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Abstract: Olympic Dam is a world-class breccia-hosted iron-oxide copper-gold-uranium ore deposit
located in the Gawler Craton, South Australia. It contains elevated concentrations of rare earth
elements (REE) which occur as the REE minerals bastnäsite, synchysite, florencite, monazite, and
xenotime. This is the first study to focus on the mineralogy and composition of the most abundant
REE mineral at Olympic Dam, bastnäsite, and subordinate synchysite. The sample suite extends
across the deposit and represents different sulfide mineralization styles (chalcopyrite-bornite and
bornite-chalcocite) and breccias of various types, ranging from those dominated by clasts of granite,
dykes, and hematite. The REE-fluorocarbonates (bastnäsite and synchysite) typically occur as
fine-grained (<50 µm) disseminations in Cu-Fe-sulfides and gangue minerals, and also within breccia
matrix. They are also locally concentrated within macroscopic REE-mineral-rich pockets at various
locations across the deposit. Such coarse-grained samples formed the primary target of this study.
Three general textural groups of bastnäsite are recognized: matrix (further divided into disseminated,
fine-grained, and stubby types), irregular (sulfide-associated), and clast replacement. Textures are
largely driven by the specific location and prevailing mineral assemblage, with morphology and grain
size often controlled by the associated minerals (hematite, sulfides). Major element concentration
data reveal limited compositional variation among the REE-fluorocarbonates; all are Ce-dominant.
Subtle compositional differences among REE-fluorocarbonates define a spectrum from relatively
La-enriched to (Ce + Nd)-enriched phases. Granite-derived hydrothermal fluids were the likely
source of F in the REE-fluorocarbonates, as well as some of the CO2, which may also have been
contributed by associated mafic-ultramafic magmatism. However, transport of REE by Cl-ligands
is the most likely scenario. Stubby bastnäsite and synchysite may have formed earlier, coincident
with hydrothermal alteration of granite releasing Ca from feldspars. Other categories of bastnäsite,
notably those co-existing with sulfides, and reaching the top of the IOCG mineralization at Olympic
Dam (chalcocite + bornite zone) are relatively younger. Such an interpretation is concordant with
subtle changes in the REE patterns for the different categories. The common association of bastnäsite
and fluorite throughout the deposit is typical of the hematite breccias and can be deposited from
neutral, slightly acidic fluids (sericite stability) at T ≈ 300 ◦C.
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1. Introduction

The >10,000 million ton Olympic Dam Cu-U-Au-Ag deposit [1] is the largest iron oxide copper
gold (IOCG)-type deposit in the world, and by far the largest of several deposits and smaller prospects
within the Gawler Craton. Rare earth elements (REE) are prominent components of many IOCG
systems (e.g., [2,3]). Approximate concentrations of the light REE (LREE) and heavy REE plus
yttrium (HREE + Y) within the Olympic Dam total resource are 3053 ppm and 110 ppm, respectively.
The deposit thus represents a global-scale anomaly with respect to REE. Despite this considerable
endowment, no REE are currently recovered at Olympic Dam, or elsewhere in the Olympic Cu
Province. This is primarily due to relatively low REE grades, small grain size of host minerals, their
dissemination throughout the deposit, and the dominance of LREE over the more economically
attractive HREE. Nevertheless, the distribution and mineralogy of REE in the deposit are of major
interest and potentially significant for reconstructing ore genesis and regional-scale exploration with
respect to potential future exploitation.

The fluorocarbonate bastnäsite [REE(CO3)F] and florencite [REEAl3(PO4)2(OH)6] form the
two most prominent REE-minerals at Olympic Dam. They were first identified and described by
Roberts and Hudson [4], who noted the good correlation between concentrations of REE and Fe, Cu,
Au, U, and F. Oreskes and Einaudi [5] highlighted REE enrichment at Olympic Dam and included brief
descriptions of four major REE-minerals (bastnäsite, florencite, monazite, and xenotime), on which
Lottermoser [6] provided additional description. The most recent review of the Olympic Dam deposit [7]
refers to an additional REE-fluorocarbonate, synchysite [CaREE(CO3)2F], as well as REE-Al-bearing
phosphate-sulphates of the beudantite group. There has, however, been no prior systematic study of
REE-minerals from Olympic Dam, with respect to either petrography, relationships with other minerals,
or with respect to chemical composition and variation. This is despite much recent work providing
detailed description of other REE-carriers at Olympic Dam, including the U-minerals (uraninite,
brannerite, and coffinite) [8,9], apatite [10,11], and feldspars [12,13]. These contributions have helped
understand REE distributions at the deposit-scale, and allowed insights into deposit formation.

In this contribution, we address the petrography and chemical composition of the REE-
fluorocarbonates, bastnäsite and synchysite, from the Olympic Dam orebody. Bastnäsite is by far
the most abundant discrete REE-mineral, and is found throughout the orebody. We have aimed at
describing the occurrence of bastnäsite and subordinate synchysite, including samples containing
anomalously high REE concentrations and/or macroscopic REE-minerals. Petrographic description
is followed by analysis of their compositions, in terms of both major oxides and trace elements.
The results permit an evaluation of the occurrence of the dominant REE-minerals at Olympic Dam,
as well as insights into the geochemical behavior of REE and the potential source(s) of these elements.

2. Background

2.1. REE-Fluorocarbonate Minerals

Rare earth element fluorocarbonates of the bastnäsite-synchysite group (BSG) are defined as
mixed-layer compounds with hexagonal and rhombohedral symmetry in which REE- and Ca-bearing
layers with various stacking arrangements can adapt to any intermediate composition between
the end-members bastnäsite [REE(CO3)F; B-slab] and synchysite [CaREE(CO3)2F; S-slab] [14–16].
However, there are only two other named minerals within the group: parisite (BS); and röntgenite
(BS2), as well as a handful of BnSm polytypes (n, m-number of B and S slabs, respectively) defined
only as long-range stacking sequences (observed over hundreds of nm), e.g., B2S, based on TEM
investigations, e.g., [15,17,18]. Monoclinic symmetry is considered for parisite and synchysite based
upon refinement of single crystal studies [19,20]. The stability of such mixed-layer compounds is
useful for tracking the thermodynamic conditions of ore deposition [21,22].

The recognition of the low-temperature hydroxyl-bastnäsite group indicates that bastnäsite
can accommodate some OH in place of F, before altering structurally [23]. The completeness of
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solid solution and the stability of bastnäsite with intermediate OH–F composition are, however,
questionable [24,25]. A further group is the REE-oxyfluorides (e.g., haleniusite [REEOF]) that may
form at high-temperature as a breakdown product of bastnäsite [22,26].

The REE-fluorocarbonates are typically LREE-enriched and the dominant minerals making up
global LREE reserves, e.g., [22].

2.2. Olympic Dam Mineralogy

The Olympic Dam deposit is located 520 km NNW of Adelaide, South Australia, on the Western
Gawler Craton. The Olympic Dam deposit is contained completely within the Olympic Dam Breccia
Complex (ODBC; Figure 1), hosted in the Roxby Downs Granite (RDG) within the greater Gawler
silicic large igneous province (SLIP; [27]). The main mineralizing event is interpreted to have taken
place at ~1590 Ma [28–31], coincident with RDG emplacement.

The geological setting and mineralogy of the Olympic Dam deposit have been described in detail
elsewhere, e.g., [7]. The dominant minerals in the ODBC are hematite, quartz, sericite, feldspars, barite,
fluorite, siderite, chlorite, pyrite, chalcopyrite, bornite, and chalcocite. The REE-minerals make up
a total of ~0.18 wt % of the deposit: bastnäsite (~0.0833%), florencite (~0.066%), monazite (~0.0184%),
synchysite (~0.0124%), and xenotime (~0.0045%) from modal mineralogy based on a 10,000 sample
Mineral Liberation Analysis (MLA) dataset [7]. Along with the discrete REE-minerals, REEs are also
present in solid solution within various abundant common minerals, including apatite, brannerite,
coffinite, uraninite, thorite, uranothorite, and zircon [7,8,10].

The concentration of many elements, including REE, correlates with total whole-rock Fe
concentration across the deposit [7]. The abundance of REE is broadly coincident with copper sulfide
mineralization, and correlates positively with Fe wt %, increasing towards the center, although depleted
in the Fe-dominant, sulfide-poor deposit core. REE-minerals and Cu-(Fe)-sulfides are often associated
with one another on the scale of individual polished sections [5,7].

The two primary REE-fluorocarbonates at Olympic Dam are bastnäsite and synchysite. Bastnäsite
accounts for 2.5% of all carbonates, while synchysite represents 0.4%. The other carbonates are siderite,
ankerite, and dolomite-calcite, in order of decreasing abundance [7,32]. Two other REE-fluorocarbonates,
parisite and an unnamed compound B2S (these have Ca content lying intermediate between bastnäsite
and synchysite), have been identified distal to the deposit within the RDG [13,33].

3. Sampling and Analytical Methods

3.1. Sampling

The sample suite analyzed here includes 20 specimens collected from diamond drill core located
across the orebody (Table 1, Figure 1) and were originally collected as part of an earlier project [34]
to characterize the REE minerals. Samples were identified, and subsequently sampled, by querying
the BHP Olympic Dam drill core assay database for anomalously high REE drill core intersections
(see [7]). While anomalous, they are invaluable for this study of REE mineralogy as the majority of
REE-minerals are typically fine-grained and disseminated throughout the deposit and often intergrown
with other minerals making microanalysis difficult. X-ray diffraction (XRD) was carried out by CSIRO
(in Adelaide) on each of the high-REE drill core intervals to determine the major mineral composition
(Supplementary Table S1). Each sample was mounted in epoxy as a one-inch diameter polished block.

The samples were taken from lithologies logged as: (1) breccias containing dyke clasts; (2) granite-
rich breccias; (3) hematite-rich breccia; and (4) sericitized dyke (Table 1). The “breccias containing dyke
clasts” are zones of breccias with associated undifferentiated mafic dyke clasts; these breccias have
a recognizable mafic component which has survived alteration. Such breccias occur across the deposit,
with the sample suite including representative examples from the NW arm, central, and eastern edge
of the deposit. The “granite-rich breccias” are breccia zones dominated by granite breccia clasts which
occur across the deposit; samples include examples from the NW arm, central, and eastern edge
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of the deposit. The “hematite-rich breccias” contain abundant hematite as both clasts and matrix.
The samples of this lithology are derived from the center and eastern edge of the deposit. Sericitized
dykes are recognized as paragenetically early within the deposit and are highly altered; the dyke
sampled in this study is located towards the far NW edge of the resource.
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3.2. Analytical Methods

All microanalytical work was undertaken at Adelaide Microscopy, The University of Adelaide.
Each polished block was examined and imaged using a reflected light optical microscope and using
a FEI Quanta 450 Field Emission Gun (FEG) scanning electron microscope (SEM) (FEI, Eindhoven,
The Netherlands) equipped with a silicon-drift detector energy-dispersive X-ray (EDAX) spectrometer.
Quantitative compositional element data were acquired using a Cameca SX-Five electron probe
microanalyzer (EPMA) (Cameca, Paris, France), supplemented with trace element determinations
by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) (RESOlution-LR ArF
excimer laser ablation system, Australian Scientific Instruments, Canberra, Australia, coupled to
an Agilent 7700x Quadrupole ICP mass spectrometer; Agilent Technologies, Santa Clara, CA, USA).
The latter method proved valuable to obtain quantitative concentration data for elements present in
low abundance, including heavy REE, U, Th, and Pb. Full details on the two analytical methods can
be found in Supplementary Material 1, Tables S2 and S3 (EPMA), and Supplementary Material 2 and
Table S4 (LA-ICP-MS).
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Table 1. Summary description and mineralogy of samples discussed in this study.

Lithology
Sample Location

Brief Sample Description 1

REE Fluorocarbonate Occurances

Bastnasite

Synch-Ysite
Matrix Irregular

Sulfide
Associated

Clast
Replace-MentArea Drill Hole Sample

No.
Core

Depth (m) Stubby Cement Dissem-Inated

Breccias
containing
dyke clasts

NW
arm

RU34-3829

RX6709 72.8–73.0
Strong Bst matrix zone with clasts of Ser and Chl. Around
Bst zones are Hm dominate zones with Hm as matrix and
clasts with Ser-Chl. Rt and Zr present.

X

RX6710 73.6–73.7
Hm is the major mineral, present in clasts and with strong
lineaments in matrix. Distinct zones with abundant
angular-rounded clasts of Ser-Chl. Zr present.

X

RX6711 74.7–74.8

Strong foliation across the sample. More fine-grained
sample of mostly Ser with Chl, few and small clasts, mostly
composed of Hm. Flo occurs along “pressure shadows”
around mineral grains. Rt and Zr present.

X

RU41-2571 RX6728 174.8–174.9 Mostly Hm with “crackle” Bar veinlets with Bst around
clasts and Hm. Some clasts of Hm, Qz, and Ser. X

East
edge

RU33-159 RX6714 66.3–66.4
Sample dominated by Hm as clasts and matrix with Ser.
Hm makes rounded thick rims around cores of Ser and Bar.
Bst concentrated in light-colored zone on edge.

x X X

RU37-7354 RX6723 4.3–4.4

Bst occurs as blades in the matrix, both disseminated and
abundant in distinct zones, and in relict clasts. Abundant
clasts of mostly Qz in sample, rounded-angular, all sizes.
Orange areas on hand sample are mostly Qz + Hm.

x X

Central

RU34-454 RX6716 82.9–83.0
Very abundant Bst throughout sample, concentrated in
more fine-grained conduit, as matrix and clast replacement.
Around Bst zone is mostly Hm as clasts and matrix.

X x

RU45-2661 RX6727 51.8–51.9
Chaotic sample with blocky zones of fine grained Ser and
Hm matrix. Other areas of breccia conduits with abundant
clasts of Qz, Hm, sulfides, and Bar.

X x

Granite-rich
breccias

East
edge

RU3-558 RX6712 23.7–23.8 Clasts are mostly Qz with some Bar and Hm, rounded to
angular. Ser matrix. Rt and Zr present. x

RU4-105 RX6715 12.2–12.3
Abundant clasts, rounded to angular, matrix supported
heterolithic breccia but clasts mostly of Qz and Hm, matrix
is microbreccia and Ser.

x

Central RU3-954 RX6713 70.1–70.2
Hm abundant as matrix and clasts. Other clats of sulfide,
Qz, and Ser. Bn vein. Lacking pervasive disseminated bast
in the matrix, Flo is present instead. Rt present.

X
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Table 1. Cont.

Lithology
Sample Location

Brief Sample Description 1

REE Fluorocarbonate Occurances

Bastnasite

Synch-Ysite
Matrix Irregular

Sulfide
Associated

Clast
Replace-MentArea Drill Hole Sample

No.
Core

Depth (m) Stubby Cement Dissem-Inated

Granite-rich
breccias

NW
arm

RU31-751

RX6717 90.3–90.4
Large cross cutting vein of Fl Abundant Qz clasts of ranging
size, rounded to angular. Bst in matrix concentrated in
localized zones, otherwise Ser and Hm. Rt and Zr present.

X x

RX6718 90.8–91.0
Similar to above. Bst mostly occurs as fine-grained blades
concentrated in zones as the matrix. More abundant
irregular Bst “clumps”. Zr and Rt present.

X x

RU31-767 RX6719 5.3–5.4

Zone of Qz clasts with strong veinlet features. Other zone
dominated by Hm with less defined directional features.
Fine grained blade Bst as matrix around fine-grained
rounded Qz clasts.

X x

Hematite-
rich breccia

Central RU40-1407

RX6720 19.0–19.2

Primarily composed of coarse-grained Hm with a range of
textures. Cluster of clasts of rounded to angular Fl and
minor Qz and Cp/Bn. Bst matrix in distinct veinlet zone
with Cp and Bn.

X

RX6721 19.4–19.5
Strong linear zones from veins of Hm and Ser with Cp-Bn
between bands of Fl clasts with matrix of Ser, Hm, Bst, and
Cp-Bn.

X

RX6722 19.7–19.8

Matrix supported; abundant clasts, rounded to angular,
composed primarily of either Fl, Qz, and Cu-(Fe) sulfides in
matrix of blade Hm. Rare irregular Bst. Fl clasts are the
largest.

X

East
edge

RU38-2994 RX6725 92.8–92.9
Heterolithic clasts and clasts of mostly Qz and Hm in
microbreccia of mostly Ser with also fine-grained bladed
Hm and Bst.

x X

RU38-2685 RX6726 77.1–77.3
Clasts of mostly Qz, Ser, Hm, and Bst. Microbreccia matrix
of fine-grained Hm blades and Ser with veinlets and
lineation around clasts. Rt and Zr are present.

x X X

Sericitized
dyke

NW
arm RU41-5181 RX6724 183.7–183.8

Bst in distinct zones in darker red areas. Fine grained Bst in
matrix to massive clumps. Clumps are dirty with possible
faint zoning from inclusions of Hm and Ser but mostly
irregular. Some distinct zones of Flo with distinct
hexagonal textures with Ser in shape. Fine grained irregular
Bst in Ser around Flo.

X x

1 Mineral abbreviations: Hm—hematite; Qz—quartz; Chl—chlorite; Fl—fluorite; Bar—barite; Flo—florencite; Bst—bastnäsite; Ser—sericite; Cp—chalcopyrite; Bn—bornite; Cc—chalcocite;
Rt—rutile; Zr—zircon. XRD analysis of major minerals of sample areas are included in Supplementary Table S1. X—major, x—minor.
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4. Petrography

The occurrence of discrete REE-minerals at Olympic Dam is extremely varied but they can be
generally typified as fine-grained (<50 µm), and occurring as disseminations with sulfide and gangue
minerals throughout all ore zones in the deposit. They can, however, also be locally concentrated to
macroscopic REE-mineral rich pockets which are described in detail here.

The various lithologies represented in this study display mineralogical and textural differences
across the sample set (Table 1, Supplementary Figure S1). “Breccias containing dyke clasts” are
generally hematite–sericite dominant with variable to high abundance of quartz or bastnäsite, and can
also contain florencite. The sulfide assemblage in these samples mostly comprises bornite and
chalcocite. “Granite-rich breccias” can be recognized from their color and bulk composition and
typically contain trace amounts of Cu-(Fe)-sulfides (chiefly bornite and chalcocite). Florencite is a minor
but persistent component of these samples. The “hematite-rich breccia” is represented by two domain
types, one dominated by hematite and fluorite; the second domain contains no fluorite but more
abundant quartz and sericite with hematite. Fluorite occurs either as clasts, agglomerated or evenly
distributed, or as veinlets (Supplementary Figure S1) within the hematite-sericite matrix. Bastnäsite and
sulfides (chalcopyrite-bornite) are present in variable amounts within both domains. The sericitized
dyke sample is aptly named as it comprises ~78% sericite with abundant bastnäsite and some hematite,
minor florencite, but no Cu-(Fe)-sulfides. All samples contain minor amounts of uranium minerals
(uraninite and subordinate brannerite and coffinite) and a variety of other accessories, including
cobaltite (CoAsS), altaite (PbTe), hessite (Ag2Te), löllingite (FeAs2), native copper, and gold (electrum).

4.1. Bastnäsite

In these samples bastnäsite occurs in three main forms: within the matrix, as irregular grains
associated with sulfides, and replacing breccia clasts (Figures 2–5).
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brannerite (Brn) and chalcocite (Cc) are enclosed by bastnäsite cement (sample RX6719). 

Figure 2. Backscatter electron (BSE) images showing textural aspects of fine-grained matrix bastnäsite:
(a) Fine-grained bladed matrix bastnäsite (Bst) concentrated along boundaries of other gangue minerals
(quartz-Qz, sericite-Ser) in the breccia matrix (sample RX6717); (b) Platy bastnäsite on hematite (Hm)
and interstitial between quartz (sample RX6719); (c) Detail of (b) showing fine-grained bladed bastnäsite
(white) interstitial to quartz with hematite; (d) Aggregated fine-grained matrix bastnäsite as a cement
for other minerals (fluorite-Fl, hematite, sericite) within the breccia. Minor brannerite (Brn) and
chalcocite (Cc) are enclosed by bastnäsite cement (sample RX6719).
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Hm-hematite; (d) Detail of domain shown by white box on (c). Bornite displays lamellar exsolution 
of chalcopyrite. Uraninite is included in, and interstitial to bastnäsite. 

Figure 3. BSE images showing textural aspects of stubby matrix bastnäsite: (a) Individual stubby
bastnäsite (Bst). Black line outlines pattern of hematite (Hm) and sericite (Ser) inclusions (sample
RX6728). Chl-chlorite; (b) Stubby bastnäsite along margins of cavity with open space filled by sericite
(sample RX6728); (c) Stubby bastnäsite forming a cement to other matrix minerals (sample RX6710);
(d) Zircon (Zr) enclosed and partially replaced by bastnäsite cement (sample RX6709).
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Figure 4. BSE images showing textural aspects of sulfide-associated bastnäsite: (a) Bastnäsite (Bst)
with interstitial chalcopyrite (Cp) and bornite (Bn). Note scalloped boundaries between sulfides and
bastnäsite (sample RX6720). Cof-Ur: uraninite with rim of coffinite, Qz-quartz, Ser-sericite; (b) Detail
of domain shown by white box on (a). Discolorations in bastnäsite are fine inclusions of hematite and
sericite; (c) Patchy, subhedral bastnäsite in matrix and within bornite (Sample RX6721). Fl-fluorite,
Hm-hematite; (d) Detail of domain shown by white box on (c). Bornite displays lamellar exsolution of
chalcopyrite. Uraninite is included in, and interstitial to bastnäsite.
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Figure 5. BSE images showing petrographic aspects of clast replacement bastnäsite: (a) Bladed
aggregates of bastnäsite psuedomorphing the outline of a replaced clast (sample RX6726).
Qz-quartz, Cc-chalcocite, Bn-bornite, Hm-hematite; (b) Feather-like bastnäsite with hematite (sample
RX6713); (c) Bastnäsite forming a cement around hematite within breccia clast (sample RX6723);
(d) Coarse-grained bastnäsite with hematite inclusions; arrows indicate brighter bands, which may be
richer in HREE or contain more F and less CO3 (sample RX6714).

4.1.1. Matrix Bastnäsite

Bastnäsite in the matrix is the most varied of the bastnäsite occurrences in terms of grain size,
abundance, and morphology. Breccias with matrix bastnäsite can be either clast- or matrix-supported.
The appearance of both types and bastnäsite growth patterns are suggestive of high transient porosity,
which is preserved in some domains. The most common and pervasive form of bastnäsite across
the entire deposit is fine-grained (1–50 µm-sized) disseminations with morphologies ranging from
blades to laths and irregular grains. Although pervasively distributed throughout the breccia matrix,
bastnäsite may reach high abundance in the matrix within restricted breccia domains. For example,
aggregates of bladed bastnäsite are locally concentrated along the boundaries between other gangue
minerals in the breccia matrix (Figure 2a). Thin, acicular, or platy bastnäsite outgrow coarser aggregates
of hematite, or form an interstitial network between quartz grains (Figure 2b,c). Exceptionally, as matrix
bastnäsite becomes most abundant, it can appear as a fine-grained, aggregated cement for other
minerals and/or clasts within the breccia (Figure 2d). In such cases, the clasts can contain a variety of
other minerals including fluorite, hematite, U-minerals, and Cu-(Fe)-sulfides.

The fine-grained matrix bastnäsite is most pervasive in samples from the NW arm and central
parts of the deposit consisting of breccias with granite or mafic clasts. In these samples, the bastnäsite
matrix is concentrated within distinct, mm-scale, relatively porous zones that may represent pathways
with enhanced permeability allowing greater fluid interaction (Supplementary Figure S1).

A second category of matrix bastnäsite occurs as stubby, coarser (tens to hundreds of µm in size)
grains with euhedral tendency (Figure 3). Marked variations in grain size can co-exist whereby single,
coarser grains feature minute inclusions and replacement by other gangue minerals (sericite, hematite),
with which the smaller bastnäsite is intimately associated (Figure 3a). Such textural relationships
suggest different generations of stubby bastnäsite formed during cycles of mineral growth/fluid
percolation throughout the breccia matrix and around cavities (Figure 3b). Stubby bastnäsite is also
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seen as more massive accumulations, forming a type of composite cement together with minor gangue
minerals as part of the breccia matrix (Figure 3c,d). In such cases, the bastnäsite contains abundant,
minute inclusions of a wide range of minerals, including sericite ± chlorite, hematite, as well as
florencite, and occasional U-minerals (Figure 3c). Such inclusions can define grain-scale zonation,
or growth stages within the stubby bastnäsite. These inclusions can result from replacement of
pre-existing minerals during episodes of brecciation and milling such as seen in the case of magmatic
zircon (Figure 3d). Stubby bastnäsite is best developed in samples from the NW arm (RX6709, RX6710,
and RX6728). These samples are from breccias containing mafic clasts in which there is a marked
lineation, again suggestive of enhanced fluid permeability (Supplementary Figure S1).

4.1.2. Irregular Bastnäsite Associated with Sulfides

Bastnäsite associated with Cu-Fe-sulfides (chalcopyrite and bornite) is highly irregular with
respect to size and morphology (Figure 4). The sulfides can occur interstitial to bastnäsite aggregates,
whereby scalloped boundaries are observed between the two minerals (Figure 4a,b). As in stubby
bastnäsite, minute inclusions of other minerals can be locally abundant, including U-minerals,
Cu-Fe-sulfides, and gangue minerals. In other cases, bastnäsite is present as sub-euhedral grains to
patchy areas within sulfides (Figure 4c,d). In both cases the sulfide assemblage is from the intermediate
zone of the orebody and consists of bornite with exsolutions of chalcopyrite, and adjacent chalcopyrite.
Irregular bastnäsite is most pronounced in samples (samples RX6720-6722) from one drill core
intersecting hematite-rich breccias from the center of the deposit towards the northern edge. These
samples contain fluorite and quartz clasts, abundant coarse-grained hematite, and Cu-Fe-sulfides.
Bastnäsite is concentrated within veinlets and pockets with sulfides.

4.1.3. Bastnäsite Replacing Breccia Clasts

Clast replacement bastnäsite (Figure 5) is observed in many samples, some of which also contain
other forms of bastnäsite. When replacing clasts, bastnäsite displays textures that depend upon
the mineralogy of the replaced clast. Outstanding examples show bastnäsite as bladed aggregates that
pseudomorph the outline of the clast in hematite-rich breccias from the SE part of the deposit (sample
RX6726; Figure 5a).

The clast is vuggy and includes sulfides (bornite + chalcocite). When occurring together with
hematite, bastnäsite may adopt a feather-like intergrowth texture (Figure 5b). In breccias containing
dyke clasts (sample 6723), bastnäsite occurs as an interstitial cement to euhedral grains of hematite
(Figure 5c). Such clasts also include bornite + chalcocite intergrown with bastnäsite and minor quartz.
Interestingly, wherever the bastnäsite is coarser and more euhedral, REE-rich lamellae or spots can
be recognized within the grain core as brighter areas on the BSE images (Figure 5d). These are too
small (<1 µm) to be analyzed by the present techniques but we can speculate they may represent
a REE-oxyfluoride phase (haleniusite?) resulting from decarbonation. A variety of mineral assemblages
can be found interstitial to the bastnäsite within the clasts and these include sericite, chlorite, quartz,
Cu-(Fe)-sulfides, and hematite, as well as rarer rutile and synchysite.

4.2. Synchysite

Synchysite is a minor phase and is only observed in two samples, one from breccia containing
dyke clasts (RX6714), and the second from hematite-rich breccia (RX6726). Both samples are located
around the middle part of the deposit. Unlike bastnäsite, discrete grains of synchysite can be rarely
observed as 10–50 µm-sized crystals within porous sericite or hematite. Importantly, the two BSG
end-member species are present in both samples (Figure 6a,b). Synchysite occurs as patchy, interstitial
filling between aggregates of bladed bastnäsite suggesting it is replaced by the latter (Figure 6a).
However, in detail, the synchysite which is intergrown with chalcocite and sericite, locally replaces
the adjacent bastnäsite lamellae (Figure 6b). It is interesting to note that minute inclusions of bornite
and chalcocite are also present within the coarser bastnäsite.
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High-magnification imaging at the direct contact between the two REE-fluorocarbonates shows
even more complex textures (Figure 6c,d). Such textures include diffuse boundaries characterized by
sets of sub-µm size, darker (Ca-bearing BSG species) lamellae within bastnäsite (Figure 6c). These
boundaries are overgrown, in turn, by well-shaped bastnäsite grains. Another texture indicative of
more complexity in terms of BSG speciation, are the µm-sized lamella edges on the margin of coarse
bastnäsite showing compositional “polysynthetic twinning” between the dark and bright phases
(Figure 6d). Such edges protrude into the immediately adjacent bornite. These sub-µm scale features
are beyond the scope of the present study and will be addressed in future research.

Minerals 2017, 7, 202  11 of 24 

 

boundaries are overgrown, in turn, by well-shaped bastnäsite grains. Another texture indicative of 
more complexity in terms of BSG speciation, are the μm-sized lamella edges on the margin of coarse 
bastnäsite showing compositional “polysynthetic twinning” between the dark and bright phases 
(Figure 6d). Such edges protrude into the immediately adjacent bornite. These sub-μm scale features 
are beyond the scope of the present study and will be addressed in future research. 

  
Figure 6. BSE images showing petrographic aspects of synchysite: (a) Synchysite (Syn) as patchy, 
interstitial filling between aggregates of bladed bastnäsite (Bst) (Sample RX6714). Hm-hematite, Ser-
sericite; (b) Synchysite intergrown with chalcocite (Cc) and sericite locally replacing bastnäsite 
(sample RX6726). Bn-bornite; (c) Synchysite with intergrowths of a second REE-bearing phase (REE-rich 
BSG phase) along long axis. Sericite and bastnäsite crosscut both synchysite and REE intergrowths 
(sample RX6714); (d) Polysynthetic twinning between bright and dark phases. (Sample RX6726). 

4.3. Other REE-Minerals 

Although less abundant than bastnäsite, florencite is common throughout the sample suite. 
Florencite is usually anhedral and mostly occurs as fine-grained aggregates positioned between the 
coarser minerals. Florencite can occasionally be seen to overprint bastnäsite and synchysite but more 
often there are no clear relationships among the LREE-dominant minerals. Heavy REE-dominant 
minerals such as xenotime are relatively rare in these samples; xenotime is best preserved as 
overgrowths on zircon but can also be found together with coffinite, or included within bastnäsite. 
No monazite was observed in any of the samples investigated. Petrographic and compositional data 
for these minerals will be presented in a companion paper. 

5. Compositional Data 

The data presented here is strongly biased towards coarser REE-fluorocarbonates from samples 
that are particularly rich in REE-minerals. None of the small-scale intergrowths between bastnäsite 
and synchysite, or the REE-rich zones in bastnäsite have been analyzed as they are beyond the scope 
of the present study. 

5.1. Bastnäsite-(Ce) 

EPMA data for bastnäsite shows that all analyzed grains correspond to bastnäsite-(Ce) (Table 2). 
The complete analytical dataset for bastnäsite is given in supplementary Table S5. In three single spot 

Figure 6. BSE images showing petrographic aspects of synchysite: (a) Synchysite (Syn) as patchy,
interstitial filling between aggregates of bladed bastnäsite (Bst) (Sample RX6714). Hm-hematite,
Ser-sericite; (b) Synchysite intergrown with chalcocite (Cc) and sericite locally replacing bastnäsite
(sample RX6726). Bn-bornite; (c) Synchysite with intergrowths of a second REE-bearing phase (REE-rich
BSG phase) along long axis. Sericite and bastnäsite crosscut both synchysite and REE intergrowths
(sample RX6714); (d) Polysynthetic twinning between bright and dark phases. (Sample RX6726).

4.3. Other REE-Minerals

Although less abundant than bastnäsite, florencite is common throughout the sample suite.
Florencite is usually anhedral and mostly occurs as fine-grained aggregates positioned between
the coarser minerals. Florencite can occasionally be seen to overprint bastnäsite and synchysite but
more often there are no clear relationships among the LREE-dominant minerals. Heavy REE-dominant
minerals such as xenotime are relatively rare in these samples; xenotime is best preserved as
overgrowths on zircon but can also be found together with coffinite, or included within bastnäsite.
No monazite was observed in any of the samples investigated. Petrographic and compositional data
for these minerals will be presented in a companion paper.

5. Compositional Data

The data presented here is strongly biased towards coarser REE-fluorocarbonates from samples
that are particularly rich in REE-minerals. None of the small-scale intergrowths between bastnäsite
and synchysite, or the REE-rich zones in bastnäsite have been analyzed as they are beyond the scope
of the present study.
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5.1. Bastnäsite-(Ce)

EPMA data for bastnäsite shows that all analyzed grains correspond to bastnäsite-(Ce) (Table 2).
The complete analytical dataset for bastnäsite is given in Supplementary Table S5. In three single
spot analyses, however, La slightly exceeds Ce, which is attributed to interference from the brighter
REE-bearing phase exsolved in bastnäsite (Figure 5d). All analyzed grains are LREE-dominant with
La/Ce ratio averaging ~0.61 (range 0.3–0.96). LREE abundances generally follow the order Ce > La >
Nd > Pr > Sm > Eu. On average, (HREE + Y) makes up ~2.5% atoms per formula unit (a.p.f.u.) of total
REE + Y.

Both Ca and Sr can be present at measurable concentrations in bastnäsite (up to 1.2 and
0.3 wt %, respectively). Time-resolved LA-ICP-MS depth profiles reveal that measured Fe, Si,
and Al, which are other elements present at concentrations above EPMA mdl, relate to mineral
inclusions and are hence not included in the calculated formulae. Bastnäsite formulae are calculated
assuming full occupancy of one full position by REE, with CO2 calculated on the basis of charge
balance. An expanded representative formula for Olympic Dam bastnäsite-(Ce) is: (Ca0.013Sr0.001

La0.313Ce0.488Nd0.120Pr0.043Y0.012Sm0.010Gd0.005Eu0.005Dy0.002Tb0.001Er0.001)1.000(F0.743Cl0.002)0.745(CO3).
Concentrations of F, as measured by EPMA, are consistently lower than the stoichiometric ideal and Cl
contents are very low. One explanation may be diffusion away from the beam when using 20 s count
times. Different F standards were tried to no avail, as was our attempt using different F standards
against each other (i.e., using apatite as the F standard to calculate F for the EuF3 standard), for which
correct numbers were obtained. A second possibility is that full occupancy in the halogen site is met
by (OH). This has, however, not been included in our calculation since the maximum limits of (OH)
substitution in bastnäsite remain unknown [23–25].

5.2. Synchysite-(Ce)

EPMA data for the Ca-bearing REE-fluorocarbonates show they correspond to synchysite-(Ce)
(Table 2, Supplementary Table S5). All analyzed grains are LREE-dominant, with mean La/Ce ratio of
~0.42 (range: 0.33–0.48), and LREE in order of abundances as Ce > La > Nd > Pr > Sm > Eu. (HREE + Y)
makes up ~5% a.p.f.u. on average of the total REE + Y in synchysite. Measurable but minor Sr is
present. Time-resolved LA-ICP-MS depth profiles show that the measured Fe relates to inclusions
and this element is thus ignored in the calculated formulae. As with bastnäsite, concentrations of F
are consistently lower than stoichiometric ideal (mean ~3.6 wt % F compared to ~6 wt % F in ideal
end-member synchysite-(Ce)). Very minor concentrations of Cl, up to 0.03 wt %, were detected.

The structural formula for synchysite is calculated on the basis of and one divalent (Ca, Sr)
and one trivalent (REE) cation with CO2 calculated on the basis of charge balance. The mean
empirical expanded formula for synchysite-(Ce) from Olympic Dam is thus: (Ca0.998Sr0.002)1.000

(La0.196Ce0.471Nd0.183Pr0.055Y0.029Sm0.026Gd0.017Eu0.013Dy0.006Tb0.002)1.000(F0.551Cl0.001)0.552(CO3)2.
Of the two samples which contained abundant synchysite, RX6714 has generally higher La/Ce

ratios and higher La, Ce, and HREE + Y values, while RX6726 had comparatively elevated contents of
Nd, Sm, and Eu.
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Table 2. Summary of EPMA compositional data for bastnäsite and synchysite. Average and standard
deviations of major mineral groupings in weight percent (wt %) and atoms per formula unit (a.p.f.u.).

Mineral/Type

Bastnäsite

Synchysite
Matrix

Clast
Replacement Irregular

Stubby Fine-Grained
Cement Disseminated

(n = 46) (n = 93) (n = 22) (n = 66) (n = 79) (n = 20)

RX: 6709,
6710, 6728

RX: 6714, 6716,
6717, 6718, 6719,
6723, 6724, 6727

RX: 6711,
6712, 6715,
6723, 6725

RX: 6713,
6714, 6716,

6726

RX: 6720,
6721, 6722

RX: 6714,
6726

(wt %) Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev.

Ca 0.04 0.02 0.35 0.21 0.29 0.33 0.23 0.14 0.32 0.19 12.30 0.58
Sr 0.03 0.03 0.07 0.04 0.08 0.06 0.05 0.02 0.05 0.02 0.05 0.01
La 17.03 1.65 21.97 3.63 15.38 2.27 19.93 2.38 22.49 1.86 9.88 1.23
Ce 33.77 2.00 33.13 2.80 33.49 1.63 34.34 2.06 32.00 1.22 23.76 1.20
Pr 3.61 0.18 2.74 0.44 3.56 0.49 3.14 0.36 2.67 0.19 2.67 0.15
Nd 10.91 1.18 7.29 1.97 11.06 2.11 8.91 1.67 7.39 0.74 8.91 0.79
Sm 0.95 0.31 0.57 0.33 1.16 0.38 0.84 0.34 0.55 0.15 1.18 0.18
Eu 0.44 0.14 0.28 0.12 0.48 0.10 0.43 0.16 0.25 0.08 0.56 0.10
Gd 0.36 0.21 0.33 0.21 0.60 0.29 0.43 0.24 0.30 0.11 0.77 0.13
Tb 0.07 0.02 0.07 0.02 0.09 0.03 0.08 0.03 0.07 0.02 0.09 0.02
Dy 0.18 0.09 0.15 0.09 0.27 0.14 0.19 0.08 0.14 0.05 0.34 0.08
Y 0.38 0.30 0.60 0.29 0.67 0.35 0.64 0.29 0.59 0.13 0.93 0.32

Ho b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.14 0.00 0.13 0.00
Er 0.084 0.02 0.08 0.02 0.09 0.03 0.08 0.03 0.08 0.02 0.09 0.02

Tm b.d.l. b.d.l. 0.07 0.01 b.d.l. b.d.l. 0.05 0.00 0.064 0.01 b.d.l. b.d.l.
Yb 0.07 0.00 0.07 0.02 b.d.l. b.d.l. 0.49 0.43 0.08 0.01 b.d.l. b.d.l.
F 7.35 0.14 7.19 0.30 7.24 0.34 7.25 0.23 7.15 0.17 3.62 0.46
Cl 0.02 0.01 0.04 0.02 0.03 0.02 0.03 0.01 0.03 0.02 0.02 0.01
Na b.d.l. b.d.l. 0.10 0.11 0.11 0.05 b.d.l. b.d.l. 0.03 0.00 b.d.l. b.d.l.
Al 0.18 0.23 0.20 0.26 0.10 0.09 0.34 0.62 0.67 1.80 0.30 0.36
K 0.01 0.00 0.05 0.09 0.06 0.04 0.03 0.05 0.06 0.24 0.07 0.08

Fe3+ 0.25 0.21 0.33 0.41 0.57 0.37 0.30 0.32 0.47 0.74 0.11 0.06
S 0.04 0.02 0.03 0.02 0.05 0.03 0.07 0.21 0.02 0.02 0.01 0.00
U b.d.l. b.d.l. 0.33 1.11 0.06 0.03 0.06 0.03 0.17 0.09 0.03 0.00
Th 0.08 0.07 0.11 0.09 0.43 0.32 0.16 0.12 0.07 0.04 0.05 0.00
Pb b.d.l. b.d.l. 0.03 0.01 0.04 0.01 b.d.l. b.d.l. 0.05 0.02 b.d.l. b.d.l.

Measured Total 75.30 2.12 75.30 3.28 75.41 3.66 76.98 2.64 74.66 2.76 65.32 2.04
∑REE + Y 67.62 2.15 67.18 3.75 66.79 3.61 69.06 2.82 66.48 2.50 48.20 1.95

La/Ce 0.51 0.06 0.67 0.15 0.46 0.06 0.58 0.09 0.70 0.05 0.42 0.05
CO2 wt % 21.20 0.68 21.16 1.17 20.96 1.13 21.71 0.88 20.94 0.78 28.98 0.99
Calc. Total 96.24 2.81 95.98 4.78 95.38 4.84 98.32 3.76 94.96 3.30 94.09 2.92

(a.p.f.u.)
Ca 0.002 0.001 0.018 0.010 0.014 0.016 0.011 0.007 0.016 0.009 0.998 0.001
Sr 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.000 0.002 0.001

Total 2+ 0.002 0.001 0.020 0.011 0.016 0.017 0.012 0.008 0.017 0.010 1.000 0.000
La 0.254 0.023 0.329 0.050 0.233 0.034 0.291 0.032 0.340 0.022 0.202 0.021
Ce 0.500 0.026 0.492 0.031 0.502 0.018 0.497 0.024 0.480 0.006 0.483 0.011
Pr 0.053 0.003 0.040 0.006 0.053 0.006 0.045 0.005 0.040 0.003 0.054 0.003
Nd 0.157 0.016 0.105 0.027 0.161 0.027 0.125 0.022 0.108 0.011 0.176 0.017
Sm 0.013 0.004 0.008 0.004 0.016 0.005 0.011 0.004 0.008 0.002 0.022 0.004
Eu 0.006 0.002 0.004 0.002 0.007 0.001 0.006 0.002 0.003 0.001 0.011 0.002
Gd 0.005 0.003 0.004 0.003 0.008 0.004 0.005 0.003 0.004 0.001 0.014 0.002
Tb 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.000
Dy 0.002 0.001 0.002 0.001 0.003 0.002 0.002 0.001 0.002 0.001 0.006 0.001
Y 0.009 0.007 0.014 0.007 0.016 0.008 0.014 0.007 0.014 0.003 0.030 0.010

Ho b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.002 0.000 0.000 0.000
Er 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.001
Tm b.d.l. b.d.l. 0.001 0.000 b.d.l. b.d.l. 0.001 0.000 0.001 0.000 0.000 0.000
Yb 0.001 0.000 0.001 0.000 b.d.l. b.d.l. 0.006 0.005 0.001 0.000 0.000 0.000

Total 3+ 0.998 0.001 0.980 0.011 0.984 0.017 0.988 0.008 0.983 0.010 1.000 0.000
F 0.802 0.030 0.774 0.055 0.790 0.060 0.765 0.031 0.777 0.031 0.545 0.079
Cl 0.001 0.000 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001

F+Cl 0.803 0.030 0.776 0.055 0.791 0.059 0.767 0.031 0.779 0.031 0.546 0.079

* b.d.l.—below detection limit. Si, As, P, Zr were all b.d.l.
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5.3. Trace Element Concentrations

Concentrations of trace elements in bastnäsite and synchysite are minor and display significant
variance both within and between samples. Nevertheless, distinctions between the mineral classes can
be recognized (Table 3). The full LA-ICP-MS dataset is given as Supplementary Table S6.

Stubby matrix bastnäsite, occurring together with barite, contains less Ca as well as elevated Sr
(mean 531 ppm), thus a greater Sr/Ca ratio on average compared to the other bastnäsites (Table 3,
Figure 7a). Stubby matrix bastnäsite is also distinguished by elevated Th (mean 213 ppm) compared to
U (mean 28 ppm), which is the lowest amount of U of all the bastnäsite. Fine-grained matrix cement
bastnäsite has significantly more Th to U (533 and 388 ppm, respectively), which is also the highest
Th of all bastnäsite types. The clast replacement bastnäsite has almost equal mean Th and U (272
and 266 ppm, respectively) while irregular bastnäsite has vastly more U than Th (mean 1840 and
78 ppm, respectively) and both the lowest Th and highest U means of all bastnäsite. Compared to
the bastnäsite values, synchysite is low in both U and Th, but with more than three times as much
U than Th (mean 62 and 20 ppm, respectively) (Figure 7b). Time-resolved downhole laser profiles
show that U and Th can occur both within sub-microscopic mineral inclusions and within the lattice of
the bastnäsite (Supplementary Figure S2). The profiles suggest that in the coarser-grained bastnäsite,
stubby matrix and clast replacement, much of the U and Th is inclusion-hosted, while lattice-hosted U
and Th dominates in fine-grained matrix cement or irregular bastnäsite. The sericitized dyke, included
in the fine-grained cement bastnäsite group, has bastnäsite that most consistently includes measurable
proportions of 204Pb as well as 206Pb, 207Pb, and 208Pb. On average, sodium is higher in the fine-grained
cement bastnäsite; of the bastnäsites, P and Zr are higher in matrix stubby and fine-grained bastnäsite
but Zr is highest in synchysite. All other trace elements analyzed were extremely low (e.g., Nb),
consistently < mdl (e.g., Sc), or entirely present in the form of mineral inclusions (e.g., Fe, Al, and Si).
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U to Th separate the textural groupings with the irregular, sulfide-associated group containing more
U compared to Th. The stubby matrix group, and to a lesser extent, the clast replacement sub-type,
contains more Th than U.
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Table 3. Summary of LA-ICP-MS trace element data for bastnäsite and synchysite. Mean, minimum (min), and maximum (max) values for major mineral groupings
(in ppm).

Mineral/Type

Bastnäsite

Matrix
Clast Replacement Irregular Synchysite

Stubby Fine-Grained Cement

(n = 137) (n = 123) (n = 84) (n = 49) (n = 6)

RX: 6709, 6710, 6728 RX: 6714, 6716, 6717, 6718,
6719, 6723, 6724, 6727 RX: 6713, 6714, 6716, 6726 RX: 6720, 6721, 6722 RX: 6714

Mean Min. Max. Mean Min. Max. Mean min. Max. Mean Min. Max. Mean Min. Max.

La 180,000 139,700 237,000 233,000 102,800 320,000 235,000 159,000 395,000 241,000 213,100 271,000 117,900 114,200 123,000
Pr 35,300 29,380 40,600 26,900 11,800 37,960 30,700 21,800 58,100 26,600 24,000 29,400 25,000 21,700 26,140
Nd 101,400 78,000 124,000 67,600 29,140 129,000 81,200 43,200 163,000 71,200 64,400 86,900 76,500 62,400 83,500
Sm 9170 5520 13,200 5760 2860 16,600 7500 1860 16,800 6230 4670 8520 9140 6550 10,500
Eu 2790 1460 4820 1710 435 4820 2510 347 7200 1700 870 2690 3160 2110 3680
Gd 3290 1470 5720 2870 1190 8420 3480 627 9820 3220 2270 4700 5660 3680 6550
Tb 289 93.2 561 302 95.4 819 343 41.4 830 320 218 455 684 376 835
Dy 1180 278 2340 1430 335 3510 1480 153 3290 1440 1020 1890 3230 1630 3890
Y 2990 664 6450 5170 1030 10,600 4230 378 11,600 5320 3860 7370 9050 3430 11,500

Ho 161 29.0 324 216 39.1 456 210 19.2 460 225 156 309 420 189 545
Er 313 44.4 682 466 55.9 920 430 36.7 935 512 309 757 695 297 1003
Tm 28.2 3.0 66.0 44.9 3.8 106 42.0 2.7 108 53.6 25.6 91.9 49.9 21.5 74.0
Yb 129 13.0 322 219 12.6 620 211 11.4 617 284 105 623 178 75.0 290
Lu 13.3 1.0 34.9 23.5 1.2 72.3 21.7 1.1 60.8 33.6 12.5 90.0 13.3 5.9 26.2
Ca 897 158 3100 3980 820 9950 2290 790 6100 3920 1440 9800 111,000 20,200 155,000
Sr 531 27.1 6500 591 26.9 2940 294 24.1 752 377 217 872 427 214 890
Th 213 0.14 4960 533 0.23 3760 272 0.08 5290 78.3 0.88 619 20.2 8.3 29.5
U 28.1 0.07 1510 388 7.4 7200 266 1.5 1040 1840 781 10,100 62.3 29.0 114
Pb 36.2 1.8 606 352 5.2 1370 196 1.0 2840 751 422 2150 23.7 3.0 69.5
Ba 108 0.67 7000 266 0.53 2320 82.7 0.5 1560 47.4 5.0 205 182 22.9 690
Mn 10.8 0.50 126 21.4 3.9 142 19.5 2.7 450 19.2 3.5 147 48.6 18.6 78.5
Na 229 8.5 2910 710 71.0 3250 449 69.0 3740 260 83 1100 59.0 59.0 59.0
Nb 17.0 0.1 250 6.1 0.09 150 19.0 0.07 560 2.4 0.22 10.2 3.6 0.66 7.4
P 1730 52.0 31,400 1450 69.0 9700 260 260 260 275 75.0 1100 b.d.l. b.d.l. b.d.l.
Zr 20.7 0.09 1220 5.0 0.11 110 5.1 0.10 155 0.42 0.10 0.84 258 4.5 690

b.d.l.—below detection limit. Si, As, P, Zr were all b.d.l.
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5.4. Compositional Trends and Chondrite-Normalized Fractionation Patterns

Subtle compositional variation is present between the different textural forms of bastnäsite. There
is a progressive change in the dominant REE (La, Ce, and Nd) from types containing more La towards
those relatively enriched in Ce and Nd (Figure 8a). Fine-grained matrix cement (Figure 2) and irregular
bastnäsite (Figure 4) are the richest in La, with Ce and Nd increasing through clast replacement
bastnäsite (Figure 5), disseminated matrix and stubby bastnäsite (Figure 3), to synchysite (Figure 6),
which contains the most Nd. Synchysite consistently contains more Nd and less La compared to most
bastnäsite (Figure 8a). Fine-grained disseminated and stubby matrix bastnäsite show considerable
overlap in La-Ce-Nd composition, as do irregular and fine-grained cementing matrix bastnäsite, with
clast replacement bastnäsite positioned between those two groups. While maintaining similar La/Ce
values, the irregular and fine-grained cement matrix bastnäsite are separated by their slight differences
in Nd values, with irregular bastnäsite being slightly more elevated in that element (Figure 8b). Stubby
matrix bastnäsite shows a deviation from other fluorocarbonates on Figure 8c, plotting below the curve,
with lower La relative to other LREE if compared to the other bastnäsite types.
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Figure 8. REE compositions of bastnäsite and synchysite (EMPA data, a.p.f.u.): (a) Ternary Nd-Ce-La
plot showing progression of bastnäsite sub-groups from Ce- and Nd- to La-enriched; (b) La/Ce vs.
Nd/Ce showing clustering of bastnäsite textural groups and separation of irregular and fine-grained
cement bastnäsite; (c) Relative LREE ratios (after [35]) showing a continuous curve through synchysite,
clast replacement, irregular, and fine-grained matrix bastnäsite, and stubby bastnäsite plotting astray
from the curve.
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When comparing the full spectrum of REE (using concentrations measured by LA-ICP-MS for
those at lowest concentrations), the fine-grained matrix cement and irregular bastnäsite show elevated
(HREE + Y) relative to MREE, and also greater La enrichment compared to clast replacement bastnäsite
and stubby matrix bastnäsite (Figure 9a). Synchysite plots closer to stubby matrix bastnäsite albeit
with slightly elevated (HREE + Y). Within the stubby matrix bastnäsite there are some compositional
differences between bastnäsite formed in cavities and those within the matrix; cavity bastnäsite shows
relatively elevated La and Ce and depletion in the other REE.

Chondrite-normalized fractionation trends show subtle variations in the different bastnäsite
groups and synchysite (Figure 9b). The more LREE-enriched stubby bastnäsite can be distinguished
from the slightly more HREE-enriched fine-grained matrix cement and irregular bastnäsite. Synchysite
is shown to be enriched in only certain HREE (Dy, Y, and Ho) and is depleted in LREE and Tm, Yb,
and Lu relative to bastnäsite. Synchysite and stubby bastnäsite show similar chondrite-normalized
patterns although synchysite is richer in MREE and stubby bastnäsite is richer in LREE (Figure 9b).
Chondrite-normalized fractionation patterns of the fine-grained matrix cement and irregular bastnäsite
are similar, with slight separation among the heaviest HREE. Clast replacement bastnäsite shows
similarity to the stubby bastnäsite group in the LREE segment but becomes more HREE-enriched.
Stubby bastnäsite and synchysite have similar Y/Ho ratios, and more pronounced negative
Y-anomaly than the irregular and fine-grained matrix cement, which shows flatter patterns and
smaller Y-anomalies.
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REE-fluorocarbonates from Olympic Dam are Ce-dominant but there is nevertheless a subtle yet 
measurable variation in the relative abundances of the different REE + Y within these minerals from 
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Figure 9. Compositional variation (LA-ICP-MS data) for REE in bastnäsite and synchysite; (a) (HREE
+ Y)/MREE vs. LREE/La, where HREE = (Tm + Yb + Lu + Y), MREE = (Gd + Tb + Dy + Ho + Er),
and LREE = (Pr + Nd + Sm). LREE/La separates out those grains relatively enriched in La (irregular,
fine-grained cement and clast replacement bastnäsite) from those with a more diverse LREE signature
(stubby matrix bastnäsite and synchysite). The plot also exposes the relative enrichment in (HREE + Y) in
irregular and fine-grained cement bastnäsite (those with highest HREY/MREY are fine-grained cements
from sample RX6724) and relative MREE enrichment in stubby matrix bastnäsite and synchysite.
Fine-grained cement bastnäsite with high (Pr + Nd + Sm) plots at the extreme right (sample RX6723);
(b) Chondrite-normalized REY fractionation trends for the different groups of REE-fluorocarbonates
(LA-ICP-MS data). Chondrite values after [36]. See also text for additional explanation.

6. Discussion

6.1. Data Trends

REE-fluorocarbonates from Olympic Dam are Ce-dominant but there is nevertheless a subtle yet
measurable variation in the relative abundances of the different REE + Y within these minerals from
different samples. Bastnäsite and synchysite compositions show consistent compositional differences
and clustering on the plots which can be correlated with textures. Synchysite, disseminated matrix
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bastnäsite, and stubby bastnäsite cluster together forming one field, while irregular, sulfide-associated
and fine-grained matrix cement bastnäsite cluster within a second field. Compositions of clast
replacement bastnäsite typically fall between the two groups, or tend to spread across both.
The clustering of the mineral groups is consistent on all plots (Figures 7–9), and although this may yet
be better exposed by a more extensive sample set, we believe these patterns carry genetic significance.
Stubby bastnäsite and synchysite are clearly separated from the other bastnäsite categories. Texturally,
these two groups are probably earlier—possibly linked to hydrothermal alteration of granites, with
Ca for synchysite being sourced from the replacement of plagioclase feldspar. The other categories
of bastnäsite are thus later and are associated with subsequent stages of IOCG deposit evolution,
including the late deposition of chalcocite-bornite assemblages at shallow levels.

Smith et al. [35] report variation in REE-fluorocarbonate composition from Bayan Obo. Decrease
in La/Nd is inferred to reflect changes in fluid composition from CO2-rich hydrothermal fluids to
aqueous solutions, and a decrease in temperature. Compositions are controlled by changes in REE
speciation in the hydrothermal fluid, and the relative solubilities of those species and precipitated
REE minerals. Smith et al. [35] model La/Nd fractionation and believe that it should be recognized in
other REE-rich hydrothermal systems. We believe that our work goes some way to recognizing similar
trends at Olympic Dam. The unequivocal positioning of distinct REE-fluorocarbonate compositions
within the temporal-spatial development of the deposit is, however, hampered by the superimposed
cycles of replacement and recrystallization recognized in many component minerals at Olympic Dam.

Apart from Ca, Sr, Th, and U, the REE-fluorocarbonates generally contain negligible trace elements
at measurable concentrations. Elements that might have been expected within these REE minerals,
notably Sc, As, and Nb, would appear to have partitioned into other co-existing minerals. Thorium
and U is always present, although often at concentrations of only a few ppm.

Synchysite is restricted in its occurrence at Olympic Dam compared to the ubiquitous bastnäsite.
When present, the relationship between the two minerals is often ambiguous, although synchysite may
appear crosscut by larger grains of bastnäsite. The temporal relationship between the two minerals
requires further work to be properly assessed.

Pseudomorphic replacement of feldspars by micron- to lattice-scale intergrowths among BSG
species in the compositional range between parisite and bastnäsite is documented from a distal satellite
(mineralized red-stained granite interval) at Olympic Dam [13,33]. These assemblages, which are
associated with sericite, molybdenite, and hematite, prove the point that during the early stages
of granite alteration, in which plagioclase feldspars are replaced but K-feldspars are still present,
the REE-fluorocarbonates are Ca-bearing.

Synchysite from the OD orebody is distinctly poorer in La and richer in Nd and Ce than bastnäsite
where they co-exist spatially, mostly as clast replacement (Figures 5a and 6b,d). Ca2+ is required
for precipitation of synchysite, and needs to be unavailable to allow bastnäsite to form. Variation
in aCa2+, together with aCO3 and aF, thus defines the stability fields for minerals across the BSG
group [22]. Bastnäsite occurs in samples with abundant fluorite which could explain why no
Ca-bearing REE-fluorocarbonates are present if the two minerals are precipitated simultaneously.
Such an assumption implies high F activity e.g., log aF > −3 at 300 ◦C; in a fluorocarbonate–CO2–fluid
buffered system at a pH of ~4.5 to 5.2 concordant with sericite stability [22]. The limited occurrence
of synchysite in this sample set may suggest that formation is constrained by the local assemblage
and limited availability of Ca, such as during the early albitization event leading to replacement of
plagioclase feldspar [12].

6.2. Comparison with Published Compositional Data

The volume of published compositional data for bastnäsite and synchysite is rather limited
but nonetheless instructive, as it demonstrates both the variability in natural REE-fluorocarbonates
and the dependence of composition on the formational environment and conditions. The La/Nd
ratio in REE-fluorocarbonates is used to identify and define variable hydrothermal systems and REE
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fractionation within, or between deposits. Fleischer [37] reports compositional variability among
REE-fluorocarbonates from different rocks using La/Nd as a “useful indicator of paragenetic type of
occurrence”. Others (e.g., [35,38]) have shown that changes in this ratio represent a useful indicator of
evolving conditions, and can also be used to interpret fluid compositions and temperature. Figure 10
compares the La/Nd and La/Ce ratios of Olympic Dam synchysite and bastnäsite from this study
with published datasets for the two minerals.

Most published work on synchysite has proposed that REE are leached from the host rock
and precipitated as independent REE-minerals. Carbonatites are typified by greater enrichment
in La compared to other deposit types. The “hydrothermal” group displays the least enrichment
in La. “Hydrothermal” synchysite, in which REE is sourced from fluids associated with igneous
host rocks (syenite, granite) has average ratios La/Nd of 1.157 and La/Ce ratios of 0.470 [39–41].
In contrast, carbonatite-hosted synchysite has average La/Nd and La/Ce ratios of 2.471 and 0.617,
respectively [42,43]. Pegmatite-hosted synchysite [44] has average La/Nd and La/Ce ratios of 1.692 of
0.524; synchysite precipitated in basalts has average ratios of La/Nd = 1.459 and La/Ce = 0.543 [45].
Lastly, synchysite from hydrothermal fluorite veins, where REE are thought not to have been sourced
not from the host rocks but rather from the basement, has average La/Nd as 1.238 and La/Ce 0.525 [46].
Average La/Nd and La/Ce ratios in Olympic Dam synchysite are 1.147 and 0.419, respectively, within
the field of published data for occurrences associated with felsic intrusive rocks (Figure 10).
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Published compositional data for bastnäsite tend to be more varied than for synchysite, but
overall, data for carbonatite-hosted bastnäsite [42], skarn bastnäsite [38], and from Bayan Obo [35] have
higher La/Nd (4.103, 5.653, and 2.117, respectively) than bastnäsite associated with felsic intrusions:
pegmatites [47]; alkaline igneous rocks [40]; or metamorphic rocks [48], which have lower La/Nd
(1.372, 1.162, and 1.424, respectively). The distinction in terms of La/Ce ratios is less marked but ratios
for intrusion-associated bastnäsite are nevertheless lower than for carbonatite- and skarn-hosted types.
Figure 10 shows that different textural types of Olympic Dam bastnäsite plot apart on the diagram,
within the fields of both carbonatite and hydrothermal bastnäsite. Despite the clear discrimination
suggested by using average values on the plot, variability in bastnäsite compositions across a broad
range of values appears characteristic of many other occurrences and may be attributed to changes in
fluid composition, temperature, or pH.
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Figure 10 shows a continuum of these ratios from more La-rich to La-poor/Nd- and Ce-enriched
in different deposit types. Generally, carbonatite-hosted REE-fluorocarbonates display La-enrichment,
even if published data suggests that skarn bastnäsite is even more elevated in La. Synchysite is
concentrated towards the lower La/Nd and La/Ce corner, with Olympic Dam synchysite having
the lowest values of both ratios. Whole-rock La/Nd and La/Ce ratios of the Roxby Downs Granite
(RDG), which hosts the ODBC and thus the orebody, are also plotted on Figure 10. The RDG has
ratios close to that of the average upper crust RDG La/Nd = 1.248, La/Ce = 0.487, avg. upper crust
La/Nd = 1.2, La/Ce = 0.47 [38] and plots within that part of the diagram with the greatest concentration
of data points, also close to the average for Olympic Dam synchysite. The average composition of
Olympic Dam bastnäsite is also close to the average for the giant REE deposit of Bayan Obo [35]. This
observation is particularly interesting in light of the hypothesis [49] that there should be a communality
of fluid compositions associated with IOCG deposits sensu stricto and carbonatite-hosted ore systems
such as Bayan Obo and Phalaborwa, South Africa.

The mean Y/Ho ratio of Olympic Dam REE-fluorocarbonates (20.8, std. dev. 3.4) is lower than
the CHArge-and-RAdius-Controlled (CHARAC; [50]) trace element behavior field (24 < Y/Ho < 34)
and “bulk earth” (Y/Ho = 28) [50,51]. Olympic Dam REE-fluorocarbonates thus fall within the field of
hydrothermal carbonates [50]; magmatic and marine sedimentary carbonates Y/Ho values are within
and above the CHARAC field, respectfully [50,51].

6.3. Formation Conditions

The deviation of bastnäsite from the whole-rock ratio of host RDG demonstrates a fractionation
across the deposit which could have several causes: an evolution of bastnäsite crystallization in space
and/or time, control by local conditions, or partitioning with co-existing phases. Despite the deposit
showing an overall enrichment in LREE relative to HREE, REE fractionation is reported for other
minerals from Olympic Dam. Distinct LREE depletion and relative MREE-enrichment are documented
from hydrothermal apatite associated with hematite-sericite alteration and high-grade ore [11]. This
was taken to support LREE transport as soluble chloride complexes, with which LREE are most
compatible and remain in solution at high temperatures [43,52,53]. McPhie [54] extrapolate data for
melt inclusions containing fluorite to claim that hydrothermal fluids at Olympic Dam were strongly
acidic and very rich in F. Although this is yet to be unequivocally proven for the hydrothermal stages
at OD, the presence of abundant fluorite throughout parts of the ODBC, including within the samples
studied here, allows for an interpretation in which F-rich hydrothermal fluids were present at least
during some stages of breccia formation and ore deposition. Under such conditions, it likely that
the REE were mobilized and bastnäsite-Ce deposited by the reaction: REECl2+ + HF + HCO3

− =
REECO3F + 2H+ + Cl− [53]. REE-chloride complexes dominate under acidic conditions [55] and
precipitation of REE minerals could be initiated via an increase in pH or (CO2)− activity or a decrease
in Cl-activity, with fluoride acting as a binding ligand to promote mineralization [53].

The dominance of REE-fluorocarbonates over other REE-minerals also suggests high aCO2. While
Olympic Dam contains abundant carbonates [7,32], the deposit lacks (carbonatite) carbonate, as at
Bayan Obo [35], or limestone in the Bastnäs Fe-Cu-REE skarn deposit [38] to supply HCO3. We can
therefore presume that CO2 was supplied by the hydrothermal fluids.

Changes in fluid redox or pH conditions should be exposed through marked Ce- or Eu-anomalies
on the chondrite-normalized fractionation patterns. Such anomalies are, however, not observed for
REE-fluorocarbonates from Olympic Dam, suggesting that these conditions are unlikely to have driven
REE-fluorocarbonate deposition. This is indirectly corroborated by the interpretation that albitization
is controlled by pH and not by a change in redox conditions [12]. Similarly, the influence of high
pH, rather than redox, on CO2-buffered fluids is proposed to have caused fractionation of MREE-rich
apatite in high-grade bornite ores [11].

The source of REE concentrated within the Olympic Dam deposit is granite-related, either directly
from hydrothermal fluids, or via hydrothermal alteration and breakdown of granite-forming minerals,
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notably feldspars [12]. Bastnäsite is not a secondary mineral formed via alteration or replacement
of a pre-existing REE mineral, but rather a primary LREE phase. Such a scenario does not discount
the possibility of a precursor LREE mineral phase, such as monazite, that has since been altered or
dissolved, with LREE “recycled” into synchysite (e.g., [56]) or bastnäsite. There is, however, no direct
evidence of synchysite or bastnäsite replacing monazite or any other LREE-bearing mineral, apart
from bastnäsite replacing synchysite. Broadly similar hydrothermal fluids and physicochemical
conditions coincided with the stability field of bastnäsite, leading to its dominance over other
REE-minerals across the deposit. The high-grade REE zones studied here may be attributed to
enhanced permeability/porosity, and potentially to localized conditions promoting REE deposition.

6.4. Implications

The reproducible compositional differences among textural groups of REE-fluorocarbonates from
Olympic Dam carry several implications for fluid evolution. Some texturally and compositionally
distinct bastnäsite groupings are restricted to narrow intersections, only a few cm across, in just one
or two drill holes (stubby and irregular, sulfide-associated), indicating a degree of spatial control.
Other compositionally distinct textural types (matrix fine-grained disseminated and cement and
clast replacement) are more widespread across the deposit. Because of the limited and highly
targeted sample set, it is difficult to say if these are true clusters or only points on a continuous
spectrum. Bastnäsite textures are highly dependent on co-existing mineral assemblages; fine-grained
bladed bastnäsite develops within fine-grained sericite-dominant matrices and coarser crystals
also occur, suggesting that relative REE and trace element concentrations may be dependent on
co-existing minerals.

The absence of monazite in the studied samples is conspicuous and will be examined, together
with the petrography of florencite, xenotime and other phosphates, which commonly replace the REE-
fluorocarbonates, in a subsequent companion publication.

7. Conclusions

1. Bastnäsite-(Ce) is the most abundant REE-fluorocarbonate across the Olympic Dam deposit;
synchysite-(Ce) is subordinate. Representative formulae for Olympic Dam bastnäsite-(Ce)
and synchysite-(Ce) are: ((Ca,Sr0.01)La0.31Ce0.49Nd0.12RE*0.08)1.00(F,Cl)0.75(CO3) and
(Ca,Sr)1.00(La0.20Ce0.47Nd0.18RE*0.15)1.00(F,Cl)0.55(CO3)2, respectively [RE* = REE other than La,
Ce, and Nd]. Both show significant deficiencies in the halogen site, which may possibly be due to
F migration under the beam, or met by hydroxl ions.

2. Bastnäsite occurs in a range of different textural forms, defined here as matrix, including
fine-grained disseminated matrix, fine-grained cement matrix, and stubby matrix, as well as
irregular bastnäsite associated with sulfides, and clast replacement bastnäsite. Textures and
occurrences of bastnäsite at Olympic Dam are largely driven by the specific location and prevailing
mineral assemblage, with morphology and grain size often controlled by the associated minerals
(hematite, sulfides). High REE-grade zones formed due to enhanced permeability/porosity and
localized conditions that promoted REE deposition.

3. Compositionally, REE-fluorocarbonates define a spectrum from relatively La-enriched to
(Ce + Nd)-enriched minerals, although Ce is the dominant element in all grains analyzed.
The fractionation of REE in bastnäsite and synchysite may reflect two distinct episodes of
precipitation during the IOCG-forming event. The earlier, represented by stubby bastnäsite
and synchysite may be associated with hydrothermal alteration of granite and Ca release
from plagioclase, whereas the latter (bastnäsite only) is contemporaneous with the onset of
sulfide deposition.
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