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Abstract: Backfill is commonly used in underground mines. The quality control of the backfill
is a key step to ensure it meets the designed strength requirement. This is done through sample
collection from the underground environment, followed by uniaxial compression tests to obtain
the Uniaxial Compressive Strength (UCS) in the laboratory. When the cylindrical cemented backfill
samples are axially loaded to failure, several failure modes can be observed and mainly classified
into diagonal shear failure and axial split failure. To date, the UCS obtained by these two failure
modes are considered to be the same with no distinction between them. In this paper, an analysis
of the UCS results obtained on a cemented hydraulic backfill made of alluvial sand at a Canadian
underground mine over the course of more than three years is presented. The results show that the
UCS values obtained by diagonal shear failure are generally higher than those obtained by axial split
failure for samples with the same recipe and curing time. This highlights the importance of making
a distinction between the UCS values obtained by the two different modes of failure. Their difference
in failure mechanism is explained. Further investigations on the sources of the data dispersion tend
to indicate that the UCS obtained by laboratory tests following the current practice may not be
representative of the in-situ strength distribution in the underground stopes due to segregation in
cemented hydraulic backfill.

Keywords: cemented hydraulic backfill; uniaxial compressive strength; failure mode; segregation

1. Introduction

Backfill is commonly used in underground mines to improve ground stability, reduce ore dilution,
increase ore recovery, and improve efficiency of the ventilation system [1]. In most cases, binder is
added and blended with particulate material to form a cemented backfill. The particulate material can
be sand, tailings, or crushed waste rock while the binder can be a cement, slag, fly ash, or a mixture of
them. Water is needed for the hydration of the binder material.
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To ensure safe production and successful application of the backfill, the required strength of the
cemented backfill must be adequately evaluated. This strength can be calculated through the use of
analytical solutions proposed by Mitchell et al. (1982) [2], Li and Aubertin (2012, 2014) [3,4], Li (2014a,
2014b) [5,6], and Liu et al. (2016) [7] for vertical cemented backfill exposures. For horizontal cemented
backfill exposures, analytical solutions have been proposed by Mitchell (1991) [8], but are seldom
used due to the indetermination of several parameters [9–11]. An empirical chart proposed by Stones
(1993) [12] is commonly used in this scenario [13].

Once the required strength of cemented backfill has been evaluated, the optimal recipe to meet the
required fill strength is commonly determined through an evaluation of the UCS of different recipes
(mixtures). Knowing that the strength of cemented backfill depends on several influencing factors
that include binder content, solid (tailings or/and sand) percentage, water content, and curing time,
determination of an optimal recipe may depend on the target (shorter curing time versus lower cement
consumption) and require a lot of laboratory tests [14–23].

When a cylindrical sample of cemented backfill is axially loaded to failure, several modes of
failure can be observed, including diagonal shear (Figure 1a) [24–27], ‘X’ cone-shear (Figure 1b) [28,29],
single (or columnar) split (Figure 1c) [24,26,29–32], and ‘Y’ cone-split (Figure 1d) [24,27,32]. Similar
failure modes have equally been observed in uniaxial compression tests with concrete or cemented
soils [33,34]. The diagonal shear (Figure 1a) and ‘X’ cone-shear (Figure 1b) failure modes can be
classified as failure through diagonal shear. The single split (Figure 1c) and ‘Y’ cone-split (Figure 1d)
are classified as failure by axial splitting. The former means that the sample is submitted to a state
of compression and fails due to the lack of sufficient compressive strength (or shear strength along
the critical planes). The latter implies that the sample is submitted to a stress state of tension along
the vertical plane and fails due to the lack of sufficient tensile strength. As geomaterials usually have
a higher compressive strength than tensile strength [35–43], it can be expected that the UCSes obtained
by axial split failure are lower than those obtained by diagonal shear failure.
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Despite these results being commonly observed in geomaterials (rocks, concrete, etc.), the
distinction between the UCS obtained by axial split and diagonal shear failures of cemented backfill
samples has never been made. All the UCS values are considered in the same way and used together
for calculating the average value of the UCS for the cemented backfill. In this paper, the UCS of
a cemented hydraulic backfill made of alluvial sand will be examined by considering the associated
modes of failure.

2. Tested Materials and Experimental Results

As part of the backfill quality control program at Vale’s Totten Mine, underground sampling
and the measurement of UCS have been completed. Since 2013, cemented hydraulic backfill made
of alluvial sand has been sampled and cured underground in conjunction with backfilled stopes.
When the targeted curing time arrives, samples are brought to the surface and sent to a laboratory
for uniaxial compression tests. The failure modes of each sample have been tracked along with the
associated UCS values.

Cemented hydraulic backfill at Totten Mine is composed of alluvial sand (aggregate), binder,
water, and flocculant at a rate of 20 grams per ton. The sand is extracted from a pit near the mine
site. The use of alluvial sand in the case of Totten Mine is required as the site is located far from the
mill location.

Table 1 illustrates the main physical properties of the normal stored alluvial sand used for the
preparation of Totten Mine backfill. The detailed particle size distribution (PSD) of the alluvial sand
used at Totten Mine is shown in Figure 2, along with the fine and coarse tolerance limits for sand
quality control. The PSD curve represents the sand received by the mine for the preparation of their
cemented hydraulic backfill. Based on the unified soil classification system, the sand in the normal
case is identified as SW-SM (well-graded silty sand; ASTM Standard D2487 2011) [44].

Table 1. Physical properties of the utilized alluvial sand in backfill.

Physical Properties Sand (Normal Case)

Specific gravity 2.72
Bulk density (t/m3) 1.78
Normal water content, w (%) 7–8
Fines content (<20 µm; %) 10.8
D10 (effective particle size; µm) 19.2
D30 (µm) 57.5
D50 (average particle size; µm) 126.9
D60 (µm) 165.4
D90 (µm) 489.5
Coefficient of uniformity Cu = D60/D10 8.6
Coefficient of curvature Cc = D2

30/(D60 × D10) 1.04
Uniformity of graduation U = (D90 − D60)/D50 2.6
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Figure 2. The particle size distribution (PSD) of alluvial sand used at Totten Mine.
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The mineral analysis shows that the sand is constituted of quartz diorite and olivine diabase and
mainly made of nonmetallic and metallic oxides (silicon dioxide, aluminum oxide, ferric oxide, etc.)
with minimal sulphide and phosphide.

The binder used for the backfill is made of 70% slag and 30% Ordinary Portland cement (called
“70-30 NewCem GU”). The chemical compositions of the waste smelting slag are listed in Table 2,
and the characteristic parameters of the final mixed “70-30 NewCem GU” binder are summarized in
Table 3.

Table 2. The chemical compositions of the slag for mixing with Portland cement.

Items SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 SO3

Content (%) 34.6 11.2 0.4 38.2 11.5 0.2 0.4 0.4 2.5

Table 3. The characteristic parameters of the final blended binder.

Items Values

Chemical Requirements, by CSA A3003-13
Sulphur trioxide (SO3), % 1.0
Sulphide sulphur (S), % 0.5

Physical Requirements
Fineness, by CSA A3004-A3-13 and ASTM C204-11

Amount retained on 45 µm sieve, % 3.2
Specific surface (Blaine), m2/kg 464

Autoclave expansion, %, by CSA A3004-B5-13 0.04
Vicat time of setting, initial, min, by A3004-B2-13 285

Uniaxial Compressive Strength, by CSA A3004-C2-13
7 days, MPa 22.2

28 days, MPa 46.8

Water used for the preparation of the cemented hydraulic backfill comes from the water processing
plant at Totten Mine, which is fed partly by water pumped from different underground levels and
nearby ponds.

The cemented hydraulic backfill consisting of fully blended alluvial sand and “70-30 NewCem
GU” binder with a pulp density of 72% solids by weight is delivered to underground stopes through
a borehole and pipelines. Three sand to binder ratios are utilized, depending on the backfill function:
10:1 for the plug and cap pours, and 15:1 or 20:1 for the main body of the backfilled stopes.

Backfill sampling was carried out at the overcut of the stope being filled. Molds made of PVC
pipes 10 cm in diameter and 20 cm in height were put in buckets, which were 10 cm higher than the
PVC pipe molds, as shown in Figure 3. When the backfill slurry reaches full density, the valve assembly
connected with the pipeline was opened to fill the buckets and the PVC pipe molds. Four buckets
were filled separately at controlled intervals to test the uniformity of the backfill and to obtain samples
that are representative of the backfill poured in the stope. The backfill samples in the buckets were
covered and kept in place for curing. At a scheduled curing time (7, 28, and 56 days), buckets were
transported to the surface and the samples were tested in a geotechnical laboratory. Efforts are made
to keep the samples moist to ensure they do not dry out.

In the laboratory, the backfill samples were prepared before being subjected to unconfined
compression tests following the ASTM standard for uniaxial compressive strength of cylindrical
concrete specimens (ASTM Standard C39/C39M 2012) [45]. The preparation included the cutting and
grinding of the samples to obtain the final dimensions, flat and smooth end surfaces. The UCS values
and failure modes were recorded.
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Figure 4 shows the UCS results with different sand to binder ratios and curing days obtained from
2013 to 2015. A total of 330 UCS test results have been obtained and analyzed in this data. The UCS
results are very dispersed and the range of data will be analyzed in the following section.Minerals 2017, 7, 4  5 of 13 
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3. Analysis of the Experimental Results

3.1. Correction Due to Shape Effect

In uniaxial compression testing, the strength of cylindrical samples increases as the height to
diameter ratio decreases [46]. This ratio must have a minimum value of 2 to eliminate end effects
for rock [47], concrete [45], and soil [48]. The results shown in Figure 4 were based on cylindrical
samples whose height to diameter ratios were in some cases less than 2. The UCS values obtained
with the samples having a height to diameter ratio less than 2 need to be subject to correction factors
summarized in Table 4 (ASTM Standard C39/C39M 2012) [45]. Figure 5 shows the UCS results after
the correction due to the shape effect. The results remain very dispersed after the correction.

Table 4. Correction factors for cylindrical samples under uniaxial compression with height to diameter
ratio less than 2 (i.e., H/D < 2) (ASTM Standard C39/C39M 2012) [45].

H/D 2.00 1.75 1.50 1.25 1.00

Factor 1.00 0.98 0.96 0.93 0.87

Note: Use interpolation to determine correction factors for H/D values between those given in the table.
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with a constant pulp density of 72% as a function of curing days with sand to binder ratios (S:B) of
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3.2. UCS Values Accounting for the Failure Modes

Figure 6 shows that the cylindrical samples of the cemented hydraulic backfill submitted to
uniaxial compression test conditions can show a failure behavior by diagonal shear (Figure 6a) or axial
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split (Figure 6b). The experimental results shown in Figures 4 and 5 were obtained with cylindrical
samples loaded to failure without making any distinction between the associated failure modes.
As mentioned earlier, failure through diagonal shear results from a compression stress state exceeding
the shear strength along the diagonal critical plane, while failure by axial split is induced by a tension
stress state exceeding the tensile strength along the vertical plane. As geomaterials usually have
a higher strength in compression than in tension, it is realistic to distinguish the UCS values obtained
by diagonal shear or axial split failure. The experimental results of corrected UCS values shown in
Figure 5 will be presented with a distinction made for the type of failure mode.
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4. Discussion

The appearance and the mechanism of different failure modes observed on cemented backfill
samples under uniaxial compression has been explained by different researchers [46,49–51].
These works can be useful to help understand the failure modes in some special cases, but more
work is needed to fully understand the mechanisms of different modes of failure.

Despite the correction due to the shape effect and the distinction of diagonal shear and axial split
failure modes, the results shown in Figure 7 remain very dispersed. This dispersion may be attributed
to other factors that are discussed below.

4.1. Effect of Ends Flatness in Cylindrical Samples

According to the ASTM standard C39/C39M (2012) [45] for UCS tests on concrete, the two ends
of the cylindrical samples should be cut and ground to a flat and smooth state before completing
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uniaxial compression tests. In practice with cemented hydraulic backfill, this requirement is difficult to
realize, as shown in Figure 9. As the mine backfill usually has a low binder content, the cylindrical
samples usually have a lower strength and piece detachment (Figure 9a) or piece residue (Figure 9b)
can result during the sample cutting process. Furthermore, due to its low strength, the hard sand
particles can be removed during the cutting and grinding process, leading to cavity and rough ends, as
shown in Figure 9c. These rough or even uneven end faces may result in unexpected loading and stress
distribution in the tested samples. In extreme cases, the uneven end faces may result in application
of an axial load which is non-parallel to the axis of the cylindrical samples. In all cases, these errors
during the test procedure can increase and even amplify the dispersion of the experimental data.
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4.2. Effect of Hydraulic Segregation

With hydraulic backfill, segregation is a commonly observed phenomenon, resulting in more
sand at the base and more binder at the top of the samples, or more coarse particles at the bottom
and more fine particles at the top of the samples, as shown in Figure 10. The former (Figure 10a) is
associated with the segregation of binder and sand and the latter (Figure 10b) with the segregation
of coarse and fine sand particles. In all cases, segregation leads to different physical and mechanical
properties from the top to the bottom of the samples. As the segregation is closely related to the particle
size distribution, which may change from time to time and place to place (Figure 2), it is clear that
the dispersion shown in Figures 4 and 5 can partly be attributed to the segregation, but this factor is
difficult to quantify.

For a given backfill, the strength variation with fill layers has been investigated by
Cao et al. (2015) [29]. Their work can be useful to guide the backfilling procedure to minimize the
effect of segregation. Alternatively, the segregation can be reduced or minimized by increasing
the slurry density, adding more flocculant in the backfill, or ultimately changing to paste backfill.
Before any major change, a more pertinent question is if the experimental results, which were obtained
in laboratory tests using samples collected at the stope overcut, represent the true strength distribution
across the whole height of the stopes due to segregation. Future work is needed to clarify this aspect.
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4.3. Particle Size Distribution and Binder Content

The influence of the particle size distribution on the experimental results has been partly discussed
in Section 4.2 in relation to segregation.

Figure 8 shows that the UCS values of the cemented hydraulic backfill samples with a sand to
binder ratio of 10:1 at a curing time of seven days with the shear failure mode is somewhat smaller
than those of the samples with a sand to binder ratio of 15:1. A similar trend has been observed for
the samples with sand to binder ratios of 10:1 and 15:1 at a curing time of seven days with the split
failure mode. These results suggest that additional binder in the backfill provides little strength gain
at the lower seven-day curing time. More work is needed to understand if this is a general trend.
Nevertheless, Figure 8 suggests that cemented hydraulic backfill is stronger with higher binder content
when the curing time reaches 28 and 56 days, respectively.

5. Conclusions

As part of the quality control on the cemented hydraulic backfill made of alluvial sand, samples
have been collected and cured underground in field conditions. At a targeted curing time, the samples
were taken to the surface and sent to a geotechnical laboratory for uniaxial compression testing.
The analyses of the uniaxial compressive strength results obtained for a three year period lead to the
following conclusions:

� The uniaxial compressive strengths obtained by axially loading cylindrical samples to failure by
shear (UCSshear) are generally higher than those obtained by loading the samples to failure by
split (UCSsplit). These results suggest that it is necessary to distinguish the uniaxial compressive
strength obtained by shear from split failure modes. The uniaxial compressive strength of
the cemented backfill can be underestimated by samples axially loaded to failure by split.
These conclusions drawn from experimental tests on cemented hydraulic backfill made of alluvial
sand may be valid for other types of cemented backfill like paste backfill. More work is needed
to confirm this hypothesis. For the cemented hydraulic backfill made of alluvial sand, the ratio
between the uniaxial compressive strength by split (UCSsplit) and that by shear (UCSshear) can
vary between 0.65 and 0.90, with an average value of about 0.80.

� The above conclusion does not mean that split failure is considered as a legitimate failure mode.
It is well known that the failure of homogeneous geomaterials under uniaxial compressions
should be cone shear failure. Split failure observed in many experimental tests is mostly of
a random nature and caused by imperfections in sample preparation or in loading. In such cases,
the test results are mostly erroneous and should not be used for backfill design.
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� Care is needed in sample preparation to ensure that the samples meet the pertinent standard
for UCS testing. The cutting and grinding of samples to ensure flat and smooth end faces is
a particularly sensitive item.

� Segregation is a commonly observed phenomenon in cemented hydraulic backfill that may
significantly contribute to the large dispersion of the UCS data obtained by laboratory tests.
More work is needed to fully understand the variation of the strength with segregation.
Alternatively, the segregation can be minimized by increasing the slurry density, adding more
flocculant in the backfill, changing pouring practice such as continuous pouring or ultimately
changing the hydraulic backfill to paste backfill.

� The segregation of the cemented hydraulic backfill observed with small samples tends to indicate
that segregation can also take place in the stopes filled with the same backfill. More work is
needed to understand the in-situ distributions and evolution of the sand particles and binder
content in the stope environment.

� Future work is required to improve the reliability of the extrapolation procedure by which the
strength of the cemented hydraulic backfill in the stopes is represented by the strength obtained
in the laboratory from samples collected and cured at a much reduced size (scale).
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