Supplementary Materials: Crystallization of Jarosite with Variable Al³⁺ Content: The Transition to Alunite

Figure S1. XRD pattern (blue) and Rietveld fit (red) for Jarosite K, showing the residual in grey. GOF was found to be 2.80 for this sample.

Figure S2. SEM image of particles formed in the synthesis of the Jarosite J sample

	0			1	
Sample name	Α	В	С	D	F (as Jar)
GOF	2.07	1.87	1.90	1.81	2.20
Rexp	1.55	1.40	1.37	1.46	1.49
Rwp	3.21	2.62	2.60	2.64	3.27
Rp	2.03	1.66	1.67	1.74	2.02
Weighted Durbin	0.52	0.74 0.76	0.76	0.81	0.48
Watson	0.55		0.70		
Sample name	H (as Alu)*	Ι	J	Κ	Alunite
GOF	1.85	2.26	2.96	2.80	1.64
Rexp	1.89	2.52	2.52	2.36	5.22
Rwp	3.50	7.09	7.44	6.60	8.53
Rp	2.46	4.69	5.33	4.72	6.86
Weighted Durbin Watson	0.63	0.40	0.37	0.45	0.80

Table S1. Fitting statistics for Rietveld refinement of samples.

* fitted either as an Al-containing jarosite or an Fe-containing alunite and structure with lowest GOF chosen.

Figure S3. Fe content (in moles) as calculated from the ICP data versus (A) % vacancies in the B site and (B) the 'Additional water' content as measured from the TGA mass loss up to 285°C.

Figure S4.XRD plots of pure (A) alunite and (B) jarosite and the powder diffraction pattern it matched to.

Buckingham Potentials						
Interaction	A (eV)	Q (Å)	C(eVÅ ⁶)			
K – O1	1080.992	0.30	0.0			
K – O2	1250.666	0.30	0.0			
Fe – O1	1008.478	0.29912	0.0			
Fe – O2	1652.266	0.29912	0.0			
Al – O1	429.74758	0.29912	0.0			
Al – O2	1070.52479	0.29912	0.0			
H – O1	102.2763	0.25	0.0			
H – O2	161.8440	0.25	0.0			
O1 – O1	103585.02	0.2	25.98			
O1 – O2	103585.02	0.2	25.98			
O2 – O2	103585.02	0.2	25.98			
Morse						
Interaction	D (eV)	a (Å-1)	ro (Å)			
S – O1	5.0	1.2	1.515			
H – O2	7.0525	2.1986	0.9685			
Three-body						
Interaction	k (eV.rad-2)	θo (°)				
O1 – S – O1	7.1524	109.47				

Figure S5. Infrared spectra of pure jarosite (jarosite A) and pure alunite for wavenumbers 4000–1800 cm⁻¹. The bands at 1900–2400 cm⁻¹ are due to the diamond ATR.

Table S3. Comparison between simulated (from supercell simulations) and experimental values (from references given).

	Simu	Simulated		mental	Ref
	Jarosite (%difference)	Alunite (%difference)	Jarosite	Alunite	
а	7.58 (3.7%)	7.26 (0.68%)	7.311	6.974	Becker & Gasharova [19]
b	7.58 (3.7%)	7.26 (0.68%)	7.311	6.974	and
С	17.35 (1.0%)	16.90 (1.7%)	17.175	17.19	Majzlan et al. [41]
Vol	863.0	771.8	795.0	715.4	
C11	186.3	207.9	189.0	181.9	Majzlan et al. [41]
C33	64.1	71.0	50.8	66.8	
C44	33.1	42.3	36.0	42.8	
C12	55.5	42.9	55.5	48.2	
C13	27.5	35.1	27.2	27.1	
C14	1.11	7.0	6.8	5.4	

References

- 1. Becker, U;, Gasharova, B. AFM observations and simulations of jarosite growth at the molecular scale: probing the basis for the incorporation of foreign ions into jarosite as a storage material. *Phys. Chem. Minerals* **2001**, *28*, 545–556.
- Majzlan, J.; Speziale, S.; Duffy, T.S.; Burns, P.C. Single-crystal elastic properties of alunite, KAl₃(SO₄)₂(OH)₆. *Phys. Chem. Minerals* 2006, *33*, 567–573.