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Abstract: Kaolinite intercalation compounds were prepared by intercalating fatty acids and
quaternary ammonium salts into kaolinite layers, using methanol-grafted kaolinite as the precursor.
Meanwhile, massive lamellas were exfoliated during the intercalation process. The interlayer
structure, chemical bonding and morphology of kaolinite before and after intercalation were
characterized in detail. As the alkyl chain length increases, the basal spacing of kaolinite increases
gradually. The morphology analysis indicated that the ionic type of intercalation agent has a more
important influence on the morphology change of kaolinite than their alkyl chain length. The initial
kaolinite layers were mostly transformed into nanoscrolls in the product intercalated with stearyl
trimethyl ammonium chloride (STAC). The present study demonstrates the arrangement model
of intercalated molecules between kaolinite layers using X-ray diffraction (XRD) in conjunction
with Fourier transform infrared (FTIR) and stereochemical calculation. On the basis of a probed
arrangement model, the mechanism of effect of the alkyl chain length and ionic type of intercalation
agent on the morphology of exfoliated kaolinite is suggested.
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1. Introduction

Kaolinite is a widely studied and applied class of phyllosilicate minerals [1–6]. Because of its
specific physical and chemical properties, it has been used as a pigment for coatings, a filler for paper
and polymers, an extender for water-based paints and inks, and a major component of ceramics [7–11].
Recently, the exfoliation of kaolinite has received a lot of attention because of its ability to greatly
enhance certain properties of the resulting nano kaolinite. Typically, existing exfoliating methods
include high-pressure extrusion, mechanical grinding, chemical intercalation, and so on [12–14].
Among these, chemical intercalation is considered the most effective way to achieve the exfoliation
of kaolinite.

It is well known that the research on the intercalation of kaolinite began in the 1960s. However,
the negligibly small cation-exchange capacity of kaolinite makes it very difficult to intercalate organic
guest species into basal space. This is because any two contiguous layers of kaolinite are linked
through strong hydrogen bonds arising from the interactions between Al–OH and Si–O groups.
The limited guest species that are directly intercalated, only including N-methylformamide [15],
dimethylsulfoxide [16,17], urea [18], potassium acetate [19,20], and hydrazine hydrate [21], can enter
into the kaolinite interlayer directly. With explorations into the intercalation mechanism of kaolinite,
however, an intercalation method has been developed from early direct intercalation to displacement
and entrainment intercalation. Simultaneously, the variety of the guest species that are intercalated into
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kaolinite layers has also been extended. As an intermediate to further intercalate large guest species,
methoxy-modified kaolinite has been paid great attention to [15,22–25]. So far, the intercalation
of kaolinite by inserting series alkylamines [15,22,26], series quaternary ammonium salts [23,27],
series silanes with an amino group, benzyl alkyl ammonium chlorides [28,29], series fatty acids and
salts [30,31] into kaolinite layers by taking a methanol-grafted kaolinite compound as a precursor
has been successfully performed. When n-docosanamine was intercalated into kaolinite, the basal
spacing of the corresponding intercalation compound was the largest, increasing up to 6.42 nm [26].
It is widely accepted that remarkable interfacial adhesion, such as hydrogen bonds, van der Waals
forces and dipole–dipole interactions, impedes kaolinite lamella exfoliation. However, the organic
guest species that are intercalated into kaolinite do not only increase the interlayer spacing greatly but
also destroy hydrogen bonds between kaolinite lamellas effectively. The weaker interfacial adhesion
makes kaolinite lamella exfoliation easier.

Additionally, an intercalation agent can be divided into two types depending on the characteristics
of the charge generated, that is, an anionic or cationic intercalation agent. Expanded interlamellar
spacing could weaken the binding force of kaolinite lamellas. This provides an effective way for the
exfoliation of kaolinite lamella. During the exfoliation process, the morphology of kaolinite changes
from platy stacks particles to nanoscrolls [32]. Moreover, previous research indicates that the change
in kaolinite morphology is caused by intercalation with cationic long-chain macromolecules [23,33].
On the contrary, an anionic intercalator would not. Thus, in intercalation exfoliation of kaolinite,
interlayer structure and morphology changes are closely related with the ionic type of the intercalation
agent. However, research on the relationship between the type of intercalation agent and kaolinite
interlayer structure as well as morphology has not been reported yet.

In this paper, the changes in the kaolinite interlayer structure and morphology were studied
by taking series of fatty acids and quaternary ammonium salts as intercalation agents. The selected
fatty acids were anionic intercalation agents, while the quaternary ammonium salts were intercalation
agents. The resulting products were evaluated by X-ray diffraction (XRD), Fourier transform infrared
(FTIR) spectroscopy and transmission electron microscopy (TEM). Finally, the arrangement model of
intercalated molecules in kaolinite lamellas was determined using XRD in conjunction with FTIR and
stereochemical calculation. The mechanism of the effect of anionic and cationic intercalation agents on
the morphology of exfoliated kaolinite was explored.

2. Materials and Methods

2.1. Materials

Classical kaolinite (denoted as K) with high purity was obtained from Zhangjiakou, China.
Its Hinckley index of 1.31 indicated a high degree of crystallinity. The chemical composition of the
sample was the same as that of the reference [27]. High-purity (purities of greater than 98%) reagents
were obtained from Sinopharm Chemical Regent Company, Ltd. (Shanghai, China), and decyl trimethyl
ammonium chloride, dodecyl trimethyl ammonium chloride, tetradecyl trimethyl ammonium chloride,
hexadecyl trimethyl ammonium chloride, and stearyl trimethyl ammonium chloride were denoted as
DETAC, DTAC, TTAC, HTAC, and STAC, respectively.

2.2. Preparation

The kaolinite/dimethylsulphoxide (DMSO) intercalation compound (denoted as K-D) was
prepared according to the method described by Olejnik et al. [16]. The preparation of methoxy-grafted
kaolinite compound (K-M) followed the procedure described by Komori et al. [15]. Afterwards,
the K-M was centrifuged and closed in a test tube to prevent methanol evaporation. To prepare
the kaolinite/quaternary ammonium salts intercalation compounds (K-Qas), approximately 1 g of
methoxy-modified kaolinite was added into a 20 mL of 1 mol/L solution of quaternary ammonium
salts in methanol and stirred under room temperature for 72 h. The precipitations were centrifuged
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and the excess quaternary ammonium salt was removed by washing six times with fresh ethanol.
Then the resulting products were dried at 80 ◦C for 24 h. The dried products were denoted as K-Qa-Cn

(n = 4, 6, 8, 10, 12, 14, 16, 18). To prepare the kaolinite/fatty acid intercalation compounds (K-Fas),
a 1 mol/L solution of fatty acid in water was prepared at 80 ◦C firstly; 2 g of wet methoxy-modified
kaolinite was added into 20 mL of the prepared solution and stirred for 72 h at the same temperature.
The resulting products were washed with water to remove the additional fatty acid in the surface and
then dried at 80 ◦C for 24 h. In this way, kaolinite/fatty acid intercalation compounds were prepared.
The dried products were denoted as K-Fa-Cn (n = 10, 12, 14, 16, 18).

2.3. Characterization

XRD patterns were recorded with CuKα (λ = 1.54178 Å) irradiation on a D/max-2500PC
diffractometer from RIGAKU Company, Akishima, Japan. Operational conditions of 40 KV, 100 mA
and from 1◦ to 15◦ were used. Typically, one XRD run took 14 min. FTIR spectra were taken by using
a Nicolet6700 FTIR spectrometer made by Thermo Company, Waltham, MA, USA. The FTIR test was
performed in the mid-IR range from 4000 to 600 cm−1 using 32 scans with a resolution of 4 cm−1.
The morphological study of the prepared samples was conducted by a FEI-Tecnai G2 F30 S-TWIN
TEM (FEI Company, Eindhoven, The Netherlands), operating at 300 kV for the accelerating voltage.

3. Results and Discussion

3.1. XRD Analysis

The interlayer structure of the kaolinite intercalation compounds with different guest species can
be conveniently monitored by XRD. In this study, the dependence of the interlayer structure on the
chain length has been investigated. Because the XRD patterns of K-D and K-M have been reported
in previous literature [34], they are not presented in this paper. Figure 1 shows the XRD patterns of
kaolinite/fatty acid intercalation compounds and kaolinite/quaternary ammonium salt intercalation
compounds, respectively. XRD data of the intercalation products show that their basal spacings are
expanded to a length much longer than 0.72 nm, the basal spacing of K-Fas and K-Qas, indicating
that Fas and Qas intercalate into kaolinite layers. Figure 1 also displays that the 001 reflection of the
two types of intercalation compounds shifted to a low angle (2θ) with the increase in the alkyl chain
length. In the case of Fas, the XRD patterns presented a narrow and intense 001 reflection, suggesting
that the layer structure of kaolinite remains intact during the intercalation and exfoliation processes.
Moreover, reflection at 0.86 nm for K-Fas, corresponding to K-M, was still observed. This indicated
that the intercalation efficiency of fatty acids into kaolinite was incomplete. In addition, the other
reflections were assigned to the second- and third-order diffractions of K-Fas. The basal spacings
varied between 2.36, 2.79, 3.27, 3.68, and 4.13 nm in K-Da, K-La, K-Ma, K-Pa, and K-Sa, respectively.
Similarly, the interlamellar spaces of K-Qas varied between 3.66, 3.50, 3.80, 4.09 and 4.24 nm.

The d-spacing ∆d of different kaolinite intercalation compounds was obtained by using the value
of the d-spacing in the compound and subtracting that of the corresponding compound prepared with
an intercalation agent of less than two carbon atoms (Table 1). For K-Fas, the d-spacing ∆d varied
between 0.41 and 0.48 nm as the carbon atoms of the intercalator increased. Except for K-DTAC,
however, the d-spacing ∆d of K-Qas ranged between 0.15 and 0.30 nm. The dependence of the
d-spacing on the chain length revealed that the arrangement model of the fatty acid and quaternary
ammonium salt in kaolinite lamellas was similar. However, the rate of the interlamellar spacing
increase was related to the type and properties of the guest species. For both complexes, the relation
curves between the basal spacing and carbon number are presented in Figure 2. In comparison with
K-Qas, it was found that a linear relationship between the number of carbon atoms of the fatty acid
and the kaolinite interlamellar spacing was more apparent.
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The results show that the difference between K-Qas and K-Fas in the arrangement model of
the guest species may be due to the K-Qas being easily influenced by the solvent concentration and
temperature of the intercalator.Minerals 2017, 7, 249 4 of 12 
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Figure 1. XRD patterns of (a) kaolinite/fatty acid intercalation compounds (K-Fas) and (b)
kaolinite/quaternary ammonium salts intercalation compounds (K-Qas).

Table 1. Basal spacing values (d001), expansion of d-spacing ∆d of different kaolinite intercalation
compounds, and molecular chain length of intercalated guest species.

Fatty Acid Molecular Chain
Length (Å)

d001
(Å)

4d
(Å)

Quaternary
Ammonium Salt

Molecular Chain
Length (Å)

d001
(Å)

4d
(Å)

Decanoic acid 12.42 23.6 - DETAC 14.60 36.6 -
Lauric acid 14.97 27.9 4.3 DTAC 17.15 35.0 −1.6

Myristic acid 17.52 32.7 4.8 TTAC 19.70 38.0 3.0
Palmitic acid 20.07 36.8 4.1 HTAC 22.25 40.9 2.9
Stearic acid 22.62 41.3 4.5 STAC 24.80 42.4 1.5
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Figure 2. Relation curves of basal spacing and number of carbon atoms in the alkyl chain:
(a) kaolinite/fatty acid intercalation compounds (K-Fas); (b) kaolinite/quaternary ammonium salts
intercalation compounds (K-Qas).

3.2. Morphology Characteristics of Kaolinite upon Intercalation and Exfoliation

The transformation process of the kaolinite morphology from layer sheets to nanoscrolls by
intercalation and exfoliation treatment has been reported by previous literatures. However, the effect
of the guest species’ type and alkyl chain length on the change in the kaolinite morphology has
not been reported. TEM images of K and K-Qas with different alkyl chain lengths are illustrated in
Figure 3. As indicated by the TEM image of K, the raw kaolinite is mainly composed of a typical
pseudo-hexagonal morphology (Figure 3a). After the intercalation with K-Qas, the morphological
changes of kaolinite are clearly evident in the TEM images (Figure 3b–f). The TEM images of K-Qa-C4

and C6 products both show the mere existence of partially curled kaolinite layers. At a higher
magnification, it was clearly found that some semi-closed tubes exist in K-Qa-C6, which indicates that
the kaolinite layers were more easily exfoliated when intercalated with butyltrimethylammonium
chloride. As the chain length increased, the curl degree of kaolinite sheets increased and some kaolinite
sheets even curled into nanoscrolls. Moreover, the initial kaolinite particles were mostly transformed
to nanoscrolls in the product prepared with stearyl trimethyl ammonium chloride (STAC; Figure 3f).
Although the validity of the summary of morphological data was limited by characterizations in
the microscopic observations, the change trend of the kaolinite morphology was sufficiently clear to
examine the effect of the alkyl chain length on the transformation of the kaolinite morphology.

The alkyl chain length of intercalators has a significant influence on the morphology change
of kaolinite in intercalation and exfoliation processes. Thus the effect of the intercalated molecules’
type on the transformation of the kaolinite morphology was examined. Figure 4 shows the TEM
images of K-Fa-C18 and K-Qa-C18 with a different magnification. Comparing with K-Fa-C18 (anionic
intercalators), the K-Qa-C18 samples showed a more extensive degree of rolling. They contained
some kaolinite layers with a recognizable pseudo-hexagonal morphology, some damaged layers,
thin plates and a large number of nanoscrolls. However, the TEM images of K-Fa-C18 products were
composited of a considerable number of platy particles and few partially curled kaolinite layers.
These morphological changes resulted from the incomplete exfoliating and curling of platy kaolinite
particles. From the above analysis, we know that the ionic type of the guest species has a significant
influence on the morphology change of kaolinite in intercalation and exfoliation processes. In order to
exclude alkyl-chain-length effects, the TEM images of K-Fa-C18 and K-Qa-C16 (Figure 3e) were selected
to be compared. It was clearly found that more nanoscrolls and semi-closed tubes or partially curled
kaolinite layers existed in K-Qa-C16.
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3.3. FTIR Analysis of Exfoliated Kaolinite

It is well known that FTIR spectroscopy is an important method to analyze group interactions.
In order to reveal the interactions of different types of guest species with kaolinite groups, the fatty
acid and quaternary ammonium salt were selected as anionic and cationic intercalated molecules.
Because the intercalation compounds used in this paper were prepared using K-M as an intermediate,
FTIR spectrograms of K, K-D and K-M are also shown in Figure 5. FTIR spectra of K-Fas and K-Qas
are shown in Figures 6 and 7, respectively. When fatty acids and quaternary ammonium salts were
introduced into the kaolinite layers, bands in the range of 2800–3000 cm−1 arose from the antisymmetric
and symmetrical CH2 stretching vibrations of the alkyl chains. In detail, the antisymmetric CH2

stretching vibrations of alkyl chains of quaternary ammonium salt shifted from 2924 to 2917 cm−1

with the increase in the carbon number of the alkylchains. However, kaolinite/fatty acid intercalation
compounds were almost unchanged. This indicated that the chemical environment of CH2 of fatty
acids in kaolinite layers was hardly affected. Bands at 3544 and 1651 cm−1, as a result of the OH
stretching and H–O–H bending vibrations of the water molecules adsorbed on the intercalators,
were observed. The IR spectrum of K-Fas exhibited new peaks at ~1700 cm−1, assigned to stretching
vibrations of C=O. In the case of K-Qas, bands at 1477 cm−1 arose from the bending vibrations of the
NH2 group.

As shown in Figure 5, the two bands at 3692 and 3620 cm−1 are the characteristic OH-stretching
vibration bands of K-M. The two bands were attributed to inner-surface hydroxyls (3692 cm−1) and
internal hydroxyls (3620 cm−1), respectively. Previous studies have confirmed that it is difficult
for the internal hydroxyls to be affected by the guest species intercalated into kaolinite interlayers.
In contrast, the inner-surface hydroxyls were easily influenced by intercalation and modification
processes. After methoxy-grafted kaolinite compounds reacted with fatty acids and quaternary
ammonium salts, stretching vibration peaks of the inner-surface hydroxyl group varied similarly
(Figures 6 and 7). The inner-surface hydroxyl stretching bands of K-Fas and K-Qas all increased
sharply and shifted to a high wavenumber. However, the positions of internal hydroxyls at 3620 cm−1

had nearly no change between the two processes. On the other hand, the IR spectra of both compounds
exhibited some slight differences in the shape of the bands at 3620 cm−1. The characteristic peak
of K-Fas was sharper than that of K-Qas, reflecting that quaternary ammonium salt interacted with
internal hydroxyl groups of kaolinite. This may be caused by the insertion of –CH3 at the N-end of
quaternary ammonium salt into ditrigonal pyramid caves of kaolinite silica tetrahedron.
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Figure 7. FTIR vibration spectra of kaolinite/quaternary ammonium salts intercalation compounds
(K-Qas).

The IR bands in the range of 900–912 cm−1 correspond to the bending vibration peak of the internal
surface hydroxyl group of kaolinite. Compared with the starting kaolinite (Figure 5), the bending
vibration bands of Al–OH shifted to a low wavenumber in the spectra of K-Fas, and their intensities
decreased. However, there were slight changes for K-Qas. These differences indicated that the fatty
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acids had more influence on the surface hydroxyl group of kaolinite than the quaternary ammonium
salts. In other words, the interaction between the carboxyl groups of the fatty acid and the inner-surface
hydroxyl groups of kaolinite was stronger.

On the basis of the spectrum of the starting kaolinite, the band at 1115 cm−1 was assigned to the
stretching vibrations of apical Si–O. After intercalation, the stretching vibrations of apical Si–O were
perturbed by the guest species. It was observed that the band at 1115 cm−1 shifted to 1125 cm−1 and
then persisted at the same position in K-Fas (Figure 6). For K-Qas, the bands at 1124, 1116, 1079, 1113,
and 1118 cm−1 were assigned to the apical Si–O stretching band. This implied that the apical Si–O
was affected by the intercalation with quaternary ammonium salts. The bands at 1040 and 1010 cm−1

observed for K-M were assigned to the in-plane vibrations of Si–O–Si. After kaolinite had intercalated
with the fatty acids, the bands at 1040 and 1010 cm−1 did not shift. However, when kaolinite was
intercalated with quaternary ammonium salts, the 1040 and 1010 cm−1 bands shifted with different
levels (Figure 7). In other words, the quaternary ammonium salts caused more shifts than the fatty
acid. This difference might imply that the quaternary ammonium salts interacted with the top oxygen
of the silica tetrahedron. On the other hand, the characteristic peak at ~1040 cm−1 in K-Fas was sharper
than for F-Qas.

As mentioned in the above analysis, both fatty acids and quaternary ammonium salts were
intercalated into kaolinite successfully. Compared with K-Fas, quaternary ammonium salt molecules
not only interacted with the internal surface hydroxyl groups of kaolinite but also with Si–O
significantly. In the case of K-Fas, the fatty acids mainly interacted with the internal surface hydroxyl
groups of kaolinite, and the Si–O was affected slightly.

3.4. Discussion on the Morphology Changes of Exfoliated Kaolinite

On the basis of the morphology analysis, we know that the alkyl chain length and ionic type
have a great effect on the change in kaolinite morphology. During the intercalation and exfoliation
processes, the kaolinite layers transformed from platy particles to nanoscrolls. The driving force for
kaolinite curling from sheets to nanoscrolls arose from the lateral misfit of the smaller octahedral and
larger tetrahedral sheet. However, the kaolinite layers needed to be exfoliated firstly. It is well known
that kaolinite layers are strongly held by hydrogen bonds, electrostatic forces and van der Waals
forces. When kaolinite intercalated with guest species, the hydrogen bonds were broken significantly
and provided free space for kaolinite sheets to exfoliate or curl up [32,35]. Consequently, it is easy
to understand the effect of the alkyl chain length on the morphology of kaolinite sheets. With the
lengthening in the molecular chain of the intercalator and a widening kaolinite interlamellar spacing,
the binding force between lamellas weakens, thus resulting in the exfoliating and curling of kaolinite
lamellas. The longer the molecular chain is, the wider the kaolinite interlamellar spacing is and
the weaker the interlamellar binding force will be, making lamellas easier to exfoliate or curl up.
The basal spacings of K-Fa-C18 and K-Qa-C18 are 4.13 and 4.24 nm, respectively. Although they have
a similar interlamellar spacing, their morphology differs significantly. This demonstrates that the
type of intercalator plays a more important role in hydrogen bond failure between lamellas. In order
to imply the mechanism in this, the arrangement model of the guest species in kaolinite should be
revealed first.

To date, the derivation of arrangement models for the kaolinite intercalation compound is still
based on XRD analysis and stereochemical calculation. In this paper, XRD was used in conjunction
with FTIR and stereochemical calculation to probe the interlayer structure of kaolinite intercalation
compounds. The XRD analysis indicated that both quaternary ammonium salts and fatty acids
orientated in kaolinite layers with a similar arrangement. The basal spacing of the intercalation
compounds and corresponding intercalated molecules’ length are shown in Table 1. In addition, on the
basis of a stereochemical calculation that is generally used to simulate the arrangement of organic
compounds in the interlayer space of clay minerals such as montmorillonite and Kaolinite [23,36,37],
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both kinds of intercalators should be arranged in the form of a tilted bilayer in the interlayer space
of kaolinite.

The interaction of intercalator groups with internal and surface layers of kaolinite can be
determined according to the distribution of intercalator molecules between kaolinite lamellas.
The distribution patterns of the fatty acid and quaternary ammonium salt molecules in kaolinite
lamellas are shown in Figure 8. Combining with FTIR analysis results, quaternary ammonium salt
molecules interact with both internal surface hydroxyl groups of kaolinite and Si–O at the bottom
of kaolinite lamellas. On the one hand, for ion groups of quaternary ammonium salts, it is easy
to form a new acting force with Al–OH through a hydrogen bond. On the other hand, Si–O is
negatively charged and attracts positive ion groups through electrostatic force. Carboxylate radical
ions of fatty acid are negatively charged, thus repelling Si–O mutually, but interact with hydroxyl
groups of kaolinite. Although both anionic (fatty acid) and cationic (quaternary ammonium salt)
molecules present a bilayer inclining distribution, –COO– in the anionic intercalator mainly interacts
with internal surface hydroxyl groups of kaolinite, while positive ions at the N-end of the cationic
intercalator interact with both internal surface hydroxyl groups of kaolinite and the Si–O bond of
the silica tetrahedron of kaolinite. Meanwhile, some methyls will enter into ditrigonal pyramid
caves of kaolinite silica tetrahedron. Compared to anionic guest species, it is easier for a cationic
species to destroy the hydrogen bond between kaolinite lamellas. Particularly, positive ion groups
of two layers of quaternary ammonium salt molecules interact with both silica tetrahedron faces
and alumina octahedron faces between kaolinite lamellas, enabling the cutting of bonds of Si–O and
Al–OH. Furthermore, the interface between two layers of quaternary ammonium molecules is the
adjacent surface of like ions that repel mutually. Therefore, the interlamellar binding force of kaolinite
disappears gradually with the widening of the interlamellar spacing. As a result of the distortion
force caused by structural dislocation, kaolinite lamellas curl up into tubes. Fatty acids not only
have a hydrogen bond force and a weak electrostatic attraction between their radicals (carboxyl and
methyl) and internal surface groups of kaolinite, but they also have a weak hydrogen bond force
between them. Such forces reach a balance state with the distortion force caused by the structural
dislocation of kaolinite and connect lamellas together, thus enabling the anionic intercalator to keep its
lamellar structure.
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4. Conclusions

The interlayer structure, morphology, and chemical bonding of kaolinite intercalation compounds
with different guest species are investigated in detail. With the lengthening of the alkyl chain and
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gradual expanding of interlamellar spacing, kaolinite lamellas begin to exfoliate and curl up from the
edges until they form nanotubes. Compared with the alkyl chain length, the ionic type of the guest
species plays a more important role in the changes in the kaolinite morphology. An anionic intercalator
could make kaolinite exfoliate but retain its structure and morphology. However, it is easier for an
organic cationic intercalator to destroy the hydrogen bond and weaken the binding force between
kaolinite lamellas, thus making kaolinite lamellas peel off and curl up. The arrangement models of
guest species in kaolinite layers were probed to elucide the effect mechanism of guest species on the
changes in the kaolinite morphology, which could provide the theoretical basis for preparing kaolinite
with different microstructures and morphologies.
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