) [19]. Although
cylindrite-like synthetic compounds with H layers of the NbS2/TaS2-type (with cations in a triangular
prismatic coordination, one, two or three layers thick, and van der Waals bonding between H layers in
the multiple-layer cases) have been described ([20] and references therein), merelaniite (with MoS2

layers) represents the first case of triangular-prismatic coordination of the H layers occurring in nature.
In the following, the a and b directions are parallel to the layers, and c is the layer-stacking direction,
and aH is parallel to bQ. The orientation of the a and b directions relative to the whisker axis is
currently unknown.

Although the diffraction quality was very poor (Figure 10), we were able to determine the
cell values for the two centered pseudo-tetragonal and pseudo-hexagonal sublattices (H and Q
pseudo-layers, respectively):

Q pseudo-layer: (obtained by least-squares refinement of 41 reflections)

Triclinic Space group: C1 or C1
a = 5.929(8) Å b = 5.961(5) Å c = 12.03(1) Å
α = 91.33(9)◦ β = 90.88(5)◦ γ = 91.79(4)◦

V = 425(2) Å3 Z = 4

H pseudo-layer: (obtained by least-squares refinement of 29 reflections)

Triclinic Space group: C1 or C1
a = 5.547(9) Å b = 3.156(4) Å c = 11.91(1) Å
α = 89.52(9)◦ β = 92.13(5)◦ γ = 90.18(4)◦

V = 208(2) Å3 Z = 2

About 35 small fragments were studied with an Oxford Diffraction Excalibur PX Ultra
diffractometer fitted with a 165 mm diagonal Onyx CCD detector and using copper radiation (CuKα,
λ = 1.54138 Å) at the CRIST centre of the University of Florence, Italy. Most of the grains did not
diffract as “single-crystals” and, for this reason, overexposed (from 10 to 60 h) rotation photographs
were collected. The program CrysAlis RED was used to convert the observed diffraction rings
to a conventional powder diffraction pattern (Tables 3 and 4). The X-ray diffraction pattern was
indexed according to the two centered pseudo-tetragonal and pseudo-hexagonal sublattices (H and Q
pseudo-layers, respectively). The least squares refinement gave the following values:
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Q pseudo-layer:

Triclinic Space group: C1 or C1
a = 5.9249(8) b = 5.987(3) c = 12.077(6) Å
α = 90.61(3)◦ β = 90.04(2)◦ γ = 89.95(3)◦

V = 428.4(9) Å3 Z = 4

H pseudo-layer:

Triclinic Space group: C1 or C1
a = 5.5503(6) b = 3.1536(8) c = 11.877(1) Å
α = 90.00(1)◦ β = 90.05(1)◦ γ = 89.92(2)◦

V = 207.9(7) Å3 Z = 2

Comparisons of merelaniite’s crystallographic data with other members of the cylindrite
homologous series are presented in Appendix A.
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Figure 10. Reconstructed precession image of the [001] zone of a single merelaniite whisker (sample
3665LB) obtained with single-crystal X-ray diffraction.

Table 3. X-ray diffraction data (using CuKα) belonging to the Q-subcell of merelaniite. The two most
intense reflections are indicated in boldface type.

h k l d (Å) I

0 0 2 6.14 30
1 1 1 3.96 15
0 0 4 3.01 10
2 0 0 2.965 100
1 1 4 2.444 10
2 0 3 2.384 5
0 1 5 2.230 5
3 1 1 1.852 20
3 1 2 1.790 15
2 2 5 1.582 5
2 3 5 1.360 5

The X-ray diffraction study was coupled with a transmission electron microscope (TEM)
investigation, which was done by means of a JEOL JEM-2010 TEM (Akishima, Tokyo, Japan)
operating at 200 keV and 0.3 pA/cm2 current density. Selected area electron diffraction (SAED)
patterns were obtained with the intermediate lens adjusted to produce cross-over at the back focal
plane. Some samples were prepared by crushing whiskers mechanically in ethanol and allowing
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drops of the mixture to evaporate on a copper TEM grid. In addition, after many failed attempts,
one sample was successfully prepared using a Leica Ultracut UCT ultramicrotome (Leica Microsystems,
Vienna, Austria) on a whisker embedded in epoxy and cut normal to the whisker axis using
a DiATOME diamond knife (DiATOME, Hatfield, PA, USA). High-resolution TEM images were
obtained from crushed and ultramicrotomed samples, and SAED patterns were obtained from the
ultramicrotomed sample.

Table 4. X-ray diffraction data (using CuKα) belonging to the H-subcell of merelaniite. The three most
intense reflections are indicated in boldface type.

h k l d (Å) I

0 0 2 5.94 60
1 0 2 4.05 15
0 0 4 2.968 25
1 1 1 2.673 20
2 0 3 2.272 40
3 0 1 1.829 30
3 1 0 1.596 15
3 1 2 1.542 5
2 0 7 1.448 5
3 0 6 1.350 5
1 1 8 1.305 10
3 2 0 1.201 5
2 1 9 1.115 10

In Figure 11 a selected area electron diffraction pattern of the hk0 layer is presented. The two
centered pseudo-tetragonal and pseudo-hexagonal sublattices are clearly visible (red and yellow circles
refer to the H and Q pseudo-layers, respectively). An estimation of the cell edges of the red centered
cell (Q pseudo-layer) gave a ≈ 5.93 and b ≈ 5.97 Å, whereas the cell edges of the yellow centered cell
(H pseudo-layer) are a ≈ 5.58 and b ≈ 3.21 Å. The electron diffraction pattern down (010) is shown in
Figure 12. A value of ≈12 Å for the c-axis can be measured, which is in agreement with the c-axis of
the 2H polytype of molybdenite (i.e., 12.3 Å [21]). The alternation of the two centered pseudo-layers is
also clearly visible in the high-resolution TEM image shown in Figure 13, and the c-axis of about 12 Å
is confirmed. The undulating curved appearance of the PbS-type and MoS2-type modules stacked
along the (001) is a typical feature of the members of the cylindrite group [22,23] (Figure 14).
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4. Discussion

4.1. Incommensurability of the Two Pseudo-Layers

The question of the long-distance regularity must be related to the question of
semi-commensurability along the modulation direction. Along that direction, the Q and H parameters
are typically in the ratio of two successive integers: for example, cylindrite exhibits the 13Q/12H
match, and franckeite, depending upon the Sn2+ for Pb substitution, shows a match that varies from
12Q/11H for the Sn2+-richest member (“incaite”) up to 16Q/15H for the Sn2+-free member (“potosiite”).

If we calculate the ratio between aH and bQ (equivalent to the cH/cQ in reference [20]), we obtain
0.93055. This leads to a 13Q/14H ratio for merelaniite (77.58 Å with a delta = 0.165 Å), which represents
the first case of nQ < nH. This is obviously due to the small H pseudo-layer in merelaniite because of
the presence of Mo.

4.2. Inferred Crystal-Chemical Formula of the Two Pseudo-Layers

The calculation of the surfaces of the two layers perpendicular to the c-axis leads to the following:
On the basis of sub-systems cell values by single-crystal X-ray diffraction:

SQ = aQ × bQ = 35.32 Å2

SH = aH × bH = 17.51 Å2.

On the basis of sub-systems cell values by powder X-ray diffraction:

SQ = aQ × bQ = 35.47 Å2

SH = aH × bH = 17.50 Å2.

As the two Q and H subcells correspond to centered pseudo-tetragonal and pseudo-hexagonal
lattices, and because we measured a c-axis of about 12 Å (see above), merelaniite should contain
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[2(M2S2)] and [1(M′2S4)] atoms, respectively [24]. For the whole structure, considering one unit
H subcell, which contains [1(M′2S4)] atoms, for the same volume, the Q part will correspond to
([2(M2S2)] × SH/SQ) atoms. As SH/SQ ≈ 0.50 (0.496 and 0.493 from single-crystal and powder
data, respectively), the structural formula of merelaniite can be written as: [2(M2S2)]0.50·[(M′2S4)],
which is consistent with the electron microprobe results yielding a metal to sulfur ratio (M:S) of 2:3.
Recalculation of the formula from the electron microprobe results on the basis of two metal atoms, or,
alternatively, on the basis of five atoms (two cations + three anions) and following the crystal-chemical
preference of the elements usually reported in minerals and synthetic compounds belonging to the
cylindrite group [24], and also assuming V and W are trivalent and tetravalent, respectively, gives

[Q(Pb0.80Sb0.09Bi0.07As0.02V3+
0.02)Σ=1.00][H(Mo4+

0.85V3+
0.15W4+

0.01Cu+
0.01)Σ=1.02]S2.92Se0.06.

Interestingly, as mentioned in the chemistry section, we identified a bimodal composition to
some of the whiskers, which might also be observed optically (Figure 6). After characterizing both
compositions (from a chemical and structural point of view) it is clear there are strong As-enrichments
that cause the bimodality. We thought that this could represent a different mineral than merelaniite but
a recalculation of the average chemistry on the same basis described above led to the following formula:

[Q(Pb0.39As0.29V3+
0.18Bi0.04Sb0.05)Σ=0.95][H(Mo4+

0.95W4+
0.01Cu+

0.01)Σ=0.97]S3.05Se0.03.

Based on the average compositions it therefore appears prudent to conclude that Pb and Mo
always dominate the respective Q and H pseudo-layers, and therefore the As-rich phases do not
deserve the status of being an independent mineral; however, this remains a distinct possibility subject
to further directed compositional studies.
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Appendix A. Relation to Other Species

Merelaniite, Mo4Pb4VSbS15, is a new member of the cylindrite homologous series (Table A1) [18,19].
The series includes the following cylindrite-type minerals (cylindrite, lévyclaudite, abramovite),
and franckeite-type minerals (franckeite, “potosiite”, “incaite”, coiraite). Merelaniite is related to
cylindrite and franckeite by the isovalent substitution 2Sn4+ → 2Mo4+ and the mechanism 2Sn2+ +
Fe + 2Sb→ 2Mo4+ + V + Sb + S. Merelaniite is also related to abramovite by the mechanisms: 2Bi
(in abramovite)→ V3+ + Sb (in merelaniite) and 2SnIn (in abramovite)→ 4Mo + S (in merelaniite).
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Table A1. Comparative data for minerals of the cylindrite homologous series [18,19]. (See references
for details regarding the specific crystallographic setting conventions employed.).

Species Formula (Approximate) Unit Cell Parameters and Major X-ray Reflections
[d in Å and (Relative Intensity)] References

Cylindrite type:

cylindrite FePb3Sn4Sb2S14

Q layer:

[16,17,19,20,23,25]

a = 11.733(5), b = 5.790(8), c = 5.810(5) Å

α = 90.0(2)◦, β = 92.38(20)◦, γ = 93.87(20)◦

H layer:

a = 11.709(5), b = 3.670(8), c = 6.320(5) Å

α = 90.0(2)◦, β = 92.58(20)◦, γ = 90.85(20)◦

Reflections: 5.73 (50) 4.25 (30) 3.85 (100) 3.41 (40) 2.88
(100) 2.30 (30) 2.04 (50) 1.81 (40)

lévyclaudite Cu3Pb8Sn7(Bi,Sb)3S28

Q layer:

[18–20]

a = 11.84(1), b = 5.825(10), c = 5.831(10) Å

α = 90◦, β = 92.6◦, γ = 90◦

H layer:

a = 11.84(1), b = 3.67(1), c = 6.31(1) Å

α = 90◦, β = 92.58◦, γ = 90◦

Reflections: 5.91 (5) 4.06 (30) 3.93 (100) 3.17 (20) 2.95
(20) 2.92 (100) 2.82 (30) 2.068 (30) 2.038 (10)

merelaniite Mo4Pb4VSbS15

Q layer:

(this study)

a = 5.929(8), b = 5.961(5), c = 12.03(1) Å

α = 91.33(9)◦, β = 90.88(5)◦, γ = 91.79(4)◦

V = 425(2) Å3, Z = 4

H layer:

a = 5.547(9), b = 3.156(4), c = 11.91(1) Å

α = 89.52(9)◦, β = 92.13(5)◦, γ = 90.18(4)◦

V = 208(2) Å3, Z = 2

Reflections: 6.14 (30) 5.94 (60) 4.05 (15) 3.96 (15) 3.01
(10) 2.968 (25) 2.965 (100) 2.673 (20) 2.444 (10) 2.272 (40)
1.852 (20) 1.829 (30)

abramovite Pb2SnInBiS7

Q layer:

[26]

a = 23.4(3), b = 5.77(2), c = 5.83(1) Å

α = 89.1(5)◦, β = 89.9(7)◦, γ = 91.5(7)◦

V = 790(8) Å3

H layer:

a = 23.6(3), b = 3.6(1), c = 6.2(1) Å

α = 91(2)◦, β = 92(1)◦, γ = 90(2)◦

V = 532(10) Å3

Reflections: 5.90 (36) 3.90 (100) 3.84 (71) 3.17 (26) 2.92
(33) 2.90 (16) 2.33 (15) 2.19 (18) 2.04 (20) 1.46 (6)

Franckeite type:

coiraite (Pb,Sn2+)12.5As3Fe2+Sn4+
5S28

Q layer:

[24]

a = 5.84(1) Å, b = 5.86(1) Å, c = 17.32(1) Å

β = 94.14(1)◦

V = 590.05(3) Å3, Z = 4

H layer (orthogonal setting):

a = 6.28(1) Å, b = 3.66(1) Å, c = 17.33(1) Å

β = 91.46(1)◦

V = 398.01(6) Å3, Z = 2

Reflections: 5.78 (20) 4.34 (40) 3.46 (30) 3.339 (20) 2.876
(100) 2.068 (60)
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Table A1. Cont.

Species Formula (Approximate) Unit Cell Parameters and Major X-ray Reflections
[d in Å and (Relative Intensity)] References

Franckeite type:

franckeite Fe(Pb,Sn2+)6Sn4+
2Sb2S14

Pb21.74Sn9.34Fe3.95Sb8.08S56.87

Q layer:

[23,27,28]

a = 5.805(8), b = 5.856(16) Å, c = 17.338(5) Å

α = 94.97(2)◦, β = 88.45(2)◦, γ = 89.94(2)◦

H layer:

a = 3.665(8), b = 6.2575(16), c = 17.419(5) Å

α = 95.25(2)◦, β = 95.45(2)◦, γ = 89.97(2)◦

Reflections: 8.632 (13) 5.775 (12) 4.325 (34) 3.458 (100)
2.915 (6) 2.879 (78) 2.160 (8)

“incaite” FePb4Sn2+
2Sn4+

2Sb2S14

“potosiite” FePb6Sn4+
2Sb2S14
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