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Abstract: The Southern Jiangxi Province (SJP) hosts one of the best known districts of tungsten
deposits in the world. Delineating spatial complexities of geological features and their controls on
regional-scale tungsten mineralization by using an integrated fractal and weights-of-evidence (WofE)
method can provide insights into the understanding of ore genesis and facilitate further prospecting
in this area. The box-counting fractal analysis shows that most of the tungsten occurrences are
distributed in regions with high fractal dimensions of faults and fault intersections, suggesting
ore-forming favorability of areas with highly complex structural patterns. The WofE-derived
indices are employed to quantitatively measure the controls of analyzed features on mineralization,
which illustrate that tungsten anomalies, faults, Yanshanian granites, and manganese anomalies
have high contrast values, implying a spatially strong correlation of these features with tungsten
occurrences. In particular, high manganese anomalies in host rock may provide a novel indication for
mineral prospecting in this area. A predictive map is extracted based on the combination of fractal
and WofE results, providing intuitive guides for future prospectivity in this area. Regions identified
by high posterior probability in conjunction with high fractal dimensions of both faults and fault
intersections are evaluated as the most favorable targets.

Keywords: fractal analysis; weights-of-evidence method; tungsten mineralization; mineral
prospectivity; Southern Jiangxi Province

1. Introduction

Mineral deposits are formed by nonlinear coupling of various geological processes and
conditioned by controls that favor their formation [1–3]. The geological features genetically associated
with ore-forming processes can therefore provide significant information relevant to understanding
ore genesis and facilitating mineral exploration by focusing prospective targets on regions where
these favorable features are concentrated [3–5]. However, such spatial associations, being the
end-products of complex coupled processes, are themselves complicated, and additionally overlain by
numerous random influences, temporal alteration, and/or spatial deviation [6]. It is a challenge to
extract and delineate spatial correlations between geological features and mineral occurrences from a
large number of multi-source exploratory data that inevitably involve non-correlative background
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information [2,7–9]. For solving this problem, some emerging quantitative methods, including fractal
analysis and the weights-of-evidence (WofE) approach, are much more powerful than traditionally
empirical descriptive methods because of their geological informative abundance, depictive precision,
and practical flexibility [1,10,11].

The fractal geometry, since it was proposed by Mandelbrot [12], has become an important tool for
studying nonlinear patterns of complex natural distribution and their internal dynamic mechanism.
It is well documented by many published literatures that ore-forming processes in the Earth’s crust
can result in mineral deposits and related geological features being fractal in various spatial aspects,
such as clustering of ore occurrences [13–15], scaling distribution of fracture networks [16,17], and
concentration of mineralized elements [18,19]. Thus, during the last two decades, fractal analysis has
been widely employed to provide a highly effective quantification for characterizing the complex
distributions of mineralized systems [20–23]. The spatial association between geological features and
mineral occurrences can be revealed by analyzing the links among different fractal patterns [24,25];
however, it still needs to be delineated in a more objective and accurate way [26]. The WofE method has
been convincingly demonstrated to quantitatively infer geological controls on mineralization [27–30].
Indices calculated from the WofE approach are instructive in weighting the relative significance
of spatial associations between certain geological features and known mineral occurrences [31].
In addition, the analytical results from the WofE method can be easily developed into a predictive map,
thus providing intuitive guides for mineral prospectivity.

The Southern Jiangxi Province (SJP) contains the best known district of quartz vein-type
wolframite deposits in the world, including 8 large-scale, 18 medium-scale, and 46 small-scale
deposits with a total reserve of 1.5 Mt [32,33]. Although an empirical model, namely, the “five-floors
mineralization pattern”, has been proposed and effectively applied to mineral prospecting in the last
few decades [32,34], it now meets a bottleneck as most deposits which are easily recognized by their
characteristic mineralization patterns have been fully discovered. It becomes necessary to introduce
some new methods to facilitate tungsten prospectivity on the basis of the previous exploratory data.
The primary aim of this study is to quantitatively evaluate the complexity of key geological features
and their controls on tungsten mineralization through a combined method of fractal analysis and the
WofE approach. Furthermore, the analytical results yielded in this study provide relevant criteria for
further prospecting.

2. Materials and Methods

2.1. Study Area and Input Data

The SJP is situated in the central part of the Cathaysia block of the south Yangtze Craton, belonging
to the eastern segment of the giant Nanling metallogenic belt (Figure 1). The ages of strata exposed in
the study area span from Neoproterozoic to Cenozoic, with the absence of Silurian and Triassic units.
The strata can be divided into three lithological sequences (Figure 1): the Precambrian to Ordovician
lower greenschist facies clastic rocks constitute the basement of this region, which are covered by the
Devonian to Permian shallow marine carbonate and siliclastic rocks, and the Jurassic to Quaternary
succession consisting of volcaniclastics and terrigenous red-bed sandstone is preserved in faulted
basins [35]. The tectonic framework of the SJP is mainly composed of two fault systems, trending
approximately NE and EW, which control the intrusion and emplacement of granitic magma. The SJP
has four main episodes of granitic magmatism, including Caledonian (Early to Middle Paleozoic),
Hercynian (Late Paleozoic), Indosinian (Early Mesozoic), and Yanshanian (Late Mesozoic) [36],
resulting in numerous granitic plutons with an outcropped area of approximately 14,000 km2

(Figure 1). Yanshanian tectonic–magmatic activity is believed to be responsible for the extensive
tungsten mineralization in this region [34,37,38]. The widespread outcropped Yanshanian granites
mainly comprise biotite monzogranite, monzonite, and porphyritic monzogranite [35]. The widely
distributed tungsten deposits in the SJP are dominated by quartz vein-type, with lesser amounts
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of skarn- and greisen-types [34]. Four important ore districts containing most of the tungsten
occurrences in this area are highlighted in Figure 1, namely Chongyi-Dayu-Shangyou, Ganxian-Yudu,
Longnan-Dingnan-Quannan, and Ningdu-Xingguo.

 

Figure 1. Simplified geological map of the study area, modified from a 1:500,000 scale geological map
and [33,35].

The tungsten occurrences including known deposits and prospects were extracted from the
Database of Ganzhou Bureau of Mineral Resources (DGBMR). The regional faults (as line objects),
fault intersections (as point objects), and Yanshanian granites (as areal surface objects) were also
extracted from DGBMR and investigated as potential controls since they had already been shown to
be associated with tungsten mineralization to some extent by previous geochemical and geotectonic
studies [32,36,39,40]. The quality of input data is critical for generating reliable results of spatial
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analysis [26]; thus, it should be evaluated before further analysis. Potential limitations mainly lie in
the quality and homogeneity of data and effect of cover. All the mineralized, structural, and magmatic
information was extracted from the same database built based on field work of 1:300,000 scale regional
mapping, therefore avoiding potential heterogeneities induced by multi-source data. The quality
of the geological data was then examined via different ways. These occurrences were examined
by comparing with the data from the Database of Mineral Resources of China [41]. The regional
faults under analysis were confined to those outcropped in the shallow rocks, whereas the inferred
basement faults stored in the database are excluded in this study because (1) they are not confirmed by
reliable means, and (2) they may impose different constraints on mineralization when compared with
outcropped faults. The ages of extracted Yanshanian granites were examined by the geochronological
data in the published literature [34–37,40]. The effect of cover cannot be easily evaluated and reduced
before spatial analysis [26]; however, a discussion about cover effect on analytical results was made
after spatial analysis in the subsequent sections in this paper, and those results that are strongly affected
by cover effect were not taken into account for providing predictive criteria.

All the examined original data were compiled to vector formats and imported into the ArcGIS
10.0 platform (Environmental Systems Research Institute, Redlands, CA, USA) for the subsequent
spatial analyses (Figure 2).
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Figure 2. Extracted geological features in 30 subregions under fractal analysis: (a) location and ID of
each subregion; (b) regional faults, including NE–NNE-trending faults marked in red, EW-trending
faults marked in blue, and NW–NNW faults marked in green; (c) fault intersections, of which the
intersections of NE–NNE- and EW-trending faults are marked in red; and (d) Yashanian granites.
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2.2. Box-Counting Fractal Analysis

A “fractal” pattern has an exclusive characteristic of self-similarity which consists of parts that are
more or less similar to the whole pattern in some geometrical attributes (e.g., shape, length, or density).
This scale-invariance can be represented by a power law type of proportional relationship between
a measurement and its scale [12]. The box-counting method is most commonly used in geological
pattern analyses. In this method, the study area featured with geological constraints is overlain by
a grid or raster which comprises square boxes or cells with side length r, and then the number N(r)
of those boxes containing parts of geological features is counted (Figure 3a). The above process is
repeated using a different size r to obtain a corresponding box number N(r) (Figure 3b,c). If the pattern
under analysis is a fractal pattern, the relationship between N(r) and r should follow a power law
function, which can be expressed as [12]

N(r) ∝ Ar−D (1)

where D is the box-counting fractal dimension (DB), and A is a constant. Practically, a graph of log(N(r))
versus log(r) is plotted and a best-fit regression line is drawn using the least square method, while the
slope of the regression line represents the box-counting fractal dimension (Figure 3d).
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Figure 3. Schematic diagram of box-counting method for measuring a fractal linear pattern: (a) 8 boxes
containing parts of target lines with box size r = 4; (b) 21 boxes counted with box size r = 2; (c) 57 boxes
counted with box size r = 1; and (d) log–log plot revealing the power law relationship of counted box
number N(r) and box size r, obtaining box-counting fractal dimension DB = 1.2653.

The study area was divided into 30 subregions with side lengths of 40 km × 40 km (see Figure 2a
for the location and ID of each subregion), and the routine of the box-counting method was performed
in each subregion. It is important to note in the implementation that (1) the grids with different box
size r should cover exactly the same area, and (2) the box size r should be determined in a reasonable
range so that the minimum size can reflect the variance of scales and the maximum size cannot exceed
the total size of the study region [26]. On the basis of this consideration, the scaling box sizes in this
study were determined as 0.5 km, 1 km, 2 km, 5 km, and 10 km in the iterative processes.

2.3. Weights of Evidence Method

The WofE method is a data-driven statistical method which was originally developed for medical
diagnosis, and was then introduced into geoscientific fields for studying the relative importance of
geological objects and minimizing subjective bias [42,43]. The WofE method offers a quantitative
measurement of spatial association between a given geological feature and target occurrences,
e.g., mineral deposits, prospects, or geological anomalies [44].

A detailed mathematical description of the WofE method can be found in Bonham-Carter (1994).
In the GIS-based application of an ore-related analysis, the WofE analysis is implemented on the basis
of binary pattern using a log–linear format of the Bayesian probability model [42]. Firstly, the study
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area is divided into T units of equal size, among which D units are occupied by mineral occurrences.
The prior probability can be defined as

Pprior = P(D) =
D
T

, (2)

and the relative importance of spatial association between geological feature Bi and mineralization is
estimated by a pair of weights, namely, the positive weight W+ and the negative weight W−, which can
be given by

W+ = ln

{
P(B|D)

P(B
∣∣D)

}
, W− = ln

{
P(B

∣∣D)

P(B
∣∣D)

}
, (3)

where P() denotes the corresponding probability; B and B are the presence and absence of geological
features; and D and D are the presence and absence of mineral occurrences. P(B|D), for example,
represents the probability of B occurring given the presence of D. The contrast C is defined as an
overall measurement of spatial correlation, which is given by

C = W+ −W−. (4)

A geological feature is considered to be closely related to mineral occurrences if their contrast C is
greater than a threshold value of 0.5 [26]. Finally, the posterior odds can be calculated by the following
equation [42]:

Oposterior = exp

{
ln
[

P(D)

1− P(D)

]
+

n

∑
j=1

Wj

}
, (5)

where Wj is the weight of geological feature j, and the posterior probability can be given by [42]

Pposterior =
Oposterior

1 + Oposterior
. (6)

In order to evaluate the uncertainty of the contrast C, the Studentized contrast, obtained from a
Student t-test, is employed here and defined as

Cs =
C

S(C)
=

C√
S2(W+) + S2(W−)

(7)

where S() denotes the standard deviation of the corresponding parameter. Practically, a widely accepted
threshold is determined as 1.96, above which spatial association of analyzed features can be considered
statistically significant [42].

Taking into consideration the scale of the original data map and the minimum distance between
neighbor mineral occurrences, a cell of 2 km × 2 km was used in the WofE calculation in this study.
A total of 16,800 cells were established for the subsequent WofE analysis.

3. Results and Discussion

3.1. Selection of Ore-Related Faults

The fracture system in the SJP is complex. Although it has been well documented that the NE
and EW-trending basement faults control the emplacement of Yanshanian granites and the following
tungsten mineralization [32,34,39], the densely distributed faults outcropped in the shallow rocks
may be the products of tectonic events developed in various episodes spanning from Caledonian to
Yanshanian [36,45]. In order to identify the roles of these faults in different orientations as related
to tungsten mineralization, a distance distribution analysis has been performed. In this analysis,
we calculated the cumulative relative frequency according to a given distance from a certain geological
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feature to (1) mineral occurrence locations (denoted by DM) and (2) non-occurrence locations (denoted
by DN). DN represents a naturally random probability density distribution of a regular pattern
within the buffering range of the given distance, while DM indicates a non-random probability
density distribution of the mineralized pattern, characterized by unevenly clustering within the range.
The difference D, which is calculated by (DM − DN), represents how much the cumulative frequency of
mineral occurrences (i.e., DM) is higher or lower than that expected due to chance (i.e., DN), implying
a positive or negative spatial distribution of the analyzed geological feature with mineralization.

The results show that NE–NNE-trending and EW-trending faults have positive spatial association
with tungsten occurrences. According to the curve of D, there is an at most 15% higher occurrence
frequency than that which would be expected due to change within 600 m from NE–NNE-trending
faults (Figure 4a). Within 3200 m from EW-trending faults, there is an at most 28% higher
occurrence frequency than that which would be expected (Figure 4b). These results are reasonable
as NE–NNE-trending faults are more likely syn-metallogenic structures controlling the localization
of ore deposits in a local scale [46], and the EW-trending faults were formed and reactivated several
times in different tectonic episodes before Yanshanian [32,46], more possibly as a regional-scale factor,
show their controlling effect in a wider range. The NW–NNW-trending faults, however, exhibit
a very weak spatial association with tungsten occurrences. Within the 3000 m from NW-trending
faults, there is an at most 3% higher occurrence frequency than expected (Figure 4c). The nearly
random distribution pattern implies that NW–NNW-trending faults and tungsten mineralization are
spatially independent. Combined with the phenomenon that NE–NNE-trending and EW-trending
faults are usually cut by NW–NNW-trending faults in many locations (Figure 2b), it is plausible that
NW–NNW-trending faults were not activated to form favorable pathways for ore-forming fluid during
the metallogenic period or they were formed after the mineralization. Thus, only NE–NNE (marked in
red in Figure 2b) and EW (marked in blue in Figure 2b) trending faults, as well as the intersections of
the faults oriented in these directions (marked in red in Figure 2c), were employed for the fractal and
WofE analyses in the following sections.
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Figure 4. Graphs of cumulative frequency of distances from tungsten occurrence (DM)
and non-occurrence locations (DN) to (a) NE–NNE-trending faults; (b) EW-trending faults;
and (c) NW–NNW-trending faults. D is the difference between DM and DN.

3.2. Fractal Characteristics of Geological Features

The box-counting fractal dimensions of regional faults yield a variation of 1.389 in Region 20
to 0.938 in Region 25 (Table 1). There is a good correlation between the fractal dimensions of faults
and the tungsten occurrences. The three regions containing the highest fractal dimensions pertain
to the Ganxian-Yudu (Region 20, DB = 1.389), the Chongyi-Dayu-Shangyou (Rigion 17, DB = 1.373),
and the Ningdu-Xingguo (Region 04, DB = 1.341) ore districts (Table 1), followed by Region 27 with
the sixth highest fractal dimension (1.319) belonging to the Longnan-Dingnan-Quannan ore district.
More specifically, a contour map was utilized to visualize the variation of fractal dimensions in the
study area, which is generated by spatial interpolation after assigning calculated fractal dimensions to
the centers of the corresponding subregions. As depicted in Figure 5, most of the tungsten occurrences
are located in those regions where the fractal dimensions of faults are greater than 1.2. However,
it is notable that Region 13, pertaining to the Ganxian-Yudu ore district, also contains nine tungsten
occurrences but has a relatively low value of fractal dimension (DB = 1.148). The reason for this may be
the lack of effective outcrop, as Ganzhou City, the biggest city of Southern Jiangxi Province, is situated
in this area.
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Table 1. Result of box-counting fractal analyses of geological features.

Region ID
Fault Fault Intersection Yanshanian Granites Tungsten Occurrences

DB R2 DB R2 DB R2

01 1.150 0.9991 Null Null 1.846 0.9993 0
02 1.074 0.9951 Null Null 1.476 0.9915 0
03 1.188 0.9939 Null Null 1.859 0.9999 2
04 1.341 0.9938 0.468 0.9164 1.799 0.9988 4
05 1.110 0.9940 Null Null 1.521 0.9971 0
06 1.230 0.9989 0.293 0.9852 1.712 0.9985 1
07 1.002 0.9943 Null Null 1.682 0.9967 0
08 1.338 0.9980 0.249 0.9683 1.545 0.9976 2
09 1.326 0.9998 0.190 0.9212 1.729 0.9976 1
10 1.292 0.9996 0.134 0.8369 Null Null 0
11 1.259 0.9998 Null Null 1.769 0.9994 6
12 1.194 0.9997 0.149 0.8895 1.553 0.9984 6
13 1.148 0.9996 0.151 0.8435 1.737 0.9993 9
14 1.221 0.9997 0.245 0.9560 1.322 0.9930 7
15 1.233 0.9992 Null Null 1.159 0.9636 0
16 1.237 1.0000 Null Null Null Null 0
17 1.373 0.9993 0.360 0.8976 1.602 0.9982 41
18 1.138 0.9995 Null Null 1.429 0.9950 5
19 1.209 0.9996 0.273 0.6807 1.639 0.9981 8
20 1.389 0.9991 0.268 0.8691 1.240 0.9848 8
21 1.164 0.9996 Null Null 1.364 0.9547 0
22 0.969 0.9915 Null Null 1.847 0.9996 0
23 1.274 0.9983 Null Null 1.786 0.9996 2
24 1.292 0.9987 0.216 0.8553 1.719 0.9984 0
25 0.938 0.9977 Null Null 1.633 0.9987 0
26 1.031 0.9964 Null Null 1.739 0.9977 0
27 1.319 0.9998 0.313 0.9063 1.601 0.9958 12
28 1.276 0.9998 0.225 0.8815 1.749 0.9994 2
29 1.106 0.9970 0.151 0.8435 1.814 0.9998 1
30 1.175 0.9990 Null Null 1.668 0.9981 1

DB: box-counting fractal dimension; R2: coefficient of determination of regression line; and Null: indicating the
region containing no corresponding geological features or no variation with different scales.

The fractal dimensions of fault intersections vary from 0.468 in Region 4 to 0.134 in Region 10,
and exhibit a close correlation with tungsten occurrences. As illustrated in Figure 6, most of
the mineral occurrences are distributed in the regions where fractal dimensions are greater than
0.16. The low threshold value is due to null values caused by insufficient fault intersection of
NE–NNE- and EW-trending faults. The maximum value of the fractal dimension is derived from
Region 4, which belongs to the Ningdu-Xingguo ore district. Region 17 (DB = 0.360) in the
Chongyi-Dayu-Shangyou ore district, Region 27 (DB = 0.313) in the Longnan-Dingnan-Quannan
ore district, and Regions 19 (DB = 0.273) and 20 (DB = 0.268) in the Ganxian-Yudu ore district all have
high fractal dimensions, ranking as the top six of all subregions.
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coincide with four main ore districts in the SJP, suggesting a regional control of areas with high
structural fractal dimension on tungsten mineralization.

The fractal dimensions of Yanshanian granite intrusions range from 1.859 in Region 03 to 1.159 in
Region 15. It seems that the correlation between Yanshanian intrusions and tungsten occurrences is
weak. Regions 17, 27, 19, 20, and 13, which contain dense tungsten occurrences, have intermediate
values of fractal dimensions (Table 1). As shown in Figure 7, the tungsten occurrences are distributed
in a wide range with irregularly varying fractal dimensions rather than in a clustering trend around
some concentrated centers of high fractal dimension.
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The complexity of geological features related to mineralization can be effectively and
quantitatively measured by fractal analysis. Nonetheless, the correlation between these geological
features and mineral occurrences can only be discussed in a qualitative way. To overcome this
drawback, we have conducted a WofE analysis to quantitatively evaluate the correlation of geological
features and mineralization.

3.3. Quantitative Measurement of Spatial Association and Implications for Further Prospectivity

Buffer analysis and Student’s t-test were employed to determine the optimum influencing range
of geological features used in the WofE analysis, based on which the spatial associations between these
geological features and tungsten occurrences have been measured and discussed.

3.3.1. Determination of Buffer Range

The range of buffer distances is crucial for the buffer analysis and would greatly affect the
subsequent WofE calculation. An unlimited buffer distance may lead to the overestimation of the
influencing effect of geological features. In this study, we determined the buffering range based on the
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fractal results of tungsten occurrences. As depicted in Figure 8, the known mineral occurrences
in the SJP show a bifractal pattern, i.e., two regression lines must be drawn in order to fit the
points representing the power law relationship of box number and box size. This indicates that
the scale-invariance distribution of occurrences exists in two ranges, implying that the nonlinear
clustering of mineral occurrences was controlled by different mechanisms. The breakpoint of two
regression lines refers to a box size of 3723 m, which can be considered as a range of local clustering
of mineral occurrences. Accordingly, the buffer analysis was performed in various buffer distances
ranging from 0 to 3500 m.
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3.3.2. Structure

The NE–NNE- and EW-trending faults show a strong correlation with tungsten occurrence.
The contrast exhibits a generally rising curve with increasing buffer distances, reaching a peak value
of 2.707 at the distance of 3500 m (Figure 9a). The Studentized contrasts maintain high values
fluctuating around 7, which are remarkably greater than 1.96 and thus imply statistical significance
of the fault–mineralization association. The spatial association between the fault intersections and
tungsten mineralization is relatively weaker but still statistically significant, delineated by a peak
contrast of 1.564 and a maximum Studentized contrast of 8.127 at a 3500 m buffer (Figure 9b). Therefore,
the NE–NNE-trending and EW-trending faults with a buffer distance of 3500 m, as well as the
intersections of these faults with the same buffer range, are selected as evidence layers for the following
WofE analysis.

The results from WofE analysis are coincident with those from fractal analysis of faults and
fault intersections which exhibit a close correlation between the areas with high fractal dimension
and the locations of tungsten occurrences. From a generalized fractal point of view, higher fractal
dimensions of faults and fault intersections indicate a more spatially complex distribution of the fault
system, resulting in high degrees of interconnectivities of fractures and high permeability of rocks,
which are both beneficial for the focusing of ore-forming fluid and thus for facilitating the formation of
hydrothermal deposits. This geodynamic condition is particularly critical for the vein-type tungsten
deposits in the SJP.



Minerals 2017, 7, 243 13 of 20

3.3.3. Granites

Yanshanian granites exhibit a strongly positive association with tungsten occurrences within
the buffer distance of 2000 m, as indicated by a contrast value of 1.761 (Figure 9c). The contrast
reaches a maximum value of 2.117 at the 3500 m buffer, which makes a favorable evidence layer for
the WofE analysis.

It is interesting to note that remarkably inconsistent inferences have been drawn from the fractal
results and the WofE analysis. The fractal analysis suggests a weak correlation between the Yanshanian
granites and mineral occurrences, while the WofE analysis shows a strong granites–mineralization
association. This is probably due to the fact that both the fractal analysis and WofE method are
sensitive to the degree of granite outcrop. Different levels of surface cover may affect the evaluation
of granites on mineralization. In the fractal analysis, only those regions with granite outcrop were
counted in the box-counting method, disregarding the regions with concealed granite intrusions at
depth. In the WofE method, the buffer analysis was conducted with a consideration of the potential
influencing range of granite outcrop, reducing the shielding effect of cover to some extent. Since the
close association of Yanshanian granites and tungsten mineralization has been strongly supported by
the WofE analysis and also many previous geochronological studies [34,35,37,38], the fractal results of
Yanshanian granites will be excluded in the subsequent analysis.
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Figure 9. Plots of buffer analysis and Student t-test for determining the optimum controlling range of
(a) regional faults; (b) fault intersections; (c) Yanshanian granites; (d) magnetic anomalies; (e) tungsten
anomalies; (f) iron anomalies; and (g) manganese anomalies. The contrast = 0.5 dotted line is regarded
as the threshold above which the spatial association between two analyzed features can be considered
as strong, while the Studentized contrast = 1.96 dotted line is regarded as the threshold above which
the spatial correlation can be considered as statistically significant.

3.3.4. Geophysical Anomalies

As the intensity of granites–mineralization association may be underestimated in the fractal
and WofE analyses by the shielding effect of cover, we introduced magnetic anomalies to study
the correlation of concealed granites with tungsten occurrences because magnetic highs could be
interpreted to indicate areas of intrusive granites at depth [47] (Figure 10a). The magnetic anomalies
show a positive association with tungsten occurrences beyond the buffer distance of 1500 m, reaching
a peak contrast of 1.243 at a 3000 m buffer (Figure 9d). The greatest contrast value of 6.109 at this buffer
supports the statistical significance of the contrast. Thus, the magnetic anomalies with a 3000 m buffer
are considered as an evidence layer in the WofE analysis.



Minerals 2017, 7, 243 15 of 20

Minerals 2017, 7, 243  14 of 19 

 

 
Figure 10. Geophysical and geochemical anomalies used for weights-of-evidence (WofE) analysis:  
(a) magnetic anomalies; (b) tungsten anomalies; (c) iron anomalies; and (d) manganese anomalies. 

3.3.5. Geochemical Anomalies 

In this study, tungsten anomalies were extracted from geochemical maps of Nanling range [48] 
and used for WofE analysis (Figure 10b). The result indicates that the tungsten anomalies have the 
strongest association with tungsten occurrences, reaching a peak contrast of 4.638 and a 
Studentized contrast of 9.101 (Figure 9e).  

The iron and manganese anomalies (Figures 10c,d) were also taken into consideration because 
they are important components of wolframite which dominates the tungstate of the ores in the SJP. 
These anomalies were commonly neglected in the previous mineral prospectivity studies in this 
area since the point of view that iron and manganese in the wolframite are derived from magmatic 
fluid had been widely accepted. However, Lecumberri-Sanchez et al. demonstrated in a newly 
published paper that a combination of soluble tungsten from magmatic fluid as well as iron and 
manganese contributed by host rock exerts a decisive control on wolframite precipitation [49]. They 
inferred that the predominance of ferberite (FeWO4) in the tungsten ores at Panasqueira (Portugal) 
is due to the iron enrichment in the host rock. Nevertheless, the buffer analyses of iron and 

Figure 10. Geophysical and geochemical anomalies used for weights-of-evidence (WofE) analysis:
(a) magnetic anomalies; (b) tungsten anomalies; (c) iron anomalies; and (d) manganese anomalies.

3.3.5. Geochemical Anomalies

In this study, tungsten anomalies were extracted from geochemical maps of Nanling range [48]
and used for WofE analysis (Figure 10b). The result indicates that the tungsten anomalies have the
strongest association with tungsten occurrences, reaching a peak contrast of 4.638 and a Studentized
contrast of 9.101 (Figure 9e).

The iron and manganese anomalies (Figure 10c,d) were also taken into consideration because
they are important components of wolframite which dominates the tungstate of the ores in the SJP.
These anomalies were commonly neglected in the previous mineral prospectivity studies in this area
since the point of view that iron and manganese in the wolframite are derived from magmatic fluid
had been widely accepted. However, Lecumberri-Sanchez et al. demonstrated in a newly published
paper that a combination of soluble tungsten from magmatic fluid as well as iron and manganese
contributed by host rock exerts a decisive control on wolframite precipitation [49]. They inferred
that the predominance of ferberite (FeWO4) in the tungsten ores at Panasqueira (Portugal) is due
to the iron enrichment in the host rock. Nevertheless, the buffer analyses of iron and manganese
distribution in the SJP produced a different result. The spatial association of iron anomalies and
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tungsten mineralization is very weak, with a maximum contrast value of 0.656 that is slightly higher
than the threshold value of 0.5 (Figure 9f). In contrast, manganese anomalies show a strong correlation
with tungsten occurrences, delineated by a peak contrast of 2.194 and the corresponding Studentized
contrast of 9.03 at the optimum distance of 3000 m (Figure 9g). This result is in good agreement
with an inference from an unpublished work conducted by Wu (one of the co-authors of this paper).
He found that manganese enrichment, caused by the presence of a considerable amount of pyrophanite
(MnTiO3), extensively occurs in the altered host rocks around wolframite-bearing quartz veins in the
SJP. Our findings support the tungsten ore-forming contribution made by iron and manganese in the
host rock, and also infer that the high manganese anomalies could be considered as an important
indicator for tungsten prospecting in the study area.

It can be seen from Figure 9 and Table 2 that the analyzed geological features show a statistically
significant association with tungsten mineralization, and can be arranged in the following order
according to the intensity of spatial association delineated by their contrasts: tungsten anomalies >
faults > manganese anomalies > Yanshanian granites > fault intersections > magnetic anomalies >
iron anomalies. The contrast and Studentized contrast values show the statistical significance of the
correlation of these features with tungsten occurrences. These features with corresponding buffers
can be considered as sound evidence layers for WofE calculation. A predictive map was created by
spatial interpolation based on calculated posterior probabilities assigned to every cell in the study area
(Figure 11).
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Table 2. Resultant indices calculated from buffer analysis and Student’s t-test.

Geological Feature Optimum Buffer/m W+ W− C Cs

Faults 3500 0.632 −2.075 2.707 6.928
Fault intersections 3500 1.135 −0.429 1.564 8.127

Yanshanian granites 3500 0.998 −1.120 2.117 9.420
Magnetic anomalies 3000 0.587 −0.655 1.243 6.109

W anomalies 1000 1.545 −3.093 4.638 9.101
Fe anomalies 1500 0.471 −0.185 0.656 3.284

Manganese anomalies 3000 0.919 −1.274 2.194 9.030

W+: positive weight; W−: negative weight; C: contrast; Cs: Studentized contrast.

3.4. Predictive Targets Delineated by Combined Fractal and WofE Results

As the results from fractal analysis and WofE analysis exhibit significantly close associations with
the tungsten mineralization, the integration of their results provides some important implications for
further prospecting in this area. As shown in Figure 11, the areas with high posterior probabilities
derived from WofE analysis are overlain by regions with high box-counting fractal dimensions of
faults and fault intersections (i.e., top 6 regions out of 30 subregions with highest fractal dimensions),
from which three levels of prospecting favorability are classified as follows.

• Prospectivity I: zones delineated by high posterior probabilities in combination with high
fractal dimension of faults and high fractal dimension of fault intersections. Ten Level I zones
are extracted and filled with cross lines in Figure 11. A total of 70 tungsten occurrences,
occupying 58.47% of all the occurrences in the SJP, fall within or proximal (<3 km) to these
zones. The occurrence density of level-I zones reaches a value of 0.0325/km2 compared with a
background value of 0.0025/km2. It is inferred that Zones I-4, I-5, and I-7 containing no occurrence
at present have great potential of prospectivity and can be considered as the most favorable targets
in future exploration.

• Prospectivity II: zones with high posterior probabilities excluding Level I zones. A total of 25
tungsten occurrences are included in these zones, reaching an occurrence density of 0.0078/km2

which is three times the value of background. Level II zones have good prospective potential and
are considered as favorable targets in future exploration.

• Background: zones with intermediate to low posterior probability. Twenty mineral occurrences
are located in zones with intermediate posterior probability, accounting for an occurrence density
of 0.0016/km2. The remaining 4 occurrences are situated in zones with low posterior probability.
These zones should not be considered for exploratory targeting.

4. Conclusions

In this study, the spatial association between certain geological features and tungsten
mineralization in the SJP is investigated with the help of fractal analysis and the WofE method.
The fractal box-counting analyses of faults and fault intersections indicate that most of the tungsten
occurrences in the SJP are distributed in those regions with high fractal dimensions, implying significant
controls of fault complexity on tungsten mineralization. This constraint may be attributed to the
increasing interconnectivity and permeability of rocks indicated by high fractal dimensions which are
favorable for the focusing of ore-forming fluid and the formation of hydrothermal deposits. The WofE
analyses yield a quantitative estimation of the correlation between geological features and tungsten
occurrences, which illustrates that tungsten anomalies, NNE–NE- and EW-trending faults, manganese
anomalies, and Yanshanian granites have high contrast values, suggesting that these features are
strongly associated with tungsten mineralization and can be considered as important indicators for
mineral prospectivity.
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The predictive map produced by WofE approach together with fractal dimensions can provide
intuitive guides for indicating the locations of potential tungsten mineralization. Regions identified
by high posterior probability in conjunction with high fractal dimensions of both faults and fault
intersections have the greatest potential for further tungsten exploration, especially for those regions
where no deposits have been discovered.
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