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Abstract: This study investigates the flotation performance of a representative hard coal slime
sample (d80 particle size of minus 0.2 mm) obtained from the Prosper-Haniel coal preparation
plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell
refurbished from an old ultrasonic cleaning bath (2.5 L volume) equipped with a single frequency
(35 kHz) and two different power levels (80–160 W) and a sub-aeration-type flotation machine
operating at a stable impeller speed (1200 rpm) and air rate (2.5 L/min). The reagent combination
for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages
(40–300 g/t) with controlling water temperature (20–25 ◦C) at natural pH (6.5–7.0). The batch
coal flotation results were analyzed by comparing the combustible recovery (%) and separation
efficiency (%) values, taking mass yield and ash concentrations of the froths and tailings into account.
It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the
floated products with lower ash values than the conventional flotation despite using similar reagent
dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals
was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic
treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

Keywords: ultrasonic coal flotation; ultrasound; ultrasonics; simultaneous ultrasonic treatment;
cavitation

1. Introduction

Available literature stated that the separate phases of the froth flotation process might be
influenced by mechanical vibrations, by the acoustic wave process, or by a joint manifestation of
these two physical phenomena. Some applications of ultrasonic treatment in mineral processing
especially in flotation and extractive metallurgy, especially hydrometallurgy show that acoustic fields
can produce significant positive impacts on recoveries of valuable products [1].

Ultrasonic energy can be used as a treatment method to enhance grade and recovery in
the froth flotation process, which are also influenced by other operational, material, chemical,
and equipment-related parameters [1]. Previous researchers [2,3] indicated that modifying solid
surfaces, especially physical surface cleaning by help of a cavitation process created by power
ultrasound at certain frequency and time intervals before and during froth flotation might cause
significant changes in the adsorption of collectors on mineral surfaces and accordingly in their
flotation responses.

While previous researchers [4–8] investigated the effects of ultrasonics before the flotation process
for removal of adsorbed layers of reagents from mineral surfaces or emulsification of the reagents,
recent studies [9–18] have concentrated on the effect of ultrasonic treatment during the flotation
process, which is called simultaneous ultrasonic treatment.

Simultaneous ultrasonic treatment causes significant changes in local temperatures and pressures
within the liquid media containing solid minerals and certain reagents at variable dosages during
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flotation. This energy can improve the effectiveness of reagent molecules at solid surfaces and interfaces
due to their more uniform distribution in the suspension and also in enhancement of the activity of the
chemicals used [19].

Power ultrasound is known to create its effect via cavitation bubbles. When power ultrasound
is applied to a liquid in sufficient power, frequency and intensity, the liquid is alternately subjected
to compression and expansion forces giving rise to cavitation bubbles [20]. The application of power
ultrasound into a liquid containing a mixture of solid particles makes the bubbles collapse near a solid
surface, a high-speed jet of liquid is driven into the particles, and this jet can deposit enormous energy
densities at the site of impact [21].

The interaction forces involved in physical adsorption of a reagent molecule during froth
flotation process are weaker than forces involved in chemical adsorption. The physical bond between
reagent molecule and mineral surface can be easily broken by hydrodynamic turbulence created by
ultrasound [22]. In the case of chemical adsorption, the interaction forces between a reagent molecule
and the mineral surface are stronger and cannot be broken by ultrasonication. Increased flotation
recoveries in the presence of ultrasonic treatment could be explained by the cleaning and formation of
micropits on mineral surfaces with the effect of ultrasound.

The introduction of ultrasonic energy into a flotation system could produce changes in the system
and cause a severe change of flotation rates. Some studies indicated that sound irradiation might
change the pH value, surface tension, and oxidation-reduction potential of flotation pulp with a certain
increase in local temperature and pressure. Previous researchers have stated that the application of
ultrasound during flotation, even for a short period, for various minerals such as ilmenite, rutile,
and zircon, had considerably increased the flotation response and had yielded significant increases in
the recovery and grade values of the valuable minerals. These improved values were believed to be
due to the effective cleaning of particle surfaces from film coatings, namely slimes [22–26].

Cao et al. recently investigated the flotation of an oxidized pyrite ore and reported the effects of
ultrasound on the hydrophobicity. They mentioned that the ultrasonication showed opposite effects
by further oxidation of both slightly and heavily oxidized pyrite within a very short time [5].

Videla et al. studied flotation recovery of copper sulfide tailings. They found that the effect of
acoustic cavitation cleans particle surfaces and minimizes slime coatings, facilitating the action of the
reagents with the help of ultrasound [24].

Barry et al. investigated hydroacoustic cavitation (HAC) treatment on the flotation of a nominal
−150 µm Illinois-basin bituminous coal. They reported that cavitation was produced either by
flow through an ultrasonic resonator chamber or enhanced cavitation was produced by initial flow
through a cavitation chamber followed by flow through the ultrasonic unit. Their results indicated
that the desliming of the fines at a −25 µm particle size improved flotation (with 80% ash rejection)
substantially. Removing most of these high-ash fines resulted in less material being carried over into
the froth product [4].

Ghadyani et al. also studied the effect of ultrasonic irradiation as a pretreatment method for
high-ash coal flotation and its kinetics. They applied ultrasonic treatment prior to flotation at different
ultrasonic power levels and periods. Their flotation experiments were conducted based on a two-level
fractional factorial design with six variables: ultrasound intensity, collector dosage, conditioning time,
pH, rotor speed, and solid content. Their optimized parameters were reported as follows: ultrasound
intensity, 30 W/cm2; 1500 g/t collector, 11 min of conditioning time, pH = 7.5, 800 rev/min of rotor
speed, and 10% solid content. They concluded that their kinetic flotation experiments were 10% faster
using ultrasonic conditioning in comparison with conventional conditioning [8].

The present article covers the further investigations on simultaneous hard coal flotation tests
by studying floatability of freshly obtained finely sized hard coal samples supplied from the
Prosper-Haniel coal preparation plant located in Bottrop, in the Ruhr Region of Germany. The tests
were performed by use of a newly designed flotation cell refurbished from an ultrasonic bath with a
single frequency and two different power levels and a sub-aeration-type flotation machine.
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2. Materials and Methods

The present hard coal slime samples with approximately 10–12% solids in pulp containers were
representatively sampled from the plant. A simplified coal preparation flowsheet of the plant and the
point where the current samples were taken is shown in Figure 1. The sample contains finely sized
coals from the entrance of the flotation feed bank at the plant.

Table 1 presents the particle size distribution, calorific value, ash, and sulfur concentrations of the
hard coal slime samples on a dry basis.
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Figure 1. A simplified flowsheet of the Prosper-Haniel Coal Preparation Plant.

Table 1. Properties of the hard coal slime sample according to particle size fractions.

Particle Size Fractions (mm) Weight (%) Heat Value (kcal/kg) Sulfur (%) Ash (%)

+0.500 3.25 8153.24 0.84 3.93
−0.500 + 0.355 5.25 7950.22 0.90 5.53
−0.355 + 0.200 10.75 7239.66 0.86 7.83
−0.200 + 0.100 12.75 6510.70 0.87 14.65
−0.100 + 0.063 7.75 5662.56 0.93 15.96
−0.063 + 0.040 8.13 5652.53 1.04 16.61

−0.040 52.13 3038.86 1.19 46.21
Total (Feed) 100.00 4935.79 1.04 29.80

In Table 1, it is seen that the d80 particle size of the sample is below 0.200 mm, while the d50

particle size (median value) of the sample is around 0.040 mm. The quality of the finer particle size
fractions is lower than the coarser ones. Coal properties were measured according to DIN-51700
standard, and it seems that the heat value and sulfur concentrations of the coal sample are acceptable
for further industrial use if the ash values can be reduced to certain levels (below 10%).
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The coal flotation reagent was chosen as Ekofol-440 (Ekof, Bochum, Germany), which is a
commercially used oily collector and frother mixture consisting of aliphatic alcohols in the C6 to
C10 range, as well as phenols and phenol derivatives.

Coal flotation experiments were conducted by use of a re-designed flotation cell refurbished
from an existing ultrasonic cleaning bath (Retsch) with a 2.5 L volume equipped with a single
frequency (35 kHz) and two different power levels (80–160 W) and a sub-aeration-type flotation
machine (Humboldt Wedag, Cologne, Germany) equipped with a stable impeller speed (1200 rpm)
and air rate (2.5 L/min). Figure 2 shows the photo of the re-designed flotation cell as well as some
auxiliary equipment for all experiments.
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Figure 2. A photo of the re-designed flotation cell (1. Refurbished ultrasonic bath used as a flotation
cell; 2. Impeller of the flotation machine; 3. Air valve; 4. Electrical mains; 5. Froth collection pan;
6. Camera).

The ultrasonic generator of the bath was run at 100% of total output power during all stages of
flotation, i.e., conditioning and aeration. By using the whole cell volume, total energy use for each
flotation trial could be calculated as 30 and 60 W/L.

Flotation operation parameters were chosen according to the DIN-22017 [27] standard procedure,
with conditioning (5 min) and flotation aeration times (a total of 6–7 min with 1 min intervals)
separately, and a variable amount of Ekofol-440 reagent (dosage of 40–300 g/t) as a coal flotation
collector–frother combination. Bottrop-mine-site local water as sample was in original pulp form with
approximately 10–12% solids at ambient temperature (20–25 ◦C) and natural pH (6.5–7.0).

3. Experimental Results

Flotation tests can be categorized into different groups of conventional (no ultrasound) and
simultaneous ultrasonic flotation experiments (with power levels of 30 and 60 W/L). While the main
parameter was the ultrasonic power per volume, the other flotation variables, such as impeller speed,
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air rate, wash water regime, and time) were kept constant at each experiment for ease of comparison
and evaluation of the results.

The purpose of these tests was to demonstrate and to clarify the yield and combustible recovery
differences between conventional and simultaneous ultrasonic flotation tests. The batch flotation
results were analyzed by comparing the combustible recovery and separation efficiency values taking
yield and ash concentrations of the products into account. These values were calculated according to
the following formula [14,28,29]:

Combustible Recovery = [C × (100 − c)/F × (100 − f)] × 100
Separation Efficiency = C × 100 × {[(100 − c) − (100 − f)]/[(100 − f) × f]}
F: Weight of coal feed (%)
C: Weight of clean coal (%)
f: Ash of coal feed (%)
c: Ash of clean coal (%)

3.1. The Effects of Ultrasound on Combustible Recovery and Separation Efficiency

The conventional and ultrasonic coal flotation results were compared according to combustible
recovery and separation efficiency values as well as ash concentrations of floats and tails with increase
in reagent consumption as separate graphs in Figure 3.

It is clearly seen from Figure 3 that increasing reagent dosage from 40 g/t to 300 g/t drastically
increased combustible recovery from 20% to over 90% levels in conventional flotation conditions,
but separation efficiencies seemed to reach from 20% to 60% levels. This may be due to the increase in
ash concentrations of both the tailing and float products collected into the froths as reagent dosage
increased. It may be said that the optimal reagent dosage in conventional flotation conditions can
be around 120–125 g/t because acceptable recovery (over 90% combustible recovery and over 70%
separation efficiency) and ash concentrations of the flotation products (over 75% ash for the tailings
and below 10% ash for the froths) were achieved.

When simultaneous ultrasonic treatment was applied, combustible recovery and separation
efficiency values were clearly affected by the achievement of acceptable recovery and ash
concentrations of the products, even though nearly half of the reagent dosage of the conventional
conditions was consumed. The optimal reagent consumption could be seen around 95–100 g/t in order
to achieve acceptable results. However, varying ultrasonic power levels from 30 to 60 W/L does not
necessarily change the optimal reagent dosage or the acceptable values for flotation products.
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3.2. Effects of Ultrasound on Particle Size Distribution

In order to understand whether simultaneous ultrasonic treatment affected the particle size
distribution of the froth product, fractional and cumulative particle size distributions of the froth
products from the conventional and simultaneous ultrasonic coal flotation tests were measured by
sieving. Figure 4 shows the comparison of the particle size distributions of the original feed with
floated coals according to simultaneous ultrasonic treatment.
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It is seen from Figure 4 that the particle size distribution was affected by simultaneous ultrasonic
treatment. As shown in Table 1 as well, the d50 value was around 0.040 mm. This value increased to
around 0.060 mm during conventional flotation, and 0.070 and 0.080 mm after low and high ultrasonic
treatment, respectively. This may be due to the removal of a certain amount of finely sized ash-forming
clays after flotation. It is interesting to note that applying and increasing the simultaneous ultrasonic
treatment from 30 to 60 W/L may have caused agglomeration of coal particles in the froths despite the
fact that ultrasound may cause size reduction as power levels increase.

4. Discussion and Conclusions

The results from the current study can be summarized as follows:
Simultaneous ultrasonic treatment apparently decreased the optimal reagent dosage from 120–125 g/t

to 95–100 g/t due to physical surface cleaning, improving contact between collector–frother and coal
particles. Within the optimal reagent dosage, over 90% combustible recovery and 70% separation
efficiency values were achieved during this study.

It was observed that froth or air bubble sizes were uniformly distributed inside the flotation cell
and tended to become finer during ultrasonic flotation tests, as seen in Figure 5.
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Temperature and pH levels were also controlled during the experiments. While the final
temperature increased a little bit with time and ultrasonic power level, pH did not seem to fluctuate.
As coal flotation does not continue more than 5 min, an increase in temperature and pH value is not
thought to have a huge impact on the final results.

The particle size distribution was also affected due to simultaneous ultrasonic treatment as the
d50 values of the froth products were higher than the feed. This may be due to the removal of a
certain amount of finely sized ash-forming clays during ultrasonic coal flotation, causing a certain
degree of agglomeration of the coal particles in the froth products. It was found that the aggregate
size in the froth increased after ultrasound treatment, but it also cleaned the coal surface by removing
slime coating. This may be because of, compared to the physical coating of hydrophilic solids on
hydrophobic coal surfaces, the much stronger interaction between hydrophobic coagulation between
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coal particles and aggregates of coal-tiny bubbles generated by ultrasound. The applied ultrasound
intensity was just between the range that was stronger than the hydrophilic slime coating on coal, but
weaker than the strength of coal aggregates and coal-tiny bubble aggregates.

These conclusions imply that the positive effects of the simultaneous ultrasonic treatment are
mainly due to physical cleaning of very finely sized ash-forming clays due to hydrodynamic cavitation
and other related forces. If the cell volumes are increased for possible scale-up, the kinetic coal flotation
date are collected, and the geometry of the ultrasonic transducers is modified, then more information
may be revealed before a feasibility study is conducted for the possible future industrial use. In future
work, investigation of the effects of acoustic cavitation due to ultrasound is also planned.
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