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Abstract: High-voltage electrical pulses (HVEP) technology was applied in grinding of a magnetite
ore as a comminution pretreatment. The effect of HVEP pretreatment on grindability, liberation and
separation performance of a magnetite ore was investigated by a systematic experimental study.
The results showed that the pretreatment of high-voltage electrical pulses created some intergranular
microcracks inside the ore, reduced the mechanical strength and improved liberation. This gave the
additional advantage of further breakage, thereby reducing the energy consumption and grinding
time. In addition, the HVEP pretreatment before grinding was potentially beneficial in the recovery
of the liberated minerals in the subsequent magnetic separation.

Keywords: high voltage electrical pulses; intergranular microcracks; grindability; mineral liberation;
magnetic separation

1. Introduction

Research into high-voltage electrical pulses (HVEP) technology began in the 1930s with
using capacitors to discharge electricity for producing X-rays [1,2]. After decades of research,
HVEP technology has been successfully used in areas such as food sterilization, food processing,
wastewater treatment, mineral processing, solid waste recycling, and metal material processing [3–7].
The disintegration of solid materials immersed in dielectric liquid (usually water) (shown in Figure 1),
is an environment-friendly and efficient mineral liberation technology, which involves electrical
breakdown induced by high-voltage electrical pulses [8–11].
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1. Introduction 

Research into high-voltage electrical pulses (HVEP) technology began in the 1930s with using 
capacitors to discharge electricity for producing X-rays [1,2]. After decades of research, HVEP 
technology has been successfully used in areas such as food sterilization, food processing, wastewater 
treatment, mineral processing, solid waste recycling, and metal material processing [3–7]. The 
disintegration of solid materials immersed in dielectric liquid (usually water) (shown in Figure 1), is 
an environment-friendly and efficient mineral liberation technology, which involves electrical 
breakdown induced by high-voltage electrical pulses [8–11]. 

 

Figure 1. Schematic diagram of showing the disintegration of solid particles by high-voltage  
electrical pulses. 
Figure 1. Schematic diagram of showing the disintegration of solid particles by high-voltage
electrical pulses.
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The effect of high-voltage electrical pulses on breaking rocks has attracted the interest of
investigators with the recent development of HVEP technology [12–14]. There are a number of
reports demonstrating the effectiveness of mineral liberation by high voltage electrical pulses [15–17].
Andres et al. [18] reported that the liberation properties of precious and base metal ores, such as
emeralds, platinum group of metals (PGM), gold, and chalcopyrite, can be enhanced through the
use of high-voltage pulse breakage. Yan et al. [19] confirmed that under the action of HVEP, the coal
sample is broken down into multiple small pieces, and the degree of coal fragmentation increases with
an increase in the breakdown voltage. Ito et al. [20] found that the electric disintegration resulted in
preferential breakage of coal substances and mineral particles along their boundaries.

Magnetite ore is a composite substance which contains many types of minerals with a wide size
and component distribution. Deposits of magnetite ores are widely distributed in the world. The main
obstacle associated with exploiting these deposits is the poor liberation of iron minerals from gangue
minerals, attributed to the complicated dissemination of valuable and gangue minerals. Meanwhile,
the study of HVEP technology applied as a pretreatment in the grinding process of magnetite ore has
been rarely reported. The purpose of this paper is to present the application of HVEP technology in
reducing the mechanical strength and improving liberation. Magnetite ore treated with and without
HVEP pretreatment before grinding, the influence of operation factors affecting the grinding efficiency,
subsequent separation performance and morphology characteristics were investigated.

2. Materials and Methods

2.1. Magnetite Ore Sample

The magnetite ore sample used in the experiments was obtained from Dagushan Iron Mine
in Liaoning, China. The sample was crushed and screened for a size of −2.0 mm. The chemical
compositions of sample are shown in Table 1, which shows that the iron ore sample consist of TFe
(total Fe) with a SiO2 of 30.67% and 45.77%, respectively. The X-ray diffraction pattern of the sample is
shown in Figure 2, which illustrates that magnetite is the main iron-bearing mineral, while quartz is
the main gangue mineral.

The petrographic description highlighting the main minerals present within the iron ore sample
can be seen in Table 2, which was determined by examining polished thin sections under an optical
microscope. Two photomicrographs of the magnetite ore are shown in Figure 3, where some
minerals are indicated. The petrographic results suggest that the iron ore sample is a fine-grained
magnetite-quartzite with seriate poikilitic texture as well as mainly euhedral and subhedral grains.

Table 1. Chemical compositions of studied iron ore sample (mass fraction, %).

TFe FeO SiO2 Al2O3 MgO CaO P S

30.61 17.49 45.77 1.12 2.75 1.27 0.035 0.18

TFe: Total iron content.

Table 2. Mineral composition of studied iron ore sample (mass fraction, %).

Magnetite Hematite Pyrite Quartz Carbonate Minerals Sericite Chlorite Others

35.51 1.44 0.54 49.98 9.37 1.87 1.26 0.03
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Figure 2. X-ray diffraction pattern for the studied magnetite iron ore. 

 

Figure 3. Photomicrographs of studied magnetite iron ore (a) taken under reflected light and (b) taken 
under polarized light. 

2.2. HVEP Pretreatment Equipment 

The high-voltage electrical pulses (HVEP) pretreatment equipment with high-voltage electrical 
power is developed, while the schematic diagram of this equipment is shown in Figure 4. The 
equipment contains a transformer, a capacitor, a ball gap switch, a needle electrode and a HVEP 
breakdown cavity. The needle electrode and plate electrode are installed in the HVEP breakdown 
cavity. The needle electrode, which acts as discharge electrode is connected to the high-voltage wire. 
Deionized water is used as the dielectric liquid to induce plasma channels into the samples. The high-
voltage electrical power unit transforms 220 V/50 Hz power supply voltage alternating current into 
direct current, which charges the transformer and capacitor. The high-voltage electrical power can 
output a maximum voltage of 50 kV, while the capacitance of the capacitor is 5600 PF. 

Figure 4. (a) Schematic diagram and (b) photo of HVEP pretreatment equipment. 
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2.2. HVEP Pretreatment Equipment

The high-voltage electrical pulses (HVEP) pretreatment equipment with high-voltage electrical
power is developed, while the schematic diagram of this equipment is shown in Figure 4.
The equipment contains a transformer, a capacitor, a ball gap switch, a needle electrode and a HVEP
breakdown cavity. The needle electrode and plate electrode are installed in the HVEP breakdown
cavity. The needle electrode, which acts as discharge electrode is connected to the high-voltage
wire. Deionized water is used as the dielectric liquid to induce plasma channels into the samples.
The high-voltage electrical power unit transforms 220 V/50 Hz power supply voltage alternating
current into direct current, which charges the transformer and capacitor. The high-voltage electrical
power can output a maximum voltage of 50 kV, while the capacitance of the capacitor is 5600 PF.
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2.3. Experimental Procedure

The experimental procedure includes the HVEP pretreatment of sample, grinding test,
and magnetic separation. A total of 200 g magnetite ore samples was placed in the HVEP breakdown
cavity with deionized water. Determination of the relative grindability of the untreated and treated
samples was conducted by measuring the particle size distribution after the grinding process.
The products treated with HVEP pretreatment and samples chosen as a reference without HVEP
pretreatment were ground into powder form in a laboratory rod mill at a predetermined time [21].
After grinding, the particle size distribution was estimated by the particle-screening sieve screening
while degree of mineral liberation was measured by light microscope [22–24]. In order to investigate
the influence of HVEP pretreatment on the subsequent magnetic separation, the magnetic separation
of samples with and without HVEP pretreatment was carried out, the magnetic separation time was
5 min and the magnetic field intensity was 110 KA/m.

The morphology and microstructure of products with and without HVEP pretreatment were
observed by scanning electron microscopy (SEM; S-3400N; Hitachi, Ltd., Tokyo, Japan) and composition
analysis was carried out by energy dispersive spectrometry (EDS).

The relative grindability index of samples was calculated with Equation (1), where:

• K80% (−74 µm) was the relative grindability index of grinding products with −74 µm accounting
for 80%;

• Ttreated was the grinding time of products grinding to a size of −74 µm accounted for 80% with
HVEP pretreatment;

• Tuntreated was the grinding time of products grinding to a size of −74 µm accounted for 80%
without HVEP pretreatment.

Samples with a lower relative grindability index K80% (−74 µm) indicates that the samples are
higher in grinding efficiency, lower in energy consumption and easier to grind.

K80%(−74 µm) =
Ttreated

Tuntreated
(1)

3. Results and Discussion

3.1. HVEP Pretreatment

In order to optimize the operation parameters of the HVEP pretreatment, the experiments with
and without HVEP pretreatment were conducted by adjusting the main parameters such as: pulse
number, output voltage and electrode gap.

3.1.1. Pulse Numbers

The selected output voltage in the experiment is 30 kV, the electrode spacing is 3 mm, and the
influence of pulse numbers of the HVEP pretreatment on the grinding operation is studied under
the conditions of 30, 60, 90 and 120, respectively. The effect of the pulse numbers on the grindability
of the sample is presented in Figure 5. With an increase in pulse numbers, the mass ratio of broken
fine particles with a size of −74 µm presents a clear rising trend at the same grinding time. However,
the increase in mass ratio of particles with a size of −74 µm slowed down when further increasing the
pulse numbers to be higher than 60. This finding implies that the degree of fine grains fragmentation
increased with an increase in pulse numbers. The relative grindability index K80% (−74 µm) decreased
from 0.93 to 0.80 when increasing the pulse number from 30 to 120. It indicates that the treated samples
are easier to grind compared with untreated samples. Each pulse generated a plasma channel and a set
of branching of capillaries in the interfacial area of mineral aggregates, providing necessary conditions
for ensuring the efficient liberation of quartz from magnetite minerals. Consequently, it facilitates
a substantial generation of the liberated individual mineral particles by the grinding process.
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3.1.2. Output Voltage

The selected electrode spacing in the experiment is 3 mm, the pulse number is 120, and the effect of
output voltage of the HVEP pretreatment on the grinding operation was studied under the conditions
of 30 kV, 35 kV, 40 kV and 45 kV, respectively. The effect of the output voltage on grindability of the
sample is presented in Figure 6. The treated samples by HVEP pretreatment produced more fine
particles under the same grinding conditions than the samples. However, no obvious effect of output
voltage at different levels on the mass fraction of −74 µm was observed. In order to further study
the grindability of the untreated and treated samples, the relative grindability index K80% (−74 µm)
was used to measure the influence of different output voltage on the grindability of treated samples.
The relative grindability index K80% (−74 µm) increased from 0.80 to 0.82 when the output voltage
increased from 30 to 45, which means that the grindability of the treated samples decreased and less
fine particles were produced with increasing output voltage.
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3.1.3. Electrode Spacing

The output voltage is 30 kV, the pulse number is 120, and the effect of selected electrode spacing of
the HVEP pretreatment on the grinding operation is studied under the conditions of 1 mm, 3 mm, 5 mm
and 7 mm, respectively. The mass fraction and the relative grindability index K80%of the untreated and
treated sample with a size of −74 µm are illustrated in Figure 7. The mass fraction of treated samples
was more than untreated samples at the same grinding conditions, and the particle size of −74 µm in
the grinding products of the pretreated products showed a decreasing trend with an increase in the
electrode spacing. The mass fraction of −74 µm decreased from 64.75% to 52.70% when the electrode
spacing increased from 1 mm to 7 mm at grinding time of 3 min. The reason of these phenomena was
that increasing the electrode spacing reduced electric field strength, which subsequently decreased
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the electric force acting upon the solid aggregates. Another reason could be that the distance between
the high-pressure needle electrode and the bottom of breakdown cavity increased, with this part of
sample not being subjected to the pretreatment of high-voltage electrical pulses.
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3.2. Mineral Liberation

The degree of mineral liberation of different particle-size products after grinding was determined,
which are illustrated in Figure 8. The pretreated samples are treated under these conditions as follows:
the output voltage is 30 kV, the pulse number is 120, the electrode spacing is 1 mm, and the grinding
time is 7 min. The untreated samples were ground into powder for 7 min without the addition of
high-voltage electrical pulses. As described in Figure 8, the degree of mineral liberation of different
particle-size in pretreated samples is higher than that of untreated samples. The degree of mineral
liberation of pretreated samples is at least 10% higher than that of untreated samples in the whole size
range of each particle size fraction. For example, the degree of mineral liberation in 74~43 µm particle
size fraction is 63.96% and 47.10%, respectively, for the treated and untreated samples. The mineral
liberation degree of pretreated samples is 13.19% higher than that of untreated samples in the whole
size range, which is 43.51% and 56.70% respectively. The ore liberation is commonly achieved based
on the difference in mechanical properties of each mineral component of the ore under the action of
applied external mechanical forces. With the HVEP pretreatment of the ore, it was possible to cause
partial intergranular breakage of magnetite and quartz aggregates. This demonstrates that the grinding
processes can benefit from such liberation advancement in obtaining the fully-liberated individual
mineral particles.
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3.3. Magnetic Separation

In order to investigate the influence of high-voltage electrical pulses pretreatment on the
subsequent magnetic separation, the magnetic separation of samples with and without high-voltage
electrical pulses treatment was carried out. The pretreated samples are treated under these conditions
the output voltage is 30 kV, the pulse number is 120, and the electrode spacing is 1 mm. The test
samples with and without treatments were ground into powder at different times, and the magnetic
field intensity was 110 kA/m. The results are presented in Figure 9. It can be seen that the TFe grade
of the samples treated with HVEP pretreatment is higher than the untreated samples for the same
grinding time. The iron grade increased from 61.06% in the untreated sample to 61.86% in the HVEP
treated sample after being grinded for 9 min, the corresponding iron recovery just increased from
82.60% to 83.26%, and the increase of grade and recovery can be achieved with HVEP pretreatment.
One possible explanation for this phenomenon was the high percentage of liberated iron mineral
particles decomposed from the gangue minerals. The results demonstrated that the HVEP pretreatment
is beneficial for the magnetic separation process.
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3.4. Microstructures of Samples

The microscopic characteristics were qualitatively analyzed by SEM/EDS from the products
with and without HVEP pretreatment, and the results are shown in Figure 10. It was observed from
the images that many cracks and microcracks existed within grinding products. The transgranular
microcrack propagation was the main form of cracks in the samples under conventional mechanical
crushing without HVEP pretreatment as shown in Figure 10a. By contrast, the intergranular microcrack
propagation was the main form of cracks in the samples treated with HVEP pretreatment as shown
in Figure 10b. The difference between different parameters in the neighboring minerals in the ore
aggregates leads to the concentration of the electrical field, and the electrical breakdown takes place
throughout the interface of the different minerals in the aggregates. Therefore, the disintegration
of shavings develops with the interface of the different minerals. Furthermore, high temperatures
existing in the discharge channel were formed at the interface between iron minerals and quartz
gangue minerals as presented in Figure 10c. Some minerals in the nearby discharge channel are melted
partially, because a part of the electricity is converted into heat energy.
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4. Conclusions

A comparison of grinding and separation behavior of magnetite ore with and without HVEP
pretreatment was carried out. The major findings can be summarized below:

(1) The results showed that more fine particles were produced and the grindability of magnetite ore
samples improved by increasing the pulse number, decreasing the output voltage and decreasing
the electrode spacing by HVEP pretreatment.

(2) Samples by HVEP pretreatment have higher degree of mineral liberation than samples without
HVEP pretreatment in each size fraction; the degree of mineral liberation of pretreated samples is
13.19% higher than that of untreated samples in the whole size range.

(3) The grinding processes and magnetic separation can benefit from liberation advancement in
obtaining the fully-liberated individual mineral particles. It is easier and less time-consuming to
grind samples treated with HVEP pretreatment, which can also allow us to obtain a higher TFe
grade in the magnetic separation.
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(4) The morphology characteristics verify that high electrical field intensity is found to occur along the
boundaries of two mineral phases and can produce many intergranular microcracks, which also
can reduce the grinding time and improve mineral liberation.
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