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Abstract: Detailed characterization and recovery of apatite from a sedimentary phosphate ore slime
of a gravity plant of Yichang, China, were investigated. The phosphate ore slime consisted mainly of
apatite, quartz, dolomite, and clay. To start with, the ore slime was characterized in sufficient detail
to reveal that it is extremely fine in distribution with a d50 of 65 µm. Other different characterizations,
such as apatite grain size distribution, apatite liberation, particle density distribution, and theoretical
grade recovery, were also analyzed by mineral liberation analyser (MLA). Based on the results, a new
gravity-flotation process, which was comprised of spiral gravity and reverse flotation, was proposed
to process the slime. In the new process, the apatite was firstly recovered by two-stage spiral gravity,
avoiding direct flotation. The gravity concentrate was the feed for the reverse flotation. A phosphate
concentrate of 30.51% P2O5 with a P2O5 recovery of 89.00% can be produced from the slime analyzing
24.25% P2O5. Compared to the conventional direct-reverse flotation process, it was found that the
reagent cost of the new gravity-flotation process was lower a quarter than that of the direct-reverse
flotation flowsheet.

Keywords: phosphate ore slime; characterization; gravity separation; direct-reverse flotation

1. Introduction

Phosphate deposits are abundant in China, mainly distributed in Yunnan, Sichuan, Hubei,
Guizhou, and Hunan, etc. As one of five important phosphate ore producing area in China, Hubei
province has approximate 1.8 billion tons available reserves of phosphate ore, of which about 52%
distribute in Yichang region. Over 88% of the phosphate ore resources in Yichang are medium- or
low-grade phosphate ore, the average grade of P2O5 is 22.2%, and most ores are characterized as
siliceous-calcareous phosphate ore [1]. To meet the requirement of fertilizer industry, phosphate ore
should be enriched to near 30% P2O5 [2]. Thus, the separation of apatite from impurity minerals, such
as dolomite, clay, and quartz, is the critical step in phosphate ore processing [3,4].

Many separation techniques of Yichang siliceous-calcareous phosphate ore, such as direct-reverse
flotation (or reverse-direct flotation) and gravity-flotation process have been researched and developed
by various researchers [5–7]. Although the flotation process is now drawing more attention and has
been improved with the use of more efficient collectors and modifier, the high reagent consumption
of the direct flotation stage remains problematic. Currently, the gravity-flotation process has been
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successfully commercialized. In the gravity stage, heavy medium separation techniques are used for
discarding coarse dolomite [8,9]. The typical heavy medium separation equipment used in Yichang
phosphate ore is heavy medium cyclone. The gravity concentrate is then subjected to double reverse
flotation for further discarding of carbonate and silicate minerals. However, in the silicate minerals
flotation step, cationic collectors are often used, which can cause problems such as sensitivity to slimes,
sticky froths, and bad fluidity [6,10,11]. In addition, gravity separation has lower size limit, which is
generally accepted to be 0.5 mm for heavy medium cyclone [12]. Thus, in the gravity-flotation process
for Yichang phosphate ore, the fine fraction (–0.5 mm), which account for about 14% of the feed, are
pre-separated by screening [13]. Compared to the feed, the slime has a slightly lower P2O5 grade and
MgO content, and a slightly higher SiO2 content.

In order to recover apatite from Yichang slimes, a host of explorations have been carried out
by some scholars. The direct-reverse flotation (or reverse-direct flotation) has been proven to be
effective [14–17]. Although it is possible to obtain qualified phosphate concentrate, the problem of
high reagent consumption of direct flotation is still the main reason for restricting its application.

Prior studies have demonstrated that pre-recovery of apatite by spiral separation could
significantly reduce the flotation reagent consumption in direct flotation [18,19]. The results of the prior
study showed that the fine spirals were capable of recovering of apatite from ultra-fine phosphate ore.
This study focuses on the investigation of a new process for recovery of apatite from the gravity slime
thereby avoiding the high reagent consumption. Based on the characterization and separation studies,
a new combined process is proposed. The feasibility of the proposed process was also evaluated by
comparison against the direct-reverse flotation process.

2. Materials and Methods

2.1. Materials

Phosphate ore slime was obtained from Yichang, Hubei Province, China. The chemical composition
of the ore was analyzed by ICP-AES (inductively-coupled plasma atomic emission spectrometry)
performed on an IRIS Advantage ER/S instrument (Thermo Elemental, Waltham, MA, USA).
The results are shown in Table 1. The ore contained 24.25% P2O5, 2.64% MgO, and 25.17% SiO2.

The mineral composition of the sample was obtained by the comprehensive analysis of the
chemical composition and MLA (mineral liberation analysis). The results are shown in Table 2.
The raw ore contains 57.5% apatite, 12.5% quartz, 14.8% dolomite and 9.2% clay.

Table 1. Chemical composition of slime sample.

Component P2O5 SiO2 Al2O3 Fe2O3 MgO CaO

Content (%) 24.25 25.17 3.66 1.03 2.64 40.31

Table 2. Mineral composition of the slime.

Mineral Apatite Quartz Clay Dolomite Calcite Pyrite Feldspar Other

Content (%) 57.5 12.5 9.2 14.8 2.1 1.0 0.5 2.4

Characterization of the slime, such as particle size distribution and apatite grain size distribution,
apatite liberation, particle density distribution, and theoretical grade recovery, were analyzed by using
a mineral liberation analyser (MLA).

The particle size distribution/apatite grain size distribution results (Figure 1) illustrate that the
slime has a d50 of 65 µm and the contained apatite has a d50 of 58 µm.

The mineral liberation of apatite by particle composition presented in Figure 2 clearly shows that
more than 50% of the apatite particles are completely liberated and nearly 80% of the apatite particles
(above 90% liberation class) could be separated as phosphate concentrate.
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Figure 1. Particle size distribution and apatite grain size distribution of received sample. 
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Figure 2. Mineral liberation of apatite by particle composition. 

The particle density distribution results (Figure 3) show that about 45% of the particles have 
density distributed in a range of 3.1–3.2 g/cm3. It was concluded from the mineral composition and 
liberation study results that these particles are mainly liberated apatite particles. The density of 
gangue minerals is mainly distributed in the range of <3.1 g/cm3, among which 2.5–2.7 g/cm3 is the 
greatest portion. The characterization study results show that although the particle size of the slime 
is ultra-fine, the liberation of apatite is good, and the density of most gangue mineral particles is 
lower than apatite. Therefore, the phosphate ore slime has a certain gravity separability. The 
theoretical grade-recovery curve for apatite was drawn. Theoretical grade-recovery curves are 
defined by the maximal expected recovery of apatite at a given grade. These curves are related to the 
particle size and determined from the liberation characteristics. It should be noted that theoretical 
grade-recovery curves are defined for the value minerals (e.g., apatite) and not based on a final 
product to be recovered. Furthermore, it is important to advise that the theoretical grade-recovery 
curve provided by the MLA is generated from 2D liberation measurements and, therefore, 
overestimate the true liberation by a certain amount [20]. Nevertheless, the theoretical grade-recovery 
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Figure 2. Mineral liberation of apatite by particle composition.

The particle density distribution results (Figure 3) show that about 45% of the particles have
density distributed in a range of 3.1–3.2 g/cm3. It was concluded from the mineral composition and
liberation study results that these particles are mainly liberated apatite particles. The density of gangue
minerals is mainly distributed in the range of <3.1 g/cm3, among which 2.5–2.7 g/cm3 is the greatest
portion. The characterization study results show that although the particle size of the slime is ultra-fine,
the liberation of apatite is good, and the density of most gangue mineral particles is lower than apatite.
Therefore, the phosphate ore slime has a certain gravity separability. The theoretical grade-recovery
curve for apatite was drawn. Theoretical grade-recovery curves are defined by the maximal expected
recovery of apatite at a given grade. These curves are related to the particle size and determined from
the liberation characteristics. It should be noted that theoretical grade-recovery curves are defined for
the value minerals (e.g., apatite) and not based on a final product to be recovered. Furthermore, it is
important to advise that the theoretical grade-recovery curve provided by the MLA is generated from
2D liberation measurements and, therefore, overestimate the true liberation by a certain amount [20].
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Nevertheless, the theoretical grade-recovery curve for apatite (Figure 4) gives a reason to expect the
best results for apatite recovery from the phosphate ore slime.
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Figure 4. Theoretical grade recovery curve for apatite mineral grains.

The sample of phosphate ore slime was further subjected to a wet screening separation. Each of
the size fractions produced was wet assayed. The results tabulated in Table 3 show that phosphorous
values are well distributed in all size fractions except the last one, i.e., −38 µm. It is also observed
that magnesia tends to concentrate in the fraction −38 µm. The composite sample was separately
analyzed to have 24.25% P2O5 and 2.68% MgO. Thus, a mere classification at around 25 µm would
yield a product of 26.60% P2O5, 2.58% MgO.
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Table 3. Particle size and chemical composition of the slime.

Size Fraction (µm) Yield (%)
Grade (%) Distribution (%)

P2O5 MgO P2O5 MgO

+150 21.32 27.86 2.26 24.50 17.98
−150 + 74 23.43 27.97 2.36 27.03 20.64
−74 + 45 12.10 24.76 2.91 12.36 13.14
−45 + 38 4.32 24.48 3.08 4.36 4.97
−38 + 25 7.00 22.68 3.42 6.55 8.94

−25 31.83 19.20 2.89 25.21 34.33
Feed 100 24.25 2.68 100.00 100.00

2.2. Methods

Phosphate ore slime separation tests were carried out with the direct-reverse flotation process
and gravity-flotation process. The separation process where spiral gravity and reverse flotation were
employed was termed as the new process (Figure 5a) and that were direct-reverse flotation was
employed was termed as the conventional process (Figure 5b).

The original sample of phosphate ore slime was split into two fractions; one of the fractions
was subjected to separation tests of the new process. As shown in the Figure 5a, the products of
gravity separation included spiral concentrate and tailing. The spiral concentrate was wet ground to
−74 µm accounting for 70.6% in a laboratory ball mill (model HLXMQ-Φ240 × 90) (Wuhan Exploring
Machinery Factory, Wuhan, China) at 50 wt % solids. The ground product was the feed for reverse
flotation. The other fraction was subjected to separation tests of the conventional process. The grind
fineness of the feed for direct flotation was −74 µm accounting for 73.1%
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2.2.1. Gravity Separation Tests

The gravity tests were comprised of rougher and scavenger. The physical structure parameters of
the spiral used in the gravity are tabulated in Table 4. The setup diagram of the gravity separation test
is shown in Figure 6. According to the particle size and chemical composition results of the raw sample,
the +74 µm content of the slime accounts for 44.75% with a P2O5 grade of 27.92%. Thus, rougher
spiral separation was firstly carried out to recover of the coarse fractions from the slime. Then spiral
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scavenger separation was conducted for recovery of fine apatite from the rougher tailing. In the
rougher stage, approximate 40 L pulp was prepared, with a solid content of 20 wt %. The rougher
separation was conducted under the condition of 348 L/h feed rate and 66 L/h wash water. In the
scavenger stage, about 20 L pup at a solid content of 15 wt % was prepared. The scavenger separation
was conducted under the condition of 210 L/h feed rate and no wash water. The products of gravity
separation tests included rougher heavies, rougher lights, scavenger heavies, and scavenger lights.

Table 4. Physical structure parameters of the spiral.

Separation
Units Height Pitch (P) Outer

Diameter (D) P/D Radial Width Trough Slope
Angle (θ)

Rougher 920 mm 160 mm 400 mm 0.40 184 mm 8◦~9◦

Scavenger 850 mm 144 mm 400 mm 0.36 184 mm 8◦~9◦
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2.2.2. Flotation Separation Tests

Flotation tests were carried out with a 0.75/1.0 L XFD-IV single cell flotation machine (Jilin
Provincial Machine Factory of Ore Exploration, Changchun, China). Tests were conducted at an
impeller speed of 1750 rpm and pulp temperature of 25 ◦C. A 1.0 L flotation cell was prepared for
the direct flotation tests, and a 0.75 L flotation cell for the reverse flotation. Commercial product
CXY-P (a fatty acid mixture) from Chuxiang Phosphorus Technology Ltd. (Wuhan, China) was used as
collector, which was selective for apatite at pH 10 and dolomite at pH 4.5. For each direct flotation
test, the pulp containing 330 g of feed ore was transferred into the flotation cell and stirred for 1 min.
Na2CO3 (Xilong Chemical Co., Ltd., Wuhan, China) was added into the pulp to achieve a pH at 10 with
2.0 min of conditioning time. Then water glass (Xiangxing Co. Ltd., Loudi, China) was added, and
conditioned for another 2.0 min. Next, the collector CXY-P was added and the slurry was stirred for
2.0 min. All conditioning processes were conducted in the absence of airflow. For each reverse flotation
test, the feed was the concentrate from either the gravity or the direct flotation. H2SO4 (Pingmei Group
Co. Ltd., Pingdingshan, China) was firstly added to achieve a pH at 4.5 with 0.5 min conditioning time.
CXY-P was added and conditioned for 2.0 min before flotation. Batch experiments were conducted to
find the optimal dosages of reagents by single factor test method, and using the parallel test to increase
the stability. The optimal flotation conditions are shown in Figure 7.
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3. Results and Discussion

3.1. Gravity-Flotation Flowsheet

3.1.1. Gravity Separation Tests results

The results of gravity separation tests are given in Table 5. It is indicated from this table that
rougher heavies can be produced at a yield of 47.88% and a P2O5 grade of 28.08%. After having gone
through two stages of spiral separation, a concentrate of 27.25% P2O5 at 91.37% recovery was produced
from the feed of 24.25% P2O5. It is also observed that the effect of removing MgO by gravity separation
is weak. The weak removal effect may be the result of small density differences between apatite and
dolomite. Figure 8 shows the size distribution of particles in the products of gravity separation. The
size distribution in the heavies and the lights show that the coarser particles are passed to the heavies.
It can also be seen from this figure that the spiral concentrate is quite coarse having a d50 of 90 µm that
is highly desirable.

The partition curves for the phosphorus carriers obtained in the rougher and scavenger spirals
are shown in Figure 9. The rougher spiral exhibit a recovery of fine phosphate ore particles (−74 µm)
below 50%. In the scavenger spiral separation, the partition factor for the phosphorus mineral carriers
increases up to particle size of 45 µm and then reaches a plateau. The recovery of phosphorus carriers
in the size range of 45–115 µm is practically 100%, but drops for coarser size ranges.

Table 5. Gravity separation results.

Products Yield (%)
Grade (%) Recovery (%)

P2O5 MgO P2O5 MgO

Feed 100.00 24.25 2.68 100.00 100.00
Rougher heavies 47.88 28.08 2.51 55.44 45.70
Rougher lights 52.12 20.73 2.74 44.56 54.30

Scavenger heavies 33.43 26.06 2.49 35.93 31.65
Scavenger lights 18.69 11.20 3.19 8.63 22.65

Spiral concentrate 81.31 27.25 2.50 91.37 77.35
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3.1.2. Reverse Flotation Tests Results

The reverse flotation tests were carried out for discarding dolomite from the spiral concentrate
and the results were tabulated in Table 6. It is shown that a concentrate, which has index of yield
87.00%, P2O5 grade 30.51%, and recovery 97.12%, can be obtained by reverse flotation.

Table 6. Flotation tests results of the gravity-flotation process.

Products Yield (%)
Grade (%) Recovery (%)

P2O5 MgO P2O5 MgO

Concentrate 87.00 30.51 0.59 97.41 20.52
Carbonate tailing 13.00 5.43 15.30 2.59 79.48
Spiral concentrate 100.00 27.25 2.50 100.00 100.00
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3.2. Direct-Reverse Flowsheet

Flotation tests were carried out with the conventional flowsheet and the results are shown in
Table 7. A concentrate of 32.76% P2O5 was produced at a P2O5 recovery of 89.65%.

Table 7. Flotation tests results of the direct-reverse flotation process.

Products Yield (%)
Grade (%) Recovery (%)

P2O5 MgO P2O5 MgO

Concentrate 66.86 32.76 0.55 89.65 14.43
Carbonate tailing 10.96 7.12 16.10 3.36 72.94
Silicate tailing 22.18 6.87 1.44 6.28 12.63
Total 100.00 24.08 2.53 100.00 100.00

3.3. Comparative Analysis of Flowsheets

The summary of the results for the flowsheet is tabulated in Table 8. In the conventional
direct-reverse flotation flowsheet, the product quality is enriched to higher than 32% P2O5, but the
reagent consumption is high, which may not be accepted in the economics view. It is recognized as one
of the main reasons for high reagent consumption that more than 77% of the feed need to be floated in
direct flotation stage. In the case of the new gravity-flotation flowsheet, the direct flotation was replaced
by gravity separation, which is comprised of spiral rougher and scavenger. The spiral concentrate
was then treated in a similar reverse flotation operation as in the conventional direct-reverse flotation
flowsheet. Treated through the new gravity-flotation flowsheet, the concentrate was upgraded to
30.51% P2O5, having MgO content of 0.59%, with 89.00% P2O5 recovery. It is seen that with the
incorporation of spiral separation and reverse flotation, the yield of concentrate increased which
resulted in lower P2O5 grade. The reagent dosages of the flowsheet are shown in Table 9. Compared to
the conventional flowsheet, the reagent dosages of the new flowsheet decreased significantly. Based
the average price of each reagent in the year 2016, the reagents costs decreased from 56.7 CNY to
14.0 CNY for processing 1 t of concentrate.

Table 8. Summary of the results in both flowsheets.

Process Products Yield (%)
Grade (%) Recovery (%)

P2O5 MgO P2O5 MgO

Gravity-flotation

Concentrate 70.74 30.51 0.59 89.00 15.87
Carbonate tailing 10.57 5.43 15.30 2.37 61.48
Spiral tailing 18.69 11.20 3.19 8.63 22.65
Total 100.00 24.25 2.50 100.00 100.00

Direct-reverse

Concentrate 66.36 32.76 0.55 89.65 14.43
Carbonate tailing 11.46 7.12 16.10 3.36 72.94
Silicate tailing 22.18 6.87 1.44 6.28 12.63
Total 100.00 24.08 2.53 100.00 100.00

Table 9. Optimum reagent dosages of two flowsheets.

Process
The Optimum Reagent Dosages (kg/t)

Sodium Carbonate Water Glass Sulfuric Acid Collector

Gravity-flotation 0 0 9.0 0.4
Direct-reverse 3.3 1.9 11.0 2.6
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4. Conclusions

(1) The generation of phosphate ore slime was about 14% from the heavy medium cyclone gravity
process in the Yichang region. The slime contained 24.30% P2O5, 2.64% MgO, and 25.17% SiO2.
Although the particle size of the slime was fine in distribution with d50 of 65 µm, nearly 80%
of the apatite particles were liberated (above 90% liberation class), and the density of gangue
minerals were mostly distributed at 2.5–2.7 g/cm3, which was lower than apatite mineral density
of 3.1–3.2 g/cm3. It was concluded that the phosphate ore slime has a certain gravity separability.

(2) Two different flowsheets were studied to recover the apatite. The first flowsheet comprised of
the gravity concentration and reverse flotation, which produced of the concentrate assaying of
30.51% P2O5 and 0.59% MgO. Moreover, the second flowsheet comprised of the direct flotation
and reverse flotation, which produced a concentrate assaying of 32.86% P2O5 and 0.59% MgO.
Although in the second flowsheet, the product quality was enriched to higher than 32% P2O5,
the reagent consumption was high, which may not be adopted from the economical of view.
Compared to the direct-reverse flotation flowsheet, the reagent cost decreased from 56.7 CNY to
14.0 CNY for producing 1 t concentrate when using the gravity-flotation flowsheet, which is an
optimal processing methods.
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