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Abstract: Sudden water inrush has been a deadly killer in underground engineering for decades.
Currently, especially in developing countries, frequent water inrush accidents still kill a large number
of miners every year. In this study, an approach for predicting the probability of fault-induced
water inrush in underground engineering using the adaptive neuro-fuzzy inference system (ANFIS)
was developed. Six parameters related to the aquifer, the water-resisting properties of the aquifuge
and the mining-induced stresses were extracted as the major parameters to construct the ANFIS
model. The constructed ANFIS was trained with twenty reported real fault-induced water inrush
cases, and another five new cases were used to test the prediction performance of the trained ANFIS.
The final results showed that the prediction results of the five cases were completely consistent
with the actual situations. This indicates that the ANFIS is highly accurate in the prediction of
fault-induced water inrush and suggests that quantitative assessment of fault-induced water inrush
using the ANFIS is possible.
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1. Introduction

In mining activities, unexpected volumes of groundwater that rush into a working face or
a heading face in a short period of time can be a fatal disaster, killing miners and flooding equipment.
Currently, water inrushes still occur all over the world, especially in coal producing countries such
as United States, Australia, China, Poland and India [1–4]. Frequent water accidents, on the one
hand, seriously affect miners’ safety and on the other hand affect productivity. Predicting the
probability of a water inrush accurately and then taking some effective countermeasures before
mining or excavating therefore becomes an important and urgent issue for the safety management of
underground mining engineering.

The frequent occurrence of water inrush accidents can be attributed, in part, to the geological
complexity and stress complexity of underground mining, but we must admit that it is also due to our
underdeveloped water inrush risk assessment system. Taking China as an example, an underdeveloped
empirical formula proposed in the 1960s [5] is still applied today to assess the inrush risk throughout
the country.

In recent years, soft computing techniques such as artificial neural networks (ANN), fuzzy
inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS) have already provided
solutions for a wide range of engineering problems [6–19]. However, for the water inrush problem in
underground engineering, there are still only a few studies [4,20] in this field.

In this study, our aim is to apply the ANFIS (the combination of the ANN and FIS) to predict
the probability of water inrush. This study is organized as follows. In the next section, a brief
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description of the mechanisms and major influencing factors of the fault-induced water inrush will be
given. The algorithm of the ANFIS will be given in Section 3; and the training, testing and prediction
performances of the ANFIS will be given in Section 4.

2. Brief Description of Fault-Induced Water Inrush

2.1. Water-Conducting Property of Fault

In most cases, the main reason for fault-induced water inrush is that the fault itself has
a good water-conducting property. This property is mainly determined by two aspects. First,
hydro-mechanical units within the fault zone are generally high permeability structures [21–26];
the typical structural elements of a fault zone are given in Figure 1. Second, besides the feature of high
permeability, the fault zone itself is a water-bearing structure filled with fluid, especially when it is
connected to an aquifer [27].
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(DZ) and fault core (FC); fault gouge and fault breccia are structure elements within the fault core and
sets of fractures are subsidiary structures in damage zones. Modified from Gudmundsson [23].

2.2. Brief Introduction to Fault-Induced Water Inrush

In some cases, a coal seam and an aquifer can be cut simultaneously by a large fault (see Figure 2),
and a fault generally acts as a water-conducting structure, thus directly connecting the aquifer and the
coal seam. In this case, a water inrush accident may occur suddenly when a working face is close to
the fault.

A small fault can also lead to water inrush accidents (Figure 3). In most cases, small faults are
not connected with a coal seam, however under the coupling actions of mining-induced stresses
and hydraulic pressure, the fault reactivation [27–31] can occur and therefore form a water inrush
passageway. On the one hand, whether or not a fault reactivation occurs is related to the fault-tip
stress concentration scale caused by mining-induced stresses, and on the other hand is related to the
relative position between the fault and the working face. As for the fractured water-conducting zone in
the floor caused by mining-induced stresses, according to Li’s work [32], by conducting a correlation
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analysis between the related mining parameters and the size of the fractured zone in 16 working faces,
he came to the following regression formula:

h = 0.0175H + 0.1463α + 3.3817M + 0.0508L − 7.76695 (1)

where h is the depth of the water-conducting fractured zone; H is the mining depth; α is the dip angle
of the coal seam; M is the mining height; L is the length of the working face. As can be seen from this
formula, the correlation coefficient of the mining height is the largest, which means that the mining
height has the most significant influence on the size of the fractured zone, followed by the dip angle of
the coal seam; more investigations about how the fractured zone is affected by the dip angle of the coal
seam can also be seen from Miao and Zhang’s works [3,33].
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In the process of mining, a water-conducting fault mainly affects water inrush in the following
aspects. Groundwater in the aquifer can be raised to a certain height by the water-conducting fault,



Minerals 2017, 7, 55 4 of 15

thus reducing the effective thickness of the aquifuge. In some cases, groundwater may even be directly
raised to a coal seam with the aquifuge completely losing its water-resisting function. Sometimes,
a large fault may cut through multiple aquifers and these cut aquifers are thus hydraulically linked.
If water inrush occurs in such a case, then there will be a large volume of groundwater related.

3. Methodology of the ANFIS

Based on fuzzy theory and fuzzy logic inference, the FIS has the advantage of simulating the
reasoning process of the human brain [34] and has the advantage of solving problems that are described
in the language of uncertainty. The ANN simulates the working mechanisms of the human brain
from another perspective [35,36]. It is structured by a number of interconnected processing artificial
neurons, therefore it can mimic the human brain to process data in parallel.

The ANFIS combines the advantages of the ANN and FIS. It uses the self-learning process of the
ANN to process data in parallel and to realize automatic fuzzy inference. In the ANFIS, the input and
output nodes of the neural network are used to express the input and output signals of fuzzy systems,
and the membership functions and fuzzy rules of fuzzy systems are represented by the hidden notes
of the neural network.

3.1. Architecture of ANFIS

As an example, Figure 4 shows a typical ANFIS model [37,38] with two inputs, x and y, and an
output, f, for the first-order Sugemo fuzzy model [39]. Two rules were employed:

Rule1 : i f x is A1 and y is B1, then f1 = p1x + q1y + r1

Rulen : i f x is A2 and y is B2, then f2 = p2x + q2y + r2

As can be seen, in these two rules the input part is fuzzy but the output part is a certain linear
function (sometimes it could also be a constant), and A1, B1, A2, B2 represent the membership functions
for x and y; p1, q1, r1, p2, q2, r2, are the parameters for all the fuzzy systems.
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The process of fuzzy reason is illustrated in Figure 4 [38,39]; as can be seen from the figure,
an ANFIS consists of five layers [37]. Layers marked by squares are adaptive layers, which means that
their node values are adjustable. On the contrary, layers marked with circles have fixed parameter sets.

Layer 1: The first layer of this system is the fuzzy layer, and each node of this layer is an adaptive
node and represents a fuzzy linguistic variable. If we choose a Gaussian function as the membership
function, then the membership grade of every element of the inputs could be calculated as follows:

O1,i = µAi (x) = (exp(−(x − ci))
2/σi ) (i = 1, 2) (2)

O1,i = µBi (y) = (exp(−(y − ci))
2/σi ) (i = 1, 2) (3)

where cj and σj are two premise parameters that could change the shape of the membership function
while cj denotes the center of the membership function and σj represents its width.

Layer 2: Labeled as Π, each node of layer 2 is a fixed node which is represented by a circle, and the
output of each node is calculated by means of the ‘product’ of all the incoming signals of the first layer:

O2,i = wi = µAi (x)u Bi (y) (i = 1, 2) (4)

The output wi is the firing strength of the corresponding rule.
Layer 3: Each node of this layer is also a fixed node marked with a circle and labeled as N,

denoting the normalized firing strengths of every rule. The outputs for this layer are computed by
using Equation (5) as:

O3,i = wi = wi /(w1 + w2) (i = 1, 2) (5)

where wi is the normalized firing strength.
Layer 4: For this layer, every node represents a node function (see Equation (6)), and each adaptive

node of this layer represents the contribution of the i-th rule to the overall output.

O4,i = wi fi = wi(pix + qiy + ri) (i = 1, 2) (6)

Corresponding to the above mentioned premise parameters, here pi, qi, ri are called the
consequent parameters.

Layer 5: In this layer, the overall outputs, which are the sum of all incoming signals of the previous
layers, are calculated through the sum operation (Σ):

O5,i = f = ∑
i

wi fi =
∑i(wi fi)

∑i wi
(i = 1, 2) (7)

3.2. Hybrid Learning Rule of the ANFIS

The learning process of the ANFIS is actually a process of learning knowledge from the training
samples by adjusting the premise parameters and the consequent parameters, which is achieved by
using the gradient method and the least squares method [40,41]. For the above described ANFIS model,
if we rewrite Equation (7) as Equation (8), clearly we can see from Equation (8) that the overall output
of the model can be expressed as a linear combination of the consequent parameters. Supposing t is
the target value and f is the actual output, the aim of the learning process is actually to find the optimal
consequent parameters that could minimize the error function e between t and f (see Equation (9)).

f = ∑
i

wi fi = (w1x)p1 + (w1y)q1 + (w1)r1 + (w2x)p2 + (w2y)q2 + (w2)r2 (8)

e = ( f − t)2 (9)



Minerals 2017, 7, 55 6 of 15

As discussed in Jang’s research [42], the learning process includes a forward pass and a backward
pass. In the forward pass, the functional signals go forward until layer 4 and the consequent parameters
(in layer 4) are identified by the least squares estimate; whereas in the backward pass, the error rate
propagates backward and the premise parameters are updated by the gradient decent.

4. Prediction of Fault-Induced Water Inrush with the ANFIS

As discussed in Section 2, fault-induced water inrushes are affected by multiple factors and each
of them has a different role in water inrushes. The aquifer pressure is the most important factor since it
always acts as a dynamic factor to trigger an inrush accident. The fault, which is like a bridge that
connects the aquifer and the seam, often acts as a conduit to allow water flow from an aquifer to a
coal seam. The aquifuge, on the contrary, has a restraining role to resist water flow from an aquifer to
a coal seam.

Corresponding to the above mentioned factors, water pressure (WP); distance to working face
(DWF) (detailed representation can be seen in Figures 2 and 3); fault throw (FT); mining height (MH);
dip angle of coal seam (DACS); and aquifuge thickness (AT) are therefore introduced as the six main
parameters to predict water inrush in this study. Here, the WP is used for representing the hydraulic
property of the aquifer; the DWF and the FT are used for indicating the relative position between the
fault and the working face; the size of the mining-induced fractured zone is mainly determined by the
MH and DACS; and we use AT to indicate the water-resisting capability of the aquifuge.

4.1. ANFIS Training

To train the ANFIS, the first step is the determination of the input parameters and the desired
output. The six main parameters mentioned above are selected as the input parameters. If we use
1 and −1 (named as the water inrush index) to represent water inrush occurring and not occurring
respectively, then 1 and −1 can be used as the numerical desired outputs to implement ANFIS training.
The ANFIS structure implemented is illustrated in Figure 5 with input and output parameters.
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For the ANFIS, its prediction is based on the training and learning from known samples. Hence,
in this work, real water inrush cases reported by Shi [43] were selected as training samples (see Table 1).
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Table 1. Real water inrush cases used for ANFIS training (reported by Shi [43]).

Mines (WP)/MPa (MH)/m (AT)/m (FT)/m (DACS)/◦ (DWF)/m
Whether Water Inrush
Accident Occurred in

Actual Situation?

Xiazhuang coal mine case 1 1.82 0.8 26.39 4 12 16 Yes
Xiazhuang coal mine case 2 1.65 1.6 25.85 50 17 90 Yes
Xiazhuang coal mine case 3 1 0.9 22.33 2 13 16 Yes
Xiazhuang coal mine case 4 2.88 1 17.68 1.3 20 0 Yes
Jingxing coal mine case 1 2.01 8 28 0.6 18 10 Yes
Jingxing coal mine case 2 1.91 8 43 1.5 11 2 Yes

Hongshan coal mine case 1 1.33 0.85 36.38 0.8 7 62 No
Hongshan coal mine case 2 0.95 1.45 26.89 1 6 55 No
Hongshan coal mine case 3 0.92 1.4 33.61 0.5 8 0 No
Hongshan coal mine case 4 0.34 0.9 32.65 22 6 6 No
Heishan coal mine case 1 1.06 2 27.79 0.46 7 21 No
Heishan coal mine case 2 0.83 2.85 26.56 0.7 12 6 No

Xieyi coal mine 2 2.81 30 1.5 18 12 Yes
Jiulishan coal mine 1.87 1.9 23 0.5 15 17 Yes
Pandong coal mine 1.7 2.8 10 5 17 10 Yes
Taoyang coal mine 0.6 1.1 17 8 19 6 Yes
Huatai coal mine 2.1 1.6 59.5 3.5 10 39 No

Panxi coal mine case 1 2.8 2.75 69.17 11.7 12 36 No
Panxi coal mine case 2 2.8 2.55 66.11 16 12 29 No
Xiezhuang coal mine 1.3 1.7 30 4.9 5 21 Yes

WP: water pressure; MH: mining height; AT: aquifuge thickness; FT: fault throw; DACS: dip angle of coal seam;
DWF: distance to working face.

Before starting the training process, first of all, the initial FIS needs to be generated. The key to
this step is to determine the number of membership functions for each of the corresponding input
parameters, and the shape of the membership functions of the premise part. For the shape of the
membership functions, in this study, Gaussian shaped membership function was selected. In general,
the grid partition and subtractive clustering are the two ways which have been widely applied for
generating the initial FIS. By setting all initial water inrush indexes as 0 and by choosing the subtractive
clustering approach to generate the initial FIS, 13 if-then rules were thereby generated as can be
seen in Figure 6A. The advantage of the subtractive clustering technique is that a large data set can
be automatically distilled into several natural groups, thus resulting in a concise representation of
a system’s behavior [44]. A more detailed description of the subtractive clustering technique can be
seen in Chiu’s further work [45]. In this study, for generating the initial FIS, the corresponding system
parameter values are set as follows: range of influence is 0.65, squash factor is 1.25, acceptance ratio is
0.5 and rejection ratio is 0.15.

The ANFIS was trained by using the hybrid training algorithm as described in Section 3.1.
The shapes of the membership functions, which are determined by the initial FIS rules, were constantly
adjusted by the ANFIS training process. In this study, after 18 epochs of training, the training accuracy
meets the requirements, and the outputs of the ANFIS were exactly consistent with the desired outputs
(see Figure 7). After the training process, the 13 initial FIS rules were modified as can been seen in
Figure 6B, and the final shapes of the membership functions correspond to the six main parameters,
as shown in Figures 8 and 9.
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4.2. Results and Remarks

Actually, the training process of ANFIS is the process of learning knowledge from training samples.
Without doubt, the randomly generated initial FIS rules cannot be used to accurately infer the outputs
from the sample inputs, but through sample training, the ANFIS can constantly learn knowledge from
training samples, modify the membership functions’ shape and thus gradually adjust the initial FIS
rules. Therefore, the trained FIS rules are the optimized rules corresponding to the input–output pairs
of the training samples.

With all the trained FIS rules, which imply all the knowledge learned from the training samples,
fuzzy reasoning can thereby be conducted by using these FIS rules to predict the water inrush indexes
for any new samples. In Table 2, geological data for another five working faces of different mines
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are given, and by means of the 13 trained FIS rules (Figure 6B) we can obtain the reasoning results
of the water inrush indexes corresponding to these five working faces (see Table 3). In Figure 10,
the reasoning process of the 31,503 working face in Huatai coal mine is displayed (we do not display
all of these five cases because their reasoning processes are similar). As can be seen from Figure 10,
the water inrush index (0.661) obtained by FIS rules reasoning is neither equal to 1 nor equal to −1;
this raises the question of how to evaluate the risk of water inrush by using the obtained water inrush
index; in this study, we propose using the method of membership function to solve this problem and
more details about this method will be given in the next paragraph.
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Figure 10. The inferring process of the water inrush index for the 31,503 working face in Huatai coal
mine by using the trained rules and trained membership functions.

In the process of ANFIS training, 1 and −1 were selected as the desired outputs to represent water
inrush occurring and not occurring respectively. Therefore, here, 1 and −1 are considered as two of
the critical values to establish the membership function of water inrush. The discourse domain of the
membership function is [−3.538, 3.391] (see Figure 10) and there are two fuzzy subsets included within
the discourse domain: the subset of water inrush occurring (Equation (10)) and the subset of water
inrush not occurring (Equation (11)). Now, with the established membership function of water inrush,
the probability of water inrush occurring or not occurring for any new samples can then be determined.
Now, an example is given to show how to calculate the probability of water inrush occurring or not
occurring for a new sample by using the method of membership function. For example, the water
inrush index of the 31,503 working face in Huatai coal mine is 0.661, so its grade of membership to
the subset of water inrush occurring is (1 + 0.661)/2 = 0.8305 and to the subset of water inrush not
occurring is (1 − 0.661)/2 = 0.1695 (see Figure 11); therefore, for the 31,503 working face in Huatai coal
mine, the probability of water inrush occurring is 0.8305 and not occurring is 0.1695.

y1 =


1 x ≥ 1
1+x

2 −1 < x < 1
0 x ≤ −1

(10)
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y2 =


1 x ≤ −1
1−x

2 −1 < x < 1
0 x ≥ 1

(11)

where y1 represents the membership function of water inrush occurring; y2 represents the membership
function of water inrush not occurring; x denotes the water inrush index inferred by the trained rules.
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inrush index to obtain the probabilities of water inrush occurring or not occurring is also displayed in
this figure.

Using the method of membership function, the predicted results of the five cases corresponding
to Table 2 are calculated (as can be seen in Table 3). Our predicted results indicate that there are
three working faces for which the probability of occurrence of water inrush is higher than the
probability of non-occurrence. The three working faces are the 31,503 working face in Huatai coal
mine, the 51,302 working face in Liangzhuang coal mine and the 9602 working face in Baizhuang
coal mine; according to Shi’s reports [43], water inrush accidents have actually occurred in these three
working faces which indicates that our prediction results are consistent with the actual situation.

Table 2. Geological data of the five working faces used for prediction.

Working Faces (WP)/MPa (MH)/m (AT)/m (FT)/m (DACS)/◦ (DWF)/m

31,503 working face in Huatai coal mine 1.08 0.90 16.50 3.2 7 7
51,302 working face in Liangzhuang coal mine 1.10 1.60 20.00 15.0 11 16

6194 working face in Panxi coal mine 4.06 2.75 65.86 10.0 10 11
9602 working face in Baizhuang coal mine 3.11 2.61 44.30 3.5 11 12
61,106 working face in Huahen coal mine 2.70 2.55 66.97 16.0 12 31

Table 3. Prediction results of the five tested working faces.

Working Faces

Water Inrush
Index

Obtained by
FIS Reasoning

Probability
of Water
Inrush

Occurring

Probability
of Water

Inrush Not
Occurring

Whether Water
Inrush Occurred

in Actual
Situation

Whether the
Prediction Is

Consistent with
the Actual
Situation

31,503 working face in Huatai coal mine 0.661 0.8305 0.1695 Yes Yes
51,302 working face in Liangzhuang coal mine 0.658 0.829 0.171 Yes Yes

6194 working face in Panxi coal mine −0.999 0.0005 0.9995 No Yes
9602 working face in Baizhuang coal mine 0.122 0.561 0.439 Yes Yes
61,106 working face in Huahen coal mine −1 0 1 No Yes
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5. Conclusions

The aim of this paper was to develop a more advanced method for the assessment of mine
water inrushes, and to reduce the occurrence of a large number of ongoing water inrush accidents in
developing countries. In this paper, the technique of the ANFIS was used to predict the probability
of the fault-induced water inrush being developed. All the main parameters related to the hydraulic
properties of the aquifer, the water-resisting properties of the aquifuge and the mining-induced
stresses were considered in the developed method. With these main parameters, an ANFIS model
was constructed and the subtractive clustering method was used to generate the initial FIS rules.
In the training step, twenty real water inrush cases were used to train the initial rules and the
membership functions.

The advantage of the ANFIS is that after the training process, the trained FIS rules and the modified
membership functions imply all the knowledge learned from the training samples. With the other
five water inrush cases selected from different mines, we predicted their water inrush probabilities by
using the trained FIS rules and the method of membership function. The final prediction results were
consistent with the actual situation.

It needs to be emphasized here that, in the current study, only six main parameters were considered
to assess the risk of water inrush. Certainly, there are some improvements compared to the traditional
approach of considering only two parameters (the groundwater pressure and the aquifuge thickness)
but, in order to predict the fault-induced water inrush in a more efficient way, more parameters
could be considered, such as mining depth; mining method; mining intensity; working face length;
or strength of the floor, to name but a few. This can be the subject of a future study.

Acknowledgments: The authors would like to thank The China Scholarship Council (CSC) for financial supports.

Author Contributions: This paper was written by Qinlong Zhou, Juan Herrera-Herbert contributed to reviewing
and editing the manuscript, Arturo Hidalgo contributed to improving and designing the ANFIS modeling
and training.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bringemier, D. Inrush and mine inundation—A real threat to Australian coal mines. In Proceedings of the
International Mine Water Association Annual Conference, Bunbury, Australia, 30 September–4 October 2012.

2. Przemysław, B. Water hazard assessment in active shafts in Upper Silesian Coal Basin Mines. Mine Water
Environ. 2011, 30, 302–311.

3. Zhang, J.C. Investigations of water inrushes from aquifers under coal seams. Int. J. Rock Mech. Min. Sci. 2005,
42, 350–360. [CrossRef]

4. Wang, Y.; Yang, W.F.; Li, M.; Liu, X. Risk assessment of floor water inrush in coal mines based on secondary
fuzzy comprehensive evaluation. Int. J. Rock Mech. Min. Sci. 2012, 52, 50–55. [CrossRef]

5. Meng, Z.P.; Li, G.; Xie, X.T. A geological assessment method of floor water inrush risk and its application.
Eng. Geol. 2012, 143–144, 51–60. [CrossRef]

6. Edincliler, A.; Cabalar, A.F.; Cevik, A. Modelling dynamic behaviour of sand–waste tires mixtures using
Neural Networks and Neuro-Fuzzy. Eur. J. Environ. Civ. Eng. 2013, 17, 720–741. [CrossRef]

7. Dieu, T.B.; Biswajeet, P.; Owe, L.; Inge, R.; Oystein, B.D. Landslide susceptibility mapping at Hoa Binh
province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput. Geosci. 2012, 45,
199–211.

8. Szymczyk, P.; Szymczyk, M. Classification of geological structure using ground penetrating radar and
Laplace transform artificial neural networks. Neurocomputing 2005, 148, 354–362. [CrossRef]

9. Edincliler, A.; Cabalar, A.F.; Cagatay, A.; Cevik, A. Triaxial compression behavior of sand and tire wastes
using neural networks. Neural Comput. Appl. 2012, 21, 441–452. [CrossRef]

10. Alemdag, S.; Gurocak, Z.; Cevik, A.; Cabalar, A.F.; Gokceoglu, C. Modeling deformation modulus of a
stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng. Geol.
2016, 203, 70–82. [CrossRef]

http://dx.doi.org/10.1016/j.ijrmms.2004.11.010
http://dx.doi.org/10.1016/j.ijrmms.2012.03.006
http://dx.doi.org/10.1016/j.enggeo.2012.06.004
http://dx.doi.org/10.1080/19648189.2013.814552
http://dx.doi.org/10.1016/j.neucom.2014.06.025
http://dx.doi.org/10.1007/s00521-010-0430-4
http://dx.doi.org/10.1016/j.enggeo.2015.12.002


Minerals 2017, 7, 55 14 of 15

11. Inhye, P.; Jaewon, C.; Moung, J.L.; Saro, L. Application of an adaptive neuro-fuzzy inference system to
ground subsidence hazard mapping. Comput. Geosci. 2012, 48, 228–238.

12. Yilmaz, I.; Kaynar, O. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell
potential of clayey soils. Expert Syst. Appl. 2011, 38, 5958–5966. [CrossRef]

13. Cevik, A.; Sezer, E.A.; Cabalar, A.F.; Gokceoglu, C. Modeling of the uniaxial compressive strength of some
clay-bearing rocks using neural network. Appl. Soft Comput. 2011, 11, 2587–2594. [CrossRef]

14. Singh, R.; Kainthola, A.; Singh, T.N. Estimation of elastic constant of rocks using an ANFIS approach. Appl.
Soft Comput. 2012, 12, 40–45. [CrossRef]

15. Bedri, K.; Nicolas, F. Hydraulic head interpolation using ANFIS—Model selection and sensitivity analysis.
Comput. Geosci. 2012, 38, 43–51.

16. Shahin, M.A.; Maier, H.R.; Jaksa, M.B. Settlement prediction of shallow foundations on granular soils using
B-spline neurofuzzy models. Comput. Geotech. 2003, 30, 637–647. [CrossRef]

17. Cabalar, A.F.; Cevik, A.; Gokceoglu, C.; Baykal, G. Neuro-fuzzy based constitutive modeling of undrained
response of Leighton Buzzard Sand mixtures. Expert Syst. Appl. 2010, 37, 842–851. [CrossRef]

18. Cabalar, A.F.; Cevik, A.; Guzelbey, I.H. Constitutive modeling of Leighton Buzzard Sands using genetic
programming. Neural Comput. Appl. 2010, 19, 657–665. [CrossRef]

19. Cabalar, A.F.; Cevik, A. Modelling damping ratio and shear modulus of sand–mica mixtures using neural
networks. Eng. Geol. 2009, 104, 31–40. [CrossRef]

20. Wu, Q.; Xu, H.; Pang, W. GIS and ANN coupling model: An innovative approach to evaluate vulnerability
of karst water inrush in coalmines of north China. Environ. Geol. 2008, 54, 937–943. [CrossRef]

21. Sian, L.; Victor, B.; Jenni, T. Fault architecture and deformation processes within poorly lithified rift Sediments,
Central Greece. J. Struct. Geol. 2011, 33, 1554–1568.

22. Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24,
1025–1028. [CrossRef]

23. Gudmundsson, A.; Simmenes, T.H.; Larsen, B.; Philipp, S.L. Effects of internal structure and local stresses on
fracture propagation, deflection, and arrest in fault zones. J. Struct. Geol. 2010, 32, 1643–1655. [CrossRef]

24. Rawling, G.C.; Goodwin, L.B.; Wilson, J.L. Internal architecture, permeability structure, and hydrologic
significance of contrasting fault-zone types. Geology 2011, 29, 43–46. [CrossRef]

25. Bense, V.F.; Van Balen, R.T. Hydrogeological aspects of fault zones on various scales in the Roer Valley Rift
System. J. Geochem. Explor. 2003, 78–79, 317–320. [CrossRef]

26. Goddard, J.V.; Evans, J.P. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets,
northwestern Wyoming, USA. J. Struct. Geol. 1995, 17, 533–547. [CrossRef]

27. Sameh, W.A.M.; Broder, J.M. Interpretation of Groundwater Flow into Fractured Aquifer. Int. J. Geosci. 2012,
3, 357–364.

28. Palchik, V. Formation of fractured zones in overburden due to longwall mining. Environ. Geol. 2003, 41,
28–38.

29. Liang, D.X.; Jiang, Z.Q.; Guan, Y.Z. Field research: Measuring water pressure resistance in a fault-induced
fracture zone. Mine Water Environ. 2015, 34, 320–328. [CrossRef]

30. Jonny, R.; Antonio, P.R.; Frederic, C.; George, J.M. Modeling of fault activation and seismicity by injection
directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs. J. Petrol. Sci. Eng. 2015,
127, 377–386.

31. IsIam, M.R.; Ryuichi, S. Mining-induced fault reactivation associated with the main conveyor belt roadway
and safety of the Barapukuria Coal Mine in Bangladesh: Constraints from BEM simulations. Int. J. Coal Geol.
2009, 79, 115–130.

32. Li, J.; Xu, Y.; Xie, X.; Yao, Y.; Gao, Y. Influence of mining height on coal seam floor failure depth. J. China
Coal Soc. 2015, 40, 303–310. (In Chinese).

33. Miao, X.; Cui, X.; Wang, J.; Xu, J. The height of fractured water-conducting zone in undermined rock strata.
Eng. Geol. 2011, 120, 32–39. [CrossRef]

34. Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [CrossRef]
35. Fukushima, K.; Miyake, S.; Ito, T. Neocognitron: A neural network model for a mechanism of visual pattern

recognition. IEEE Trans. Syst. Man Cybern. 1983, 5, 826–834. [CrossRef]
36. Mcculloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1943,

5, 115–133. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2010.11.027
http://dx.doi.org/10.1016/j.asoc.2010.10.008
http://dx.doi.org/10.1016/j.asoc.2011.09.010
http://dx.doi.org/10.1016/j.compgeo.2003.09.004
http://dx.doi.org/10.1016/j.eswa.2009.05.085
http://dx.doi.org/10.1007/s00521-009-0317-4
http://dx.doi.org/10.1016/j.enggeo.2008.08.005
http://dx.doi.org/10.1007/s00254-007-0887-3
http://dx.doi.org/10.1130/0091-7613(1996)024&lt;1025:FZAAPS&gt;2.3.CO;2
http://dx.doi.org/10.1016/j.jsg.2009.08.013
http://dx.doi.org/10.1130/0091-7613(2001)029&lt;0043:IAPSAH&gt;2.0.CO;2
http://dx.doi.org/10.1016/S0375-6742(03)00031-1
http://dx.doi.org/10.1016/0191-8141(94)00068-B
http://dx.doi.org/10.1007/s10230-014-0323-3
http://dx.doi.org/10.1016/j.enggeo.2011.03.009
http://dx.doi.org/10.1016/0165-0114(78)90029-5
http://dx.doi.org/10.1109/TSMC.1983.6313076
http://dx.doi.org/10.1007/BF02478259


Minerals 2017, 7, 55 15 of 15

37. Jang, J.S.R. Input selection for ANFIS learning. In Proceedings of the Fifth IEEE International Conference on
Fuzzy Systems, New Orleans, LA, USA, 8–11 September 1996; Volume 3, pp. 1493–1499.

38. Jang, J.S.R. Fuzzy modeling using generalized neural networks and Kalman filter algorithm. In Proceedings
of the Ninth National Conference on Artificial Intelligence, Anaheim, CA, USA, 14–19 July 1991; Volume 2,
pp. 762–767.

39. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control.
IEEE Trans. Syst. Man. Cybern. 1985, 15, 116–132. [CrossRef]

40. Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man
Mach. Stud. 1999, 51, 135–147. [CrossRef]

41. Larsen, P. Industrial applications of fuzzy-logic control. Int. J. Man Mach. Stud. 1980, 12, 3–10. [CrossRef]
42. Jang, J.S.R. Anfis: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 1993, 23,

665–685. [CrossRef]
43. Shi, L.Q.; Tan, X.P.; Wang, J.; Ji, X.K.; Niu, C.; Xu, D.J. Risk assessment of water inrush based on

PCA_Fuzzy_PSO_SVC. J. China Coal Soc. 2015, 40, 167–171. (In Chinese).
44. Chiu, S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2, 267–278.
45. Chiu, S.L. An efficient method for extracting fuzzy classification rules from high dimensional data. J. Adv.

Comput. Intell. 1997, 1, 1–7.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1006/ijhc.1973.0303
http://dx.doi.org/10.1016/S0020-7373(80)80050-2
http://dx.doi.org/10.1109/21.256541
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Brief Description of Fault-Induced Water Inrush 
	Water-Conducting Property of Fault 
	Brief Introduction to Fault-Induced Water Inrush 

	Methodology of the ANFIS 
	Architecture of ANFIS 
	Hybrid Learning Rule of the ANFIS 

	Prediction of Fault-Induced Water Inrush with the ANFIS 
	ANFIS Training 
	Results and Remarks 

	Conclusions 

