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Abstract: To separate one base metal mineral from another by flotation, it is indispensable to identify
chemical reagents that specifically interact with the surface metal sites of one mineral or a group of
minerals. This work studies the interactions of chelating collectors which offer the best potential for
collecting abilities and mineral specificity with a typical refractory oxide mineral (malachite). Zeta
potential, adsorption and Fourier transform infrared (FTIR) measurements are applied to differentiate
the interactions of salicylaldoxime and salicyl hydroxamate on the malachite surface. Salicylaldoxime
and salicyl hydroxamate are of molecular structures that resemble each other, but with different bond
distances in the ligand atoms which result in their unusual adsorption behavior and collecting ability.
Thus, the flotation of malachite behaves differently with the two chelating collectors. This study
might provide useful clues for designing novel collectors in base metal oxide flotations.
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1. Introduction

With the depletion of easy-to-process sulfide copper ores, refractory copper oxides have been
increasingly studied to process all over the world. Leaching-solvent extraction-electrowinning
(L-SX-EW) and froth flotation are the two methods to beneficiate these ores, of which froth flotation
is more economic. Particularly for mixed copper sulfide and oxide ores (e.g., Minto Mine in Yukon,
Canada) that are not amenable to L-SX-EW, the development of complementary chemical agents to
float the oxides becomes the primary option [1]. However, oxide copper ores (e.g., malachite) respond
poorly to traditional sulfide copper (e.g., thiol) collectors in flotation because of their more hydrophilic
oxide surfaces [2]. In practices, controlled potential sulfidization, prior to the addition of thiol collectors,
has been applied to overcome this problem [3,4], but it is problematic in controlling accuracy, especially
for the mixture of sulfide and oxide copper ores, because a slight excess of sulfidizing agents in the pulp
depresses the flotation but an insufficient amount produces poor recoveries [5]. Therefore, chelating
reagents with superior collecting abilities and strong metal and mineral specificity to float copper
oxides independently have been extensively explored. Chelating collector molecules contain a reactive
functional group with ligand atoms such as S, N and O in positions capable of bonding the same metal
atom through two or more different ligand atoms to form a heterocyclic ring in which the metal atom
is one of the members. They are classified into S-S, S-N, N-N, N-O and O-O types based on their
bidentate ligands [6]. Although the study of chelating collectors dates back to 1940s and one type
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of S-S chelating collector, namely xanthate, has found great success in sulfide flotation [7], in oxide
flotations, most of the chelating reagents have only been synthesized and tested for their collecting
power in laboratory without commercial applications.

Hydroxamate, which is an O-O type chelating reagent, is the most intensively studied reagent in
the development of novel collectors in oxide flotation. In the early stage, potassium octyl hydroxamate
was found to chemically adsorb on the malachite surface, so as to be an effective collector for malachite
flotation between pH 6 and 10 [8]. While complete flotation of chrysocolla was obtained with
potassium octyl hydroxamate as the collector at pH 6 at room temperature, and the flotation response
was enhanced with increased temperature when low additions of hydroxamate were involved [9].
Furthermore, hydroxamate was used for the removal of colored titaniferous impurities from kaolin
clay in flotation industries [10]. In recent years, advanced surface characterization techniques have
been employed to study the interaction of hydroxamate on oxide minerals. For example, X-ray
photoelectron spectroscopy (XPS) investigation of the copper oxide minerals cuprite and malachite,
and the gangue mineral quartz, showed formation of a copper hydroxamate-like species on cuprite
and malachite but no hydroxamate derived species was found on the quartz. Raman spectroscopy
confirmed the existence of a copper n-octanohydroxamate layer on the surface of treated malachite [11].
Density functional theory (DFT) computation indicated that the dianion of cyclohexyl hydroxamic
acid (CHA) or benzoylhydroxamic acid (BHA) exhibited stronger chemical reactivity than their anions
and neutral molecules, and that the replacement of the phenyl group by the cyclohexyl group in the
BHA molecule significantly impacted the electron donating ability of hydroxamate collectors [12].
Through studying the surface chemistry features of bastnaesite with respect to octyl hydroxamate
adsorption, sum-frequency vibrational spectroscopy (SFVS) spectra indicate that a well-ordered
monolayer was formed at a hydroxamate concentration of about 1 × 10−4 mol/L [13]. Meanwhile,
some studies reported the chelating behavior of salicylaldoxime on oxide minerals, which is an
O-N type chelating reagent. For example, salicylaldoxime was utilized for copper flotation from the
synthetic mixtures malachite–quartz, of which a good copper recovery (92%) and a great copper percent
(46%) demonstrated a good selectivity of the reagent [14]. Jain et al. [15] performed DFT computations
to study the interactions of salicylaldoxime (SALO) and its derivatives possessing appropriate alkyl
group substitution in the main chain (CM-SALO) or side chain (CS-SALO) with copper, zinc and
lead divalent ions. They found that the relative order of selectivity, as per the computed interaction
energies, was Cu > Zn > Pb. In addition, the derivatives of hydroxamate and salicylaldoxime have been
synthesized and applied in oxide flotations. Xu et al. [16] prepared 2-ethyl-2-hexenoic hydroxamic
acid (EHHA) for the adsorption and flotation of ilmenite. They found that EHHA exhibited superior
flotation performance compared to isooctyl hydroximic acid (IOHA) and octyl hydroxamic acid
(OHA), and floated out 84.03% ilmenite at pH 8.0 with 250 mg/L dosage. Liu et al. [17] reported the
adsorption of 3-hexyl-4-amino-1,2,4-triazole-5-thione (HATT) on the malachite surface via its anionic
amino-triazole-thione group, thus inducing the malachite surface to be hydrophobic in flotation.

However, these studies were carried out on a case to case basis and the adsorption mechanism of
the various chelating ligands is still elusive. Considering the important roles that chelating reagents
play in developing oxide collectors, we attempt to first compare the adsorption of phenol O-O and
N-O chelating collectors at the malachite/water interface and the corresponding flotation behavior of
malachite. It aimed to find out the difference of chelating reactions on the malachite surface when their
polar heads are different, so as to offer information for the design of novel collectors, and to provide a
solid understanding of the commercial application of chelating collectors in the near further.

2. Experimental

2.1. Materials

The malachite sample obtained from Lupe mine, Mexico, was crushed, hand-sorted and
dry-ground in a mechanical agate mortar and pestle. Then, the sample was dry screened to collect
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the −75 + 38 µm and −25 µm fractions, of which the coarser fraction was used in flotation tests.
The finer fraction was further dry-ground and utilized in adsorption experiments, zeta potential and
Fourier transform infrared (FTIR) measurements, of which 50% of the cumulative undersize is 8 µm, as
measured by a SALD-1100 laser diffraction analyzer (Shimadzu, Tokyo, Japan). The malachite sample
showed one X-ray diffraction (XRD) pattern (Figure 1) of high purity in malachite (Cu2CO3(OH)2) with
minor amounts of pseudomalachite (Cu5(PO4)2(OH)4). The sample assayed 54.27% Cu and 0.46% P,
indicating 90.01% malachite and 4.29% pseudomalachite. Salicylaldoxime and salicylhydroxamic acid
(ACS reagent grade) purchased from Energy Chemistry and Aladdin Industrial in China respectively,
were used as chelating collectors for malachite. Their molecular structures were modelled by Materials
Studio (MS) 8.0 and presented in Figure 2. The distances between bonds were calculated through
their mid points using MS software. Hydrochloric acid (HCl) and sodium hydroxide (NaOH) of ACS
reagent grade purchased from Sigma-Aldrich (St. Louis, MO, USA) were used to adjust pH. Methyl
isobutyl carbinol (MIBC) obtained from Aladdin Industrial, Shanghai, China was utilized as frother in
the flotation tests. The water used in all experiments was distilled water.
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Figure 1. XRD pattern of the malachite sample. 
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Figure 1. XRD pattern of the malachite sample.
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2.2. Methods

The small-scale flotation tests were conducted by using a mechanical flotation machine with a
plexiglass 100 mL cell of 2000 rmp/min agitation speed. In each flotation, 3 g malachite (−75 + 38 µm)
was mixed with 80 mL of water and the pH was adjusted to a desired value. This is followed by the
addition of salicylaldoxime or salicylhydroxamic acid and MIBC sequentially with the conditioning
time of 3 and 1 min, respectively. Then, the flotation was conducted for 5 min. The concentrate (floated)
and tailing (unfloated) products were separately collected, dried and weighed, and the recovery was
calculated based on the dry weights of the products. The flotation at each pH was repeated at least
three times and the average recovery was used.

Zeta potential was measured with a ZETASIZER NANO ZS90 apparatus (Malvern Instruments,
Malvern, UK) equipped with a rectangular quartz electrophoresis cell and 50-mV laser at a scattering
angle of 90◦. The zeta potential was determined by dynamic light scattering and computed from
mobility through the Smoluchowski equation [18]. In the measurements, 0.05 g of −8 µm malachite
was agitated in 100 mL (1 × 10−4 mol/L) KCl solutions, and the pH was adjusted by NaOH or HCl
solutions. If needed, a given dosage of salicylaldoxime and salicylhydroxamic acid was added into
the suspension and conditioned for 5 min. Then, the suspension was transferred into the cell and the
average zeta potentials of the suspended particles were recorded.

The adsorption of salicylaldoxime or salicyl hydroxamate on the malachite surface was measured
through a batch depletion method at 22 ◦C. An AquaMate 8000 UV-vis spectrophotometer from
Thermo Scientific (Waltham, MA, USA) with a cell of 1 cm optical path was used to determine the
concentrations of salicylaldoxime and salicyl hydroxamate, which showed peaks at 303 and 295 nm,
respectively. A series of salicylaldoxime or salicylhydroxamic acid aqueous solutions with known
concentrations were first characterized and recorded for their absorbance intensities that correlate
to the concentrations. For example, the absorbance intensity and reagents’ concentrations for clean
water were zero. Then, the solutions after adsorption were characterized. The concentrations of
salicylaldoxime or salicyl hydroxamate were obtained through comparing their absorbance intensities
with a previous solution of known concentrations. In the adsorption process, 1 g malachite was mixed
with 100 mL water, and the pH was adjusted to the required values. Then, the collector was added
and conditioned for 5 min. After that, the solid was filtered by membrane and washed. The filtered
solutions were measured for their collector concentrations. The amount of collector absorbed on the
mineral surface was calculated by subtracting the residual concentration in the filtered solution from
the initial collector concentration.

The Fourier transform infrared (FTIR) spectra obtained from a Nicolet 6700 spectrophotometer
from Thermo Scientific were used to identify the formed bonds of salicylaldoxime or salicyl
hydroxamate collector on the malachite surface. An amount of 1 g malachite (−8 µm) was conditioned
in 100 mL 1 × 10−3 mol/L salicylaldoxime or salicylhydroxamic acid collector solution for 5 min. The
pH of this solution was adjusted to 7. Then, the malachite particles were centrifuged, washed twice
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with distilled water and dried at room temperature. The dried samples were molded with potassium
bromide (KBr) for the FTIR measurements.

3. Results and Discussion

Figure 3 presents the effect of salicyl hydroxamate and salicylaldoxime on the zeta potential
of malachite as a function of pH. As with most oxide minerals, the malachite has a positive surface
charge at low pHs and a negative surface charge at high pHs. It shows the point of zero charge
(PZC) of malachite at pH 8.2, which is in good accordance with the PZC (pH 7.9) reported by
Lenormand et al. [8]. With the addition of salicyl hydroxamate and salicylaldoxime, zeta potentials
of malachite reverse from positive to negative at low pHs and become more negative at high
pHs, indicating the chemical adsorption of these chelating reagents on its surface. However, this
modification reduces at a pH higher than 10. At pH 11, the zeta potentials of malachite without and
with addition of salicyl hydroxamate and salicylaldoxime are close, indicating a weak adsorption.
It might be due to the fact that at a pH higher than 10, the predominant hydroxyl species weaken the
interaction of chelating reagents on the malachite surface. It is interesting that the salicyl hydroxamate
modifies the malachite surface more negatively than the salicylaldoxime does in the pH range of 5–10.
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A batch of salicyl hydroxamate and salicylaldoxime depletion has been studied to explore their
chemical adsorption on the malachite surface. At a pH lower than pH 6, cupric ions are highly
dissolved from malachite, thus the precipitation of cupric salicyl hydroxamate or salicylaldoxime
species are predominant reactions for the depletion of the chelating reagents [8]. Then, at a pH
higher than pH 6, chelating reactions (adsorption) on the malachite surface are mainly responsible
for the salicyl hydroxamate or salicylaldoxime depletion. Figure 4 gives their depletion densities
in malachite slurry as a function of pH. The depletion of salicyl hydroxamate and salicylaldoxime
at pH 3 are as high as 5 × 10−5 mol per gram of malachite minerals, suggesting that both reagents
are highly reactive with cupric ions in slurry or malachite surface. Increasing pH from 3 to 9, the
depletion of salicylaldoxime decreases slightly but keeps a high amount, while the depletion of salicyl
hydroxamate drops dramatically to the lower magnitude of 5 × 10−6 mol/g. Then, the depletion
decreases continually as the Ph is increased; and at pH 11, depletions of both salicyl hydroxamate and
salicylaldoxime are around zero, which corresponds well with the zeta potential results in Figure 3.
At pH 3 to 9, the higher precipitation and/or adsorption degree of salicylaldoxime on the malachite
surface than that of salicyl hydroxamate might be attributed to the different stability constants of these
chelating reagents with Cu2+ complexes. The stability constants of Cu-salicylaldoxime and Cu-salicyl
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hydroxamate are 12 and 9.05 [19,20], respectively, indicating that it is easier for salicylaldoxime to react
with Cu2+ complexes in the form of cupric precipitates or adsorption on the malachite surface.Minerals 2017, 7, 20  6 of 10 
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It is notable from previous discussions that salicyl hydroxamate has a lower adsorption density
on the malachite surface (Figure 4), but modifies the malachite surface to be more negative than
salicylaldoxime (Figure 3). This phenomenon might be due to the distinct chelating reactions of
salicylaldoxime and salicyl hydroxamate on the malachite surface because of their different molecular
structures. Based on the criteria that chelating reagents must possess at least two donor atoms carrying
a long pair of electrons [6], the donor atoms in salicylaldoxime are O (=N–OH, oxime), N (–N=,
tertiary acyclic) and O (–OH, phenolic), while the donor atoms in salicyl hydroxamate are O, O
(both in hydroxamate) and O (–OH, phenolic). As noted in Figure 2, the bond distances between the
ligands in the two reagents are different: the bond distances to the carbonyl O in salicyl hydroxamate
are around 0.75 Å longer than those to the tertiary acyclic N in salicylaldoxime, while the third
bond distance is of identical 3.89 Å. Based on the other criteria of the chelating reactions—that they
must form a ring structure sterically including the metal atom [6]—salicyl hydroxamate might form
the ring structure with only two ligands because of the long bond distances, which leads to one
O atom carrying a negative charge on the malachite surface after the adsorption. However, it is
possible for salicylaldoxime to form the ring structure with three ligands because of the relatively short
bond distances. Thus, compared with salicylaldoxime, salicyl hydroxamate modifies the malachite
surface more negatively by a lower amount of adsorbed molecules. Figure 5 schematically presents
the chelating reactions of salicyl hydroxamate and salicylaldoxime on the malachite surface, in
which CuOH+ and HCO3

− are defined as the adsorption sites on the malachite surface, as analyzed
elsewhere [8].
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The proposed adsorption mechanism can be verified from the FTIR spectra of the malachite
surface before and after salicylaldoxime or salicyl hydroxamate adsorption. As can be seen in Figure 6,
after salicylaldoxime treatment, the N-Cu and O-Cu stretch vibrations are found at 1193 and 1152 cm−1

in the intermediate FTIR spectrum, and 310 and 485 cm−1 in the far FTIR spectrum, respectively [21],
representing the chemical adsorption of salicylaldoxime on the malachite surface. In contrast, no new
peak appears on the FTIR spectra of malachite after salicyl hydroxamate treatment, indicating that
the adsorption density of salicyl hydroxamate on malachite is too low for FTIR to identify, which is in
accordance with the adsorption behavior.
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Figure 6. Intermediate (a) and far (b) Fourier transform infrared (FTIR) spectra of malachite, malachite
with salicylaldoxime and salicyl hydroxamate.

Figure 7 shows the flotation of malachite as a function of salicylaldoxime and salicyl hydroxamate
concentrations at pH 9. By using salicylaldoxime as the collector, the malachite recovery increases to
97% as the salicylaldoxime is increased to 3 mmol/L. Then, the malachite recovery remains constant
as the salicylaldoxime concentration is continually increased. In the case of salicyl hydroxamate
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collector, the malachite recovery increases slightly to 20% as the collector concentration is increased
to 2 mmol/L, and then remains constant. It corresponds well with the adsorption phenomena that
(i) both salicylaldoxime and salicyl hydroxamate are chemically adsorbed on the malachite surface;
(ii) the adsorption density of salicylaldoxime is much higher than that of salicyl hydroxamate. Thus,
compared with salicyl hydroxamate, salicylaldoxime possesses stronger collecting ability and the
flotation of malachite reaches the maximum recovery at a higher collector concentration.
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The flotation of malachite using salicylaldoxime and salicylhydroxamic collectors as a function of
pH is given in Figure 8. The malachite recovery is less than 20% when using a salicyl hydroxamate
collector in the pH range 3–11, in which the maximum recovery of 19% is obtained at pH 9. In contrast,
the malachite recovery is around 80% at pH 7–9 with salicylaldoxime as the collector. These results are
in good agreement with the precipitation and adsorption of salicylaldoxime and salicyl hydroxamate
in aqueous malachite slurries. At a pH lower than 6, the precipitation of cupric salicylaldoxime
and salicyl hydroxamate species are predominant reactions of the depletion of collectors, leading to
a low adsorption amount and poor flotation performance. At pH 7–9, the recoveries of malachite
reach the maximum with both collectors because of the chelating (adsorption) reactions, and because
salicylaldoxime possesses a stronger collecting ability than salicyl hydroxamate due to its higher
adsorption density. Then, at a pH higher than pH 9 (e.g., pH 11), due to the competition between
chelating collectors and hydroxyls on the malachite surface, a low adsorption density takes place,
leading to a low malachite recovery. Thus, the proper pH range for malachite flotation with chelating
collectors is pH 7–9, which is consistent with malachite flotation by using an octyl hydroxamate
collector [8].

In addition, octyl hydroxamate has been reported as an effective collector for oxide (malachite)
flotations [22,23], but in our results, salicyl hydroxamate shows a weak collecting ability on malachite.
This might be due to the fact that (i) the longer alkyl chain in octyl hydroxamate can render the oxide
surfaces hydrophobic more effectively than the benzene ring in salicyl hydroxamate; (ii) the leaving
O− after salicyl hydroxamate adsorption not only modifies the malachite surface more negatively, but
also renders it hydrophilic. These results might provide clues for designing a novel collector of oxide
flotations in both the carbon chains and the polar heads.
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4. Conclusions 

1. Salicylaldoxime and salicyl hydroxamate resemble phenol chelating reagents, but salicylaldoxime 
induces a much higher adsorption density on the malachite surface than salicyl hydroxamate at a 
pH less than pH 9 because it has a higher stability constant with cupric ions. Thus, in malachite 
flotation at pH 7–9, the recovery rates are around 80% and 20% when using salicylaldoxime and 
salicyl hydroxamate as collectors respectively.  

2. The large bond distances of ligands in salicyl hydroxamate make its chelating reaction on the 
malachite surface form a ring structure by two donor atoms with one extra donor oxygen (O−) 
carrying a negative charge. However, in the case of salicylaldoxime, the interactions of N- and O-
ligands are detected by FTIR measurements. Therefore, compared with salicylaldoxime, salicyl 
hydroxamate modifies the malachite surface more negatively by a lower adsorption amount.  

3. Salicyl hydroxamate possesses many similarities with two strong malachite collectors, namely 
salicylaldoxime and octyl hydroxamate, but its collecting ability is very low. This might provide 
useful clues for the future design of novel collectors in oxide flotations.  
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4. Conclusions

1. Salicylaldoxime and salicyl hydroxamate resemble phenol chelating reagents, but salicylaldoxime
induces a much higher adsorption density on the malachite surface than salicyl hydroxamate at a
pH less than pH 9 because it has a higher stability constant with cupric ions. Thus, in malachite
flotation at pH 7–9, the recovery rates are around 80% and 20% when using salicylaldoxime and
salicyl hydroxamate as collectors respectively.

2. The large bond distances of ligands in salicyl hydroxamate make its chelating reaction on the
malachite surface form a ring structure by two donor atoms with one extra donor oxygen (O−)
carrying a negative charge. However, in the case of salicylaldoxime, the interactions of N- and
O-ligands are detected by FTIR measurements. Therefore, compared with salicylaldoxime, salicyl
hydroxamate modifies the malachite surface more negatively by a lower adsorption amount.

3. Salicyl hydroxamate possesses many similarities with two strong malachite collectors, namely
salicylaldoxime and octyl hydroxamate, but its collecting ability is very low. This might provide
useful clues for the future design of novel collectors in oxide flotations.
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