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Abstract: Over the last eight years new theories regarding nucleation, crystal growth, and polymorphism
have emerged. Many of these theories were developed in response to observations in nature,
where classical nucleation theory failed to account for amorphous mineral precursors, phases,
and particle assembly processes that are responsible for the formation of invertebrate mineralized
skeletal elements, such as the mollusk shell nacre layer (aragonite polymorph) and the sea urchin
spicule (calcite polymorph). Here, we summarize these existing nucleation theories and place them
within the context of what we know about biomineralization proteins, which are likely participants
in the management of mineral precursor formation, stabilization, and assembly into polymorphs.
With few exceptions, much of the protein literature confirms that polymorph-specific proteins, such as
those from mollusk shell nacre aragonite, can promote polymorph formation. However, past studies
fail to provide important mechanistic insights into this process, owing to variations in techniques,
methodologies, and the lack of standardization in mineral assay experimentation. We propose that
the way forward past this roadblock is for the protein community to adopt standardized nucleation
assays and approaches that are compatible with current and emerging nucleation precursor studies.
This will allow cross-comparisons, kinetic observations, and hopefully provide the information that
will explain how proteins manage polymorph formation and stabilization.

Keywords: polymorphs; sea urchin; mollusk; calcite; vaterite; aragonite; biomineralization; proteins;
classical nucleation theory; crystallization by particle attachment; non-classical nucleation

1. Introduction

In nature, invertebrate organisms primarily utilize calcium carbonates as the building materials
for extracellular skeletal elements such as the mollusk shell [1–4] sea urchin spicules [5–11] and
corals [12–14]. Biological calcium carbonates can exist in an amorphous state (amorphous calcium
carbonate, ACC) [9–11,15–19] and as three different crystalline polymorphs: calcite, aragonite,
and vaterite, where calcite is the more stable form and aragonite and vaterite are metastable
relative to calcite [15,16]. Polymorphism, or the ability of a solid to exist in more than one lattice
structure [15,16,20], is a feature of both naturally-occurring and artificial compounds [15–24]. Thus,
the study of polymorphism in invertebrate skeletal elements can provide important insights into
polymorph formation and stabilization over a wide range of conditions.

The attraction of biological calcium carbonate polymorphism to the scientific community is that
this process occurs largely under ambient conditions [1–19] and thus represents a “game changer” for
materials science and chemistry communities who have utilized non-ambient and sometimes extreme
conditions to generate a given polymorph. What is often overlooked in the discussion of biological
calcium carbonate polymorphism is the role and identity of extrinsic agents in the formation and
stabilization processes. For example, the literature shows that extrinsic agents such as alcohols [21],
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gels [22,23], and Mg(II) ions [24] can foster metastable aragonite formation instead of calcite in vitro.
Thus, we might assume that in biological organisms, polymorph stabilizing or promoting agents may
exist as well. Some examples would include Mg(II), which is present in a 5:1 ratio relative to Ca(II) in
seawater [24], or, small molecule metabolic end products, such as phosphate, which have been shown
to stable ACC [25].

We must, however, also acknowledge that invertebrate skeletal elements are composite structures
consisting of the mineral phase(s) and macromolecular components [1–14]. Here, the mineral phase
nucleates and matures within this matrix. Therefore the potential role of matrix macromolecules
such as proteins looms large in polymorphism. If proteins do play a role in calcium carbonate
polymorph selection and stabilization, then this process must fall under genomic and proteomic
guidance [5–8,13,14,26–28]. Hence, polymorphism could be controlled by the temporal, spatial,
and quantitative aspects of protein components within the extracellular space. If true, then the scientific
community could avail itself of this tremendous molecular variation to guide a given polymorph to
form, possibly with higher efficiency and purity at the endpoint that present capabilities do not allow.

The intent of this review is to “jumpstart” the discussion of protein-mediated polymorphism as it
pertains to invertebrate calcium carbonate skeletal elements alone in the absence of additives such
as Mg(II). In other words, do proteins possess the inherent capabilities to direct specific polymorph
formation without the assistance of other agents? Admittedly, scientific progress and understanding
in this area have been slow, primarily due to two factors: first, our understanding of the nucleation
process is still undergoing evolution and testing, and within the last few years alternatives to classical
nucleation theory have emerged [15,16,29–33], which will be discussed in the next section. Thus,
the challenge is to figure out where in these schemes aragonite, calcite, and vaterite-specific proteins
might avail themselves to manipulate and regulate the nucleation and polymorph selection process.
Second, and perhaps most importantly, genomic and proteomic studies of biomineralization proteins
have uncovered a vast repertory of proteins [6–8,13,14,26–28] that could potentially manage many
aspects of proposed nucleation processes, including polymorphism. However, although many protein
studies have confirmed that polymorphs do form when proteins are present [34–53], these studies
have not provided information that is needed for detailing the mechanisms of polymorph formation,
or, have utilized a variety of testing methods that prevent cross-comparisons of datasets necessary for
mechanism building [34–53]. Here, we believe that the challenge for the protein community will be
to adopt consistent mineralization assay standards and approaches that are compatible with current
and emergent nucleation precursor studies [15,16,29–33]. These studies will allow time-dependent,
careful monitoring of protein effects on the early events in nucleation and polymorph selection
processes that can yield information on mechanisms. Only then will we be able to determine what
nucleation schemes are at work in nature, how proteins foster polymorph formation and stabilization,
and how to apply this information to materials science.

2. The Current State of Knowledge Regarding Nucleation and Polymorph Formation

In terms of classical nucleation theory, polymorph formation is a process dictated by thermodynamic
and kinetics factors, where monomer-by monomer addition to an isolated ordered cluster results in
a crystal with a given lattice structure (Figure 1) [15,16,29,54]. In the classical scheme polymorph
selection is thus determined by the correct combination of polymorph-specific thermodynamic
(e.g., temperature, pressure, volume) and kinetic (i.e., timeline or rate) factors which lower the
nucleation energy barrier to crystal formation [54]. Hypothetically, this process could be managed
by agents or additives in many ways to lower the energy barrier for nucleation and generate
the appropriately structured cluster that would subsequently grow into a specific polymorph via
monomer-by-monomer addition [15,16,29,54]. In laboratory practice, however, there is sometimes
a lack of efficiency in generating a desired polymorph by simply manipulating these factors, and this
leads to the formation of undesired polymorphs as impurities [20].
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Figure 1. Graphical representation of classical nucleation theory and polymorph formation. Here, ions 
attain a concentration level (supersaturation) which fosters the formation of a critical nucleus. This 
nucleus then continues to growth via ion apposition at interfaces. “Energy barrier” refers to the energy 
of nucleation. “Agent” refers to additives, such as proteins, that would lower the nucleation energy 
barrier and foster polymorph formation and stabilization. The inset graph describes the formation of 
nuclei in supersaturated homogeneous solution, which is governed by the balance between the bulk 
and surface energy of the new phase. The point at which the bulk contribution compensates for the 
energetic costs arising from the interfacial surface is referred to as the critical size. 
Thermodynamically, the critical size reflects a metastable state since any infinitesimal change towards 
either smaller or larger radii will render the system unstable and lead to nucleus dissolution or 
unlimited growth, respectively. Adapted from references [15,16,54]. 

As usual, in nature, things are not always so straightforward. One of the most dramatic 
observations is that prior to the crystallization event, organisms first form an amorphous precursor, 
ACC, which then transforms into a given crystalline calcium carbonate polymorph [9–11,15–19].  

Here, the nucleation of ACC takes place at concentrations lower than those necessitated by 
classical theory and the monomer addition process [15,16,29,54]. This is compounded by another 
important observation that is clearly inconsistent with classical nucleation theory [54]: the formation 
of mineralized tissues, such as mollusk shell nacre [1–4] or sea urchin spicules [5–11] occurs via the 
assembly of individual mineral nanoparticles into mesoscale structures, rather than by monomer-by-
monomer addition. Thus, we must either look outside or amend classical nucleation theory to 
describe applicable mechanisms that explain biological ACC formation and subsequent crystal 
growth. In doing so, we stand a good chance of developing new laboratory processes for practical 
polymorph selection that are more efficient.  

Owing to the complexity of the extracellular matrix (ECM) it has been difficult to establish in 
situ ACC and polymorph formation mechanisms in organisms. As a result, in vitro experiments 
[16,17,25,29–33] and theoretical modeling [16,55,56] have provided an alternative means of 
understanding ACC and calcium carbonate crystal formation, and it now appears that nucleation 
may be explained and understood by alternative nucleation theories. The first of these is the non-
classical or pre-nucleation cluster theory, where ACC formation results from the assembly of 1–3 nm 
ionic Ca2+-CO32− clusters, known as pre-nucleation clusters, during the early stages of the nucleation 
process (Figure 2) [29–33]. What is intriguing about this theory is that the prenucleation cluster 
formation and assembly processes have been shown to be very sensitive to pH and additives [29–32]. 
Moreover, it has been proposed that ACC can adopt different proto-structures, i.e., short-range 
structures that correlate to a given crystalline polymorphs [33]. Thus, mineral cluster proto-structure 
may influence polymorph selection during the ACC-to-crystal transformation process either via a 

Figure 1. Graphical representation of classical nucleation theory and polymorph formation. Here,
ions attain a concentration level (supersaturation) which fosters the formation of a critical nucleus.
This nucleus then continues to growth via ion apposition at interfaces. “Energy barrier” refers to the
energy of nucleation. “Agent” refers to additives, such as proteins, that would lower the nucleation
energy barrier and foster polymorph formation and stabilization. The inset graph describes the
formation of nuclei in supersaturated homogeneous solution, which is governed by the balance
between the bulk and surface energy of the new phase. The point at which the bulk contribution
compensates for the energetic costs arising from the interfacial surface is referred to as the critical
size. Thermodynamically, the critical size reflects a metastable state since any infinitesimal change
towards either smaller or larger radii will render the system unstable and lead to nucleus dissolution
or unlimited growth, respectively. Adapted from references [15,16,54].

As usual, in nature, things are not always so straightforward. One of the most dramatic
observations is that prior to the crystallization event, organisms first form an amorphous precursor,
ACC, which then transforms into a given crystalline calcium carbonate polymorph [9–11,15–19].

Here, the nucleation of ACC takes place at concentrations lower than those necessitated by
classical theory and the monomer addition process [15,16,29,54]. This is compounded by another
important observation that is clearly inconsistent with classical nucleation theory [54]: the formation
of mineralized tissues, such as mollusk shell nacre [1–4] or sea urchin spicules [5–11] occurs
via the assembly of individual mineral nanoparticles into mesoscale structures, rather than by
monomer-by-monomer addition. Thus, we must either look outside or amend classical nucleation
theory to describe applicable mechanisms that explain biological ACC formation and subsequent
crystal growth. In doing so, we stand a good chance of developing new laboratory processes for
practical polymorph selection that are more efficient.

Owing to the complexity of the extracellular matrix (ECM) it has been difficult to establish in situ ACC
and polymorph formation mechanisms in organisms. As a result, in vitro experiments [16,17,25,29–33]
and theoretical modeling [16,55,56] have provided an alternative means of understanding ACC and
calcium carbonate crystal formation, and it now appears that nucleation may be explained and
understood by alternative nucleation theories. The first of these is the non-classical or pre-nucleation
cluster theory, where ACC formation results from the assembly of 1–3 nm ionic Ca2+-CO3

2− clusters,
known as pre-nucleation clusters, during the early stages of the nucleation process (Figure 2) [29–33].
What is intriguing about this theory is that the prenucleation cluster formation and assembly processes
have been shown to be very sensitive to pH and additives [29–32]. Moreover, it has been proposed
that ACC can adopt different proto-structures, i.e., short-range structures that correlate to a given
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crystalline polymorphs [33]. Thus, mineral cluster proto-structure may influence polymorph selection
during the ACC-to-crystal transformation process either via a dissolution-re-precipitation Ostwald
mechanism [54] or solid-state transformation-like pathways [15,16,31]. If true, then the selection of
a given polymorph could be determined at early stages of mineral cluster formation by the stabilization
of a given proto-structure of ACC [33].
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the transformation process. Note that each stage of this non-classical process may be under the control 
of agent(s) (e.g., proteins, polymers, ions, etc.). Note also that certain steps of the non-classical 
pathway may be thermodynamically reversible. Adapted from references [27–31]. 

The second, alternative view on nucleation processes is termed crystallization by particle 
attachment (CPA) [15]. Here, a crystalline or amorphous mineral forms via the addition of higher-
order species such as multi-ion complexes, liquid phases, droplets, gels, oligomers, and fully formed 
nanoparticles (Figure 3) [15]. In addition to a classical monomer addition pathway [54], in CPA there 
exist multiple particle-based pathways that eventually lead to the final crystal, and, multiple growth 
mechanisms can occur simultaneously within a single crystallizing system. The process of particle 
attachment or assembly can be influenced by several factors, including interfacial or surface free 
energies. It is argued that the surface free energy is an important determinant in polymorph 
formation pathways for two reasons: (1) This term affects the magnitude of the free energy barrier 
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form a given polymorph one needs to first nucleate particles with a relatively uniform size 
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such as: (1) the presence of surfaces, which can reduce interfacial free energy; (2) volume confinement, 
which can stabilize phases; and (3) the presence of agents, such as small molecules or polymers, which 
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consider the particle attachment process to be representative of polymorph nucleation, then control 
over polymorph expression would minimally require the manipulation of both particle formation 
and the subsequent assembly process. 

Figure 2. Non-classical nucleation scheme involving pre-nucleation clusters. The formation of
pre-nucleation clusters (PNCs) from constituent ions represents the first step towards mineral formation.
The PNCs are linear, chain-like ionic polymers (1–3 nm in diameter) that undergo further assembly
into amorphous clusters (AC) (~102 nm in diameter). The AC particle can be stabilized indefinitely by
agents, or, can proceed through a transformation mechanism (agent-controlled) and form crystalline
solids. In the case where different lattice structures of the same given crystalline compound exist
(i.e., polymorph), the choice of polymorph may be dictated at the PNC stage and/or by agents
controlling the transformation process. Note that each stage of this non-classical process may be
under the control of agent(s) (e.g., proteins, polymers, ions, etc.). Note also that certain steps of the
non-classical pathway may be thermodynamically reversible. Adapted from references [27–31].

The second, alternative view on nucleation processes is termed crystallization by particle
attachment (CPA) [15]. Here, a crystalline or amorphous mineral forms via the addition of higher-order
species such as multi-ion complexes, liquid phases, droplets, gels, oligomers, and fully formed
nanoparticles (Figure 3) [15]. In addition to a classical monomer addition pathway [54], in CPA
there exist multiple particle-based pathways that eventually lead to the final crystal, and, multiple
growth mechanisms can occur simultaneously within a single crystallizing system. The process of
particle attachment or assembly can be influenced by several factors, including interfacial or surface
free energies. It is argued that the surface free energy is an important determinant in polymorph
formation pathways for two reasons: (1) This term affects the magnitude of the free energy barrier
for nucleating a given polymorph; and (2) The surface free energy impacts particle size, and thus to
form a given polymorph one needs to first nucleate particles with a relatively uniform size distribution
within the size range in which that polymorph is stable, then assemble these particles to form the
final polymorph [15]. Furthermore, surface free energy can be tuned by extrinsic factors such as:
(1) the presence of surfaces, which can reduce interfacial free energy; (2) volume confinement, which can
stabilize phases; and (3) the presence of agents, such as small molecules or polymers, which can affect
the kinetics of particle formation, particle assembly, and phase stabilities [15]. Thus, if we consider the
particle attachment process to be representative of polymorph nucleation, then control over polymorph
expression would minimally require the manipulation of both particle formation and the subsequent
assembly process.
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Figure 3. Crystallization by particle attachment (CPA) nucleation scheme. Constituent ions can form 
several types of particles (described in box region) which can then further assemble into the final 
crystal polymorph. Thus, the multiple pathways involve ion assembly into a particle type and then 
further assembly of a given particle type into the crystal. Note that this theory still allows for the 
classical nucleation scheme which involves monomer-by-monomer addition [54]. Here, formation 
and assembly pathways are subject to regulation and control by agents or additives. Above the word 
“agents” we have placed a protein structure to indicate that biomineralization proteins could 
conceivably perform these proposed assembly tasks. Size of components is not drawn to scale. 
Adapted from reference [15]. 

3. How Biomineralization Proteomes Might Fit into Recently Proposed Nucleation Schemes 

On the assumption that nature does not employ a purely classical nucleation scheme [54] to form 
calcium carbonate polymorphs, our next task is to take the alternative views on the nucleation process 
[15,29–33] and determine what role, if any, proteins might play in the polymorph formation process. 
From the foregoing, it is clear that non-classical [29–33] and CPA [15] pathways to polymorph 
formation involve multiple steps and processes. Thus, the most efficient path to form calcite, 
aragonite, or vaterite would depend upon the action of agent(s) that can manipulate key steps along 
a specific pathway (Figures 2 and 3). This is where biomineralization proteins may be involved. 
Organisms can regionally and temporally express numerous proteins that cooperatively and 
synergistically handle tasks within chemical scenarios. As recent studies have shown, invertebrates 
such as the pearl oyster and sea urchin spicule genomes encode several hundred mineral-associated 
protein genes apiece [5–8,26–28]. Granted, we would not expect every member of these proteomes to 
be directly responsible for nucleation and crystal growth, but two possibilities emerge: (1) It is 
plausible that specialized proteins may be assigned to cover multiple nucleation and crystal growth 
pathways within a single skeletal element; (2) the formation of a given polymorph is not entrusted to 
a single protein but spread over multiple proteins, thus ensuring organism survival if one or more 
proteins experienced a debilitating sequence mutation. 

Regarding the non-classical pre-nucleation cluster scheme, it has been proposed that there are 
several of steps that could be potentially regulated by additives such as proteins, such that a given 

Figure 3. Crystallization by particle attachment (CPA) nucleation scheme. Constituent ions can form
several types of particles (described in box region) which can then further assemble into the final crystal
polymorph. Thus, the multiple pathways involve ion assembly into a particle type and then further
assembly of a given particle type into the crystal. Note that this theory still allows for the classical
nucleation scheme which involves monomer-by-monomer addition [54]. Here, formation and assembly
pathways are subject to regulation and control by agents or additives. Above the word “agents” we
have placed a protein structure to indicate that biomineralization proteins could conceivably perform
these proposed assembly tasks. Size of components is not drawn to scale. Adapted from reference [15].

3. How Biomineralization Proteomes Might Fit into Recently Proposed Nucleation Schemes

On the assumption that nature does not employ a purely classical nucleation scheme [54] to
form calcium carbonate polymorphs, our next task is to take the alternative views on the nucleation
process [15,29–33] and determine what role, if any, proteins might play in the polymorph formation
process. From the foregoing, it is clear that non-classical [29–33] and CPA [15] pathways to polymorph
formation involve multiple steps and processes. Thus, the most efficient path to form calcite, aragonite,
or vaterite would depend upon the action of agent(s) that can manipulate key steps along a specific
pathway (Figures 2 and 3). This is where biomineralization proteins may be involved. Organisms
can regionally and temporally express numerous proteins that cooperatively and synergistically
handle tasks within chemical scenarios. As recent studies have shown, invertebrates such as the pearl
oyster and sea urchin spicule genomes encode several hundred mineral-associated protein genes
apiece [5–8,26–28]. Granted, we would not expect every member of these proteomes to be directly
responsible for nucleation and crystal growth, but two possibilities emerge: (1) It is plausible that
specialized proteins may be assigned to cover multiple nucleation and crystal growth pathways within
a single skeletal element; (2) the formation of a given polymorph is not entrusted to a single protein but
spread over multiple proteins, thus ensuring organism survival if one or more proteins experienced
a debilitating sequence mutation.

Regarding the non-classical pre-nucleation cluster scheme, it has been proposed that there are
several of steps that could be potentially regulated by additives such as proteins, such that a given
polymorph crystal is formed: (1) the kinetics of pre-nucleation cluster formation; (2) the assembly
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and stabilization of PNCs into proto-structured ACC; (3) the stabilization and transformation
of ACC to a specific polymorph [29–33]. Regarding the CPA scheme, we are confronted with
a myriad of possibilities: there may exist multiple assembly pathways to crystal polymorph
formation, multiple particle species available for assembly, and multiple growth mechanisms running
concurrently [15]. Here, it has been suggested that proteins could lower activation energy barriers
to particle assembly, act as stabilizers of liquid-like mineral phases, provide volume confinement
for nucleation, simultaneously organize and regulate multiple mechanisms of mineral growth,
and so on [15]. In short, each nucleation theory invokes ample control points that could be manipulated
by proteins to direct specific polymorph formation.

4. Protein-Polymorph Formation and Stabilization—What Do We Currently Know?

Although hypothetical roles and scenarios can be postulated for protein-mediated polymorph
formation and stabilization within calcium carbonate nucleation schemes, the more relevant issue is
this: what have in vitro and in situ studies revealed about protein participation in the formation of
either metastable aragonite or vaterite?

For aragonite, what we must draw from are studies conducted with mollusk shell nacre-associated
protein sequences [34–51]. For in vitro-based studies, several different carbonate-based assays have
been used to achieve supersaturation conditions necessary for calcium carbonate crystal growth, with no
control over pH, and the duration of these nucleation experiments were variable (i.e., from several
hours up to 7 days) [36,38,39,41–44,46–51]. Further, some studies utilized Mg(II) ions in the assay
mixture to mimic seawater conditions and promote and stabilize aragonite [36,44]. For in situ studies,
measurements of aragonite formation were conducted within shells over defined periods of time
when certain proteins are expressed or introduced into the shell environment [34,35,37,40,45]. In both
sets of studies aragonite formation was confirmed in the presence of multiple nacre proteins [34–51].
In addition, some nacre proteins exhibited the ability to inhibit calcite growth [41,46–48] or induce
metastable vaterite formation as well [48,50,51].

In comparison to the aragonite studies, there have been fewer published studies that examine the
role of proteins in metastable vaterite formation [48,52,53], most likely because of fewer organisms
utilizing this polymorph over calcite or aragonite [52,53,57]. These studies were in vitro in nature
and utilized corresponding calcium carbonate mineralization assays as described for aragonite
studies [48,52,53]. Again, as per the aragonite studies, these studies confirmed the formation of
metastable vaterite crystals in the presence of the proteins under investigation [48,52,53].

But what do these protein-polymorph studies tell us about the mechanism(s) by which proteins
control polymorph formation on their own? Unfortunately, very little. The major reason for this is the
lack of standardization: even though conditions for studying non-classical nucleation schemes were
published nearly 8 years ago [30] there are few examples in the protein literature that utilize these
methods of generating ion supersaturation and subsequent nucleation. Further, many studies relied on
different ion concentration levels, control conditions, time periods, temperatures, pH values, and most
importantly, protein quantities, in their assay experiments [34–53]. Typically, in most cases protein
quantities have been reported as mass/volume values [34–45,52,53] rather than mole values [46–51],
and this lack of standardization prevents cross-comparisons between protein studies. Thus, with all
the published experimental variations, it is almost impossible to quantitatively compare the published
nucleation results obtained with protein “A” from one study with protein “B” of another study.
As a result, we cannot effectively piece together the information required to identify a polymorph
formation mechanism.

The other important issue regarding past protein—polymorph studies is the intent: These studies
focused exclusively on a “yes or no” outcome—i.e., did aragonite or vaterite form [34–53]?—rather
than monitor the stepwise or temporal process of polymorph formation that is a prerequisite for
mechanism development. These studies confirm that certain calcium carbonate polymorphs do form
when proteins are present [34–53], but tell us nothing about how this process occurs, particularly
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within non-classical nucleation [29–33] or CPA [15] schemes. This leaves us at an impasse regarding
the verification of protein-mediated polymorph formation.

5. Moving towards More Informative Studies

If we are to understand how proteins might control the polymorph selection and stabilization
processes, then we need to move towards away from random, non-complementary studies [34–53] and
towards standardized assay systems and methodologies [16,29–33] that place biomineralization proteins
within the context of non-classical nucleation and CPA schemes. As an example, recent in vitro studies
involving five recombinant mollusk shell nacre-associated proteins [58–66] and ACC-stabilizing sea
urchin spicule matrix proteins [67,68] have utilized mineralization assay conditions identical to those
employed in non-classical nucleation studies [29–33]. What links these different biomineralization
proteins together are two common molecular themes [69,70]: intrinsic disorder, or absence of folding
protein structure, and amyloid-like aggregation-prone domains, which promote protein-protein
association leading to the formation of protein phases or hydrogels [58–68]. These reported studies
utilized mole protein quantities, Ca(II) potentiometric methods, and parallel mineralization assay
systems to study the early and later events in calcite-based calcium carbonate nucleation and monitor
the formation and stabilization of PNCs and ACC in a time-dependent fashion. What was discovered
was very informative: these proteins are distinguishable in terms of what mineral species or steps in the
non-classical scheme they affect (Figure 4) [58–67]. Further, using mineralization assays which overlap
with the time periods of the potentiometric titrations and utilize similar solution and supersaturation
conditions [58–67] these studies demonstrated that these proteins form hydrogels that can capture,
assemble, and organize mineral nanoparticles (Figure 5) [62,65] consistent with CPA theory [15].
The major conclusions one can draw from these studies are the following: (1) nacre [58–66] and
sea urchin spicule matrix proteins [67,68] perform seminal tasks that would be critical for eventual
polymorph selection and stabilization; (2) the functionalities of these six nacre proteins [58–65] are
consistent with either non-classical [29–33] or CPA [16] theories [15]. Note that since these protein
assay studies were calcite-based, there were no opportunities to study metastable aragonite or vaterite
formation and stabilization. However, adjustment of in vitro assay and potentiometric conditions
should allow these types of studies to move forward, and thus polymorph-specific studies under
controlled conditions with defined protein content will be accomplished.
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PFMG1) and sea urchin spicule matrix (SM30G) proteins. All datasets are normalized relative to 
protein-deficient controls and were conducted at pH 9.0. Quantities of protein tested ranged from 500 
nM to 1 µM. (A) Nucleation time refers to the time required for PNC formation; (B) “Prenucleation 
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Figure 4. Comparative Ca(II) potentiometric datasets obtained from nacre (AP7, AP24G, Pif97, n16.3,
PFMG1) and sea urchin spicule matrix (SM30G) proteins. All datasets are normalized relative to
protein-deficient controls and were conducted at pH 9.0. Quantities of protein tested ranged from
500 nM to 1 µM. (A) Nucleation time refers to the time required for PNC formation; (B) “Prenucleation
slope” refers to the slope of the linear prenucleation regime in each titration curve. Here, negative value
indicates PNC stabilization; positive value indicates PNC destabilization; (C) Solubility product
after nucleation. Negative values indicate the presence of less soluble, possibly crystalline phase;
positive values reflect transient stabilization of ACC. Data takes from references [58–67].
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and nucleation evolves slowly (i.e., 210 s). As one can see, mineral particles are assembling from 
solution, presumably directed by the protein hydrogel. Note the formation of ring-like nanoclusters 
as time evolves; this would be atypical for a protein-free assay. By comparison, in the protein-deficient 
experiments mineralization commences 20 min after injection of the calcium solution and evolves 
much more rapidly with no evidence of organized particle attachment (data not shown). Scale bars = 
100 nm. Taken from reference [62]. 
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[58–67]. Yet, the sequences of these proteins are unalike [58–67] and so genetic variation is permissible 
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Figure 5. An example of protein-mediated mineral nanoparticle attachment: Scanning Transmission
Electron Microscopy (STEM) flowcell video stills of mineral nanodeposits forming in 10 mM calcium
carbonate solutions in the presence of 13.3 µM Haliotis rufescens abalone shell nacre protein AP7.
AP7 is a hydrogelator that forms aggregating gels that contain mineral nanoparticles. The sequence
of images starts 45 min after injection of the calcium solution into the protein-containing flow cell
(first frame, denoted as 0 s) when mineral nanodeposits are first detected (white arrow, first frame)
and nucleation evolves slowly (i.e., 210 s). As one can see, mineral particles are assembling from
solution, presumably directed by the protein hydrogel. Note the formation of ring-like nanoclusters as
time evolves; this would be atypical for a protein-free assay. By comparison, in the protein-deficient
experiments mineralization commences 20 min after injection of the calcium solution and evolves much
more rapidly with no evidence of organized particle attachment (data not shown). Scale bars = 100 nm.
Taken from reference [62].

Although in vitro studies provide basic insights into polymorph formation, there remains the task
of verifying that these processes occur in situ within mineralized tissues where polymorphs are formed.
Although it is quite feasible to dissect time- and location-dependent nucleation events in parallel
with protein expression, transport, and appearance [35,40,42,43,71–73] it is not yet feasible to correctly
monitor, interpret, and integrate PNC, ACC, phase formation, particle assembly and organization
simultaneously within the context of protein-specific events in situ. These limitations are primarily
technological in scope, meaning that the methods and techniques to obtain this critical information are
currently unavailable or do not possess sufficient sensitivity or spatio-temporal resolution to achieve
the desired result. Once again, these issues should be resolved in time.

6. The Next Steps

We are at a crossroads in biomineralization and nucleation theory. Earlier models [54] which
described classical nucleation of polymorphs have undergone a sophisticated evolution towards
a multicomponent, multiprocess—based set of theories [15,16,29–33]. Although such theories might
seem more complex at the outset, they are quite simple from the biological perspective: they allow
for multiple pathways and approaches to achieve a desired mineral phase result specific for a given
skeleton and organism. Again, this is where biology shines, for each organism could evolve its
own version of nucleation pathway manipulation using specialized proteins [26–28] yet still obey
the same thermodynamic laws and limitations [15,16,29–33]. As we are starting to see, a common
theme that emerges from proteome studies is that these proteins share common traits, such as intrinsic
disorder or unfolded structure [69] and aggregation propensity [69] that leads to protein phase or
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hydrogel formation that provides volume confinement and a pathway to particle assembly and
organization [58–67]. Yet, the sequences of these proteins are unalike [58–67] and so genetic variation
is permissible and even welcomed in biological organisms so long as specific nucleation goals are
being met.

Thus, protein-mediated nucleation and polymorph selection and stabilization could be tweaked
for an aragonite, vaterite, or calcite-based organism using a common blueprint—protein disorder
and aggregation propensity [69]—that is modified to influence nucleation along a specific pathway,
and, to manipulate certain steps within a given pathway. It is hoped that future research,
involving standardized conditions and approaches, will firmly establish protein-based mechanisms of
polymorph selection and stabilization in nature, and thus facilitate the transfer of this information to
materials science and chemistry.
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