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Abstract: Much attention has been paid to the flotation of chalcopyrite using saline seawater.
However, the influence of salt ions on mineral flotation is complex, and different salts may play
various roles—either beneficial or detrimental. This study investigated the effects of common
chlorides (Cl−) of Na+, K+, Mg2+, and Ca2+ in seawater on chalcopyrite floatability. The presence of
Na+, K+, and Ca2+ resulted in greater chalcopyrite recovery, with this effect being more pronounced
for the monovalent cations. In contrast, the addition of Mg2+ resulted in decreased chalcopyrite
flotation efficiency. Contact angle measurements showed that the presence of monovalent cations
increased the hydrophobicity of the chalcopyrite surface, while the presence of divalent cations
reduced its hydrophobicity, depending on the concentration. Zeta potential, pulp species, and X-ray
photoelectron spectroscopy (XPS) cross-confirmed the precipitation of Mg(OH)2 on the chalcopyrite
surface when Mg concentration was 10−2 M and pulp pH was 10.
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1. Introduction

Chalcopyrite (CuFeS2) comprises nearly 70% of the Earth’s copper resources, and is the
most important and abundant cupriferous mineral [1,2]. Chalcopyrite is typically processed
pyrometallurgically subsequent to its separation from gangue minerals by flotation which is
a water-intensive process based on the different natural or induced surface properties of the valuable
and gangue minerals [3–5]. However, due to the scarcity of fresh water and stringent environmental
regulations regarding the quality of discharged water, many flotation plants have to use recycled
water or sea water—both of which contain a high concentration of electrolytes [6–8]. For instance, Las
Luces—a copper–molybdenum plant in Chile—utilizes seawater mixed with tailings dam water for
ore grinding and flotation [9]. Batu Hijau Concentrator in America (Newmont, operating from 2000)
uses sea water to process gold-rich porphyry copper ore [10]. Inevitably, the application of highly
saline slurries results in challenging flotation process control issues, frequently associated with the
maintenance of grade and recovery while minimizing the dosage of reagents.

The presence of salt ions in the flotation slurry increases the complexity of pulp aqueous
environment by affecting the structure of the water surrounding mineral particles [11–14], particle
surface properties [15–17], and bubble properties [18–21]—all of which influence the mineral–bubble
interaction and flotation efficiency [6].
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In the flotation process, frothers are normally employed to inhibit bubble coalescence, stabilize
the froth by dispersing air [22], and provide adequate frothing characteristics [23,24]. The presence of
inorganic salts leads to more complex bubble coalescence, as inorganic ions—similar to frothers—can
stabilize foams against coalescence and reduce bubble size [19,25]. The effects of salts on both
floatability and frothability have been examined for copper ores [3,19,21,22,26–30]. However, the
effects of frothing characteristics of specific chloride salts on chalcopyrite flotation remain unclear.

Suyantara et al. [27] found that the hydrophobic chalcopyrite surfaces became hydrophilic in
10−2 M MgCl2 solution at high pH due to the precipitation of Mg(OH)2 onto the mineral surfaces.
Hirajima et al. [3] reported that high concentrations of divalent cations (i.e., Ca2+ and Mg2+) reduced
chalcopyrite floatability at pH greater than 9, owing to the surface adsorption of Mg(OH)2 and CaCO3

precipitates, thereby reducing surface hydrophobicity. In addition, Ramos et al. [22] investigated
copper ores flotation in sea water (major cations include 0.6 M Na+, 1300 ppm Mg2+, and 400 ppm
Ca2+) and observed that chalcopyrite floatability was slightly reduced in sea water as compared to fresh
water under alkaline conditions. However, the effects of each cation at different concentrations were
not examined. Copper flotation recoveries using distilled water and seawater were found to be similar
in lab-scale studies by Aral et al. [30] and Corin et al. [21], but deteriorated at greater ionic strengths.
Jeldres et al. [29] studied the impact of seawater ions on the flotation of copper-molybdenum sulfides.
By adding CaO-Na2CO3 mixtures, a significant portion of the divalent ions—Ca2+ and Mg2+—was
removed and the flotation showed rapid increase in both chalcopyrite and molybdenite recovery.

In contrast to the examination of divalent cations, the specific effects of monovalent cations on
chalcopyrite floatability have not attracted much attention. In order to utilize seawater or high salt
concentration solutions containing both monovalent (e.g., Na+, K+) and divalent (e.g., Ca2+, Mg2+)
cations, it is important and necessary to understand the effects of these cations on chalcopyrite
floatability. In the present study, we focused on the effects on chalcopyrite flotation of four
seawater-containing chloride salts (Na+, K+, Mg2+, and Ca2+) in a laboratory-scale mechanical flotation
cell. The zeta potential, contact angle, pulp species of these salt ions on chalcopyrite, as well as the
surface species were studied to further reveal changes in the chalcopyrite flotation processes in the
presence of differing cations.

2. Materials and Methods

2.1. Materials

Chalcopyrite samples used in this study were purchased from GEO discoveries, Australia. Prior to
wet sieving, the chalcopyrite was crushed and ball milled. The clinging fines were removed from the
resulting samples via sonication. The samples were then dried in a vacuum oven at 30 ◦C for 24 h.
Subsequently, the dried powder samples were transferred into plastic tubes which were sealed after
being filled with N2 gas to minimize surface oxidation by air. All the samples were stored in a freezer
prior to flotation and related measurements. The X-ray powder diffraction indicated that the majority
of the sample was well-crystallized chalcopyrite.

Analytical-grade collector (sodium butyl xanthate) was used, and technical grade terpenic oil
was used as the frother. NaOH and HCl were used for solution pH adjustment. Millipore® (Billerica,
MA, USA) ultrapure water with a resistivity of 18.2 MΩ·cm was employed in all measurements except
flotation experiments using distilled water.

2.2. Flotation Experiments

All chalcopyrite flotation tests were conducted using a hanging trough-type flotation machine
(XFGII5–35g, Wuhan Exploration Machinery Factory, Wuhan, China) at 1200 rpm with an airflow
rate of 80 mL·min−1. Chalcopyrite powder (2 g) with a particle size of 38–75 µm was suspended in
25 mL of solution containing chloride salts (NaCl, KCl, CaCl2, and MgCl2) at various concentrations.
The pulp pH was adjusted to 10 within 3 min using NaOH, followed by the addition of butyl xanthate
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collector within 1 min. Thereafter, terpenic oil was added and mixed for 1 min prior to froth collection
at 1, 3, 5, and 8 min. Both the floated and unrecovered fractions were collected and air dried at 70 ◦C
for 2 h prior to weighing.

2.3. Zeta Potential Measurements

Chalcopyrite samples (0.5 g, −38 µm) were placed into 50 mL NaCl, KCl, CaCl2, and MgCl2
solutions at various concentrations. During stirring for 3 min, the solution pH was adjusted to designed
value ranging from 2 to 10 using NaOH and HCl. The agitated suspension was then sampled for zeta
potential measurements (Zetasizer Nano-zs90, Malvern Co., Ltd., Malvern, UK). The results presented
were the average of three independent measurements, with a typical variation of ±5 mV.

2.4. Contact Angle Measurements

Chalcopyrite slab samples were progressively polished using 600, 1000, and 5000 mesh
metallographic abrasive papers, providing a flat surface. Ethanol was applied to clean the surface,
which was subsequently carefully dried using filter papers. Prior to contact angle measurements,
each chalcopyrite slab was treated for 3 min in a solution containing the same salt concentrations as
for flotation. This was then followed by butyl xanthate addition into the solution to react with the
slab sample for 0, 1, 3, 5, and 8 min, respectively. All the measurements were repeated at least three
times, and the average values are reported herein. The sessile drop technique (JC2000C1, Shanghai
Zhongchen Digital Technology Company, Shanghai, China) was applied to measure contact angles
of chalcopyrite surface. After a drop (0.25 µL) of Millipore® ultrapure water being placed onto the
chalcopyrite slab surface through a microliter syringe, the profile of contact angle was imaged within
30 s and processed using JC2000D software.

2.5. X-ray Photoelectron Spectroscopy (XPS) Analysis

The X-ray photoelectron spectroscopy was conducted using ESCALAB 250Xi (Thermo Fisher
Scientific Inc., Waltham, MA, USA) equipped with an Al Kα monochromatic X-ray source. The survey
spectra were collected from 1350 to 0 eV with a pass energy of 30 eV and a step size of 0.1 eV. The spectra
and surface atomic ratios were obtained and calculated through Thermo Avantage software using
Shirley method [31] for background corrections. The binding energy of C 1s at 284.8 eV was used as
an internal standard for calibration [32].

3. Results and Discussion

3.1. Effects of Reagent Dosages

Figure 1a shows the chalcopyrite recovery on addition of various amounts of terpenic oil (frother)
and 30 ppm butyl xanthate (collector). The cumulative recovery of chalcopyrite increased significantly
when the frother dosage was increased from 5 to 10 ppm. However, when terpenic oil was further
increased to 15 ppm, the cumulative recovery did not increase significantly. However, a more significant
increase was observed at a lower frother concentration of 5 ppm between 1 and 8 min flotation time, as
compared to that over the same time period at 10 and 15 ppm frother. Therefore, 10 ppm was selected
as the optimal frother dosage for further flotation experiment, with an approximately 80% recovery
after 8 min.

Figure 1b shows the effects of collector dosage, with a frother dosage of 10 ppm. The cumulative
recovery of chalcopyrite increased significantly with increasing butyl xanthate concentration from 20
to 30 ppm. However, no significant increase was observed on further collector dosage increasing to
50 ppm. Therefore, the collector dosage of 30 ppm was applied for further study.
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Figure 1. The effects of (a) frother and (b) collector on chalcopyrite recovery. 

3.2. Effects of Salts 

Figure 2 shows the effects of typical soluble chloride salts on chalcopyrite flotation. As the pulp 
was adjusted to pH 10 using NaOH, approximately 10−4 M Na+ was added to the slurry, which was 
present as a background Na+ concentration. Therefore, the effect of Na+ was limited to the addition of 
10−2 and 10−1 M to negate the Na+ background effects. It is observed that the addition of NaCl, KCl, 
and CaCl2 resulted in greater chalcopyrite recovery (Figure 2a–c). In contrast, the presence of MgCl2 
decreased chalcopyrite flotation recovery, especially at a high concentration of 10−2 M (Figure 2d).  

 
Figure 2. The effects of salts on chalcopyrite recovery: (a) NaCl; (b) KCl; (c) CaCl2; and (d) MgCl2. 

Specifically, the chalcopyrite recovery increased rapidly within the first 1 min, from 52% (0 M 
Na+) to 77% and 84%, with an increase in Na+ concentration from 10−2 and 10−1 M, respectively 
(Figure 2a). Three minutes later, no significant difference in chalcopyrite recovery was observed due 
to increased Na+ concentration, eventually achieving an approximately 92% recovery at 8 min, but 
still significantly greater than that without Na+ addition. The cumulative recovery of chalcopyrite 
gradually increased when KCl concentration was increased from 10−4 to 10−2 M (Figure 2b). It should 
be noted that the addition of 10−2 M KCl had an almost equivalent effect to NaCl at the same 

Figure 1. The effects of (a) frother and (b) collector on chalcopyrite recovery.

3.2. Effects of Salts

Figure 2 shows the effects of typical soluble chloride salts on chalcopyrite flotation. As the pulp
was adjusted to pH 10 using NaOH, approximately 10−4 M Na+ was added to the slurry, which was
present as a background Na+ concentration. Therefore, the effect of Na+ was limited to the addition of
10−2 and 10−1 M to negate the Na+ background effects. It is observed that the addition of NaCl, KCl,
and CaCl2 resulted in greater chalcopyrite recovery (Figure 2a–c). In contrast, the presence of MgCl2
decreased chalcopyrite flotation recovery, especially at a high concentration of 10−2 M (Figure 2d).
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Specifically, the chalcopyrite recovery increased rapidly within the first 1 min, from 52% (0 M
Na+) to 77% and 84%, with an increase in Na+ concentration from 10−2 and 10−1 M, respectively
(Figure 2a). Three minutes later, no significant difference in chalcopyrite recovery was observed due to
increased Na+ concentration, eventually achieving an approximately 92% recovery at 8 min, but still
significantly greater than that without Na+ addition. The cumulative recovery of chalcopyrite gradually
increased when KCl concentration was increased from 10−4 to 10−2 M (Figure 2b). It should be noted
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that the addition of 10−2 M KCl had an almost equivalent effect to NaCl at the same concentration.
These results indicated that the presence of monovalent cations is beneficial to chalcopyrite flotation at
the concentration range examined.

Ca2+ addition was observed to be beneficial (Figure 2c), while Mg2+ was detrimental (Figure 2d)
to chalcopyrite flotation. Chalcopyrite recovery was not significantly improved in the presence of
10−4 M Ca2+ solution, but apparently greater chalcopyrite recovery was obtained on increased Ca2+

concentration to 10−3 M, with a further slight increase in chalcopyrite recovery at 10−2 M Ca2+.
The recovery within the first minute in 10−2 M CaCl2 solution was only 71.6% as compared to 77%
in 10−2 M NaCl and KCl solutions, indicating that monovalent cations had a more positive effect on
chalcopyrite flotation. CaCl2 was reported to have negligible effects by Nagaraj and Farinato [33],
while Hirajima et al. [3] reported the effects to be negative. Such contrasting results are likely due to
the differences in pulp density and flotation reagents influencing the mineral floatability by changing
the frothability of seawater solutions [22], e.g., Nagaraj and Farinato [33] used a very high pulp density
(35 wt·%) with added sodium diisobutyl dithiophosphate as the collector, while Hirajima et al. [3]
used a very low pulp density (0.03 wt %) using a Hallimond tube.

Although chalcopyrite recovery was not significantly reduced in the presence of 10−4 M Mg2+,
this effect increased on increasing Mg2+ concentration to 10−2 M (Figure 2d). Detrimental effects of
MgCl2 on chalcopyrite floatability at high pH has been reported by Hirajima et al. [3] and Nagaraj and
Farinato [33].

3.3. Contact Angle

Figure 3 shows the contact angles for chalcopyrite surfaces treated with various salt solutions
for different exposure time from 1 to 8 min. It was found that the contact angle of freshly polished
chalcopyrite immersed in pH 10 solution was approximately 62◦, close to the value reported by
Hirajima et al. [3]. The eventual contact angle (exposure time of 8 min) of the chalcopyrite treated
in solution containing either KCl or NaCl was around 90◦, indicating successful adsorption of butyl
xanthate onto the chalcopyrite surfaces. Specifically, the addition of these two monovalent salts had a
positive effect on the adsorption of collector onto mineral surface before 3 min, which further increased
the contact angle of the chalcopyrite surface, indicating that the process of collector absorption on the
chalcopyrite surface was achievable during this short period. These results are in accordance with the
chalcopyrite flotation (Figure 2a,b), confirming that NaCl and KCl can promote chalcopyrite floatability
by increasing xanthate adsorption on chalcopyrite surface within a shorter time compared to the pulp
without salts, further illustrating that NaCl and KCl were beneficial to improving chalcopyrite flotation
rate, especially within 3 min. The above positive roles of cations in increasing mineral flotation recovery
may be attributed to the lower stability of hydration layer on samples in solutions with higher ionic
strength. Blake and Kitchener [34] reported that the stable films of hydration layer were reduced
when KCl concentration was gradually increased. Laskowski [35] conducted coal flotation using
inorganic salts (NaCl and KCl) and proposed that the electrical double layer around the particles
was compressed, resulting in the opening of hydrophobic surface sites which may attract bubbles by
hydrophobic bonding. In addition, these studies suggested that the addition of salt decreased the
energy barrier in wetting film rupture by compressing the electrostatic double-layer force, which is
beneficial to the mineral flotation.

Figure 3c,d showed the contact angle of chalcopyrite treated in CaCl2 and MgCl2 solution.
It was observed that the contact angles increased slightly on the addition of 10−4 M CaCl2 with a
slightly negative effect on increased CaCl2 concentration (10−3–10−2 M), suggesting that CaCl2 had
an insignificant impact on chalcopyrite wettability. However, Figure 3d indicated that the contact
angle of chalcopyrite was greatly decreased with increasing MgCl2 concentration, although a low
concentration (10−4 M) had unapparent effect, indicating that the presence of MgCl2 depressed the
adsorption of collector on chalcopyrite. Increased surface wettability stabilizes the liquid layer on the
surface and lengthens the induction time (i.e., the time required for bubbles to remove the intervening
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liquid layer on particle surfaces and form bubble-particle attachments), resulting in poor mineral
flotability [3]. Suyantara et al. [27] demonstrated that the induction time was longer on chalcopyrite
and molybdenite surfaces in a 10−2 M MgCl2 solution at high pH values, due to the adsorption of
Mg(OH)2 precipitation and decreased surface hydrophobicity.
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3.4. Zeta Potential

Figure 4 shows the zeta potentials of chalcopyrite in the presence of NaCl, KCl, CaCl2, and MgCl2.
The overall zeta potentials were gradually decreased to more negative values with increased pH.
More importantly, the zeta potential became less negative on increasing salt concentration, indicating
a decrease in the electrostatic repulsion between solid surfaces at high salt concentrations. For instance,
when NaCl concentration was 10−1 M (Figure 4a), the zeta potential was significantly increased at all
pH examined. In contrast, the zeta potentials in KCl solution remained in a relatively narrow range
across all pH values (Figure 4b), especially at pH 10 which was used for the flotation experiment.
This indicates that KCl had no significant effect on the zeta potential of chalcopyrite.

A similar change in the zeta potential as for NaCl addition was observed in CaCl2 solution
(Figure 4c); i.e., it increased with increased CaCl2 concentration, although no further increment was
observed when CaCl2 was in the range of 10−3–10−2 M, indicating that the effect of CaCl2 on zeta
potential achieved a plateau at this concentration range. Therefore, the increase in the floatability of
chalcopyrite in CaCl2 solution (Figure 2c) was mainly attributed to changed zeta potential (Figure 4c),
rather than wettability (Figure 3c). In contrast to the zeta potential trends observed for other chloride
salts, the zeta potentials became positive values in 10−3 and 10−2 M MgCl2 solutions at pH 10.
Therefore, the poor floatability of chalcopyrite at pH 10 in the presence of MgCl2 was largely due to
the adsorption of Mg(OH)2 precipitation [3], which reversed the zeta potential of the chalcopyrite
surface and reduced the hydrophobicity (10−2 M vs. 0 M, Figure 3d). The Mg(OH)2 precipitation will
be verified in Sections 3.5 and 3.6 through solution speciation calculation and XPS analysis.
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3.5. Solution Species

Various chalcopyrite flotation behaviors due to the presence of different salts can be further
explained by the solution species diagrams shown in Figure 5. No Ca precipitation was expected at
pH below 10 when its concentration was increased from 10−4 to 10−2 M. However, the precipitation
pH for Mg(OH)2 was reduced from 10.6 to 9.6 when Mg2+ concentration was increased from 10−4 to
10−2 M, respectively, similar to that observed by Li and Somasundaran [36]. This further confirms the
precipitation of Mg(OH)2 in the flotation system when the pH of the pulp in the presence of 10−2 M
Mg2+ was controlled at 10. Ramos et al. [22] reported that the charge of the bubble should be considered
during flotation process, especially when cationic hydroxyl complexes were formed in the pulp. It was
reported that the magnesium hydroxyl complexes and hydroxide formed were affinity approaching
the liquid/gas interface, resulting in positively charged bubbles [36]. Similarly, magnesium hydroxyl
complexes and hydroxide precipitated on chalcopyrite surface results in a positively-charged mineral
surface, strongly influencing the flotation process, consistent with the observation shown in Figure 4d.

Therefore, the decrease in chalcopyrite flotability may be attributed to the increase of mineral
surface wettability due to precipitation occurring at high Mg2+ concentrations and pH. In other words,
the presence of a certain amount of Mg2+ is detrimental to chalcopyrite flotation, while the beneficial
pH for chalcopyrite flotation should be controlled lower than the critical value when Mg2+ is present.
This is also consistent with the flotation results shown in Figure 2 and the contact angle shown in
Figure 3, where 10−4 Mg2+ had a slight influence while 10−2 M Mg2+ significantly affected chalcopyrite
recovery and contact angle at pH 10.
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3.6. XPS Measurements

The chalcopyrite samples floated from the pulp in the presence of 10−4 and 10−2 M Mg2+ were
collected and dried for XPS analysis. Figure 6 shows the survey of these two chalcopyrite surfaces.
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Figure 6. X-ray photoelectron spectroscopy (XPS) survey spectra of chalcopyrite surface in the presence
of (a) 10−2 M and (b) 10−4 M Mg2+.

Table 1 shows that the elemental composition of the chalcopyrite surfaces. It is obvious that the
Mg on the chalcopyrite surface floated with 10−2 M MgCl2 was 2 at %, while less than 1 at % Mg was
observed on the chalcopyrite surface floated with 10−4 M MgCl2 during the flotation process, further
confirming the precipitation of Mg(OH)2 in the presence of 10−2 M MgCl2.

Table 1. Elemental composition of floated chalcopyrite surface.

MgCl2 Concentration (M)
at %

Cu 2p S 2p Fe 2p O 1s Mg 1s

10−2 24 38 6 30 2
10−4 21 35 8 36 <1
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4. Conclusions

The effects of four salts—NaCl, KCl, CaCl2 and MgCl2—at pH 10 on chalcopyrite flotability
were investigated. Both NaCl and KCl were found to be beneficial to the recovery of chalcopyrite,
suggesting that monovalent cations improve the flotation response of chalcopyrite, possibly due to
lower energy barrier and stability of hydration layer on chalcopyrite surface through compressing the
electrostatic double-layer force.

In contrast, the addition of the divalent salts CaCl2 and MgCl2 showed only a slightly beneficial
effect and a negative effect, respectively. The effects of CaCl2 may be due to the decreased electrostatic
repulsion between solid surfaces at pH 10. The depression caused by MgCl2 at high concentrations
was mainly due to the adsorption of Mg(OH)2 precipitates on the chalcopyrite surfaces, reducing
chalcopyrite surface hydrophobicity.
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