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Abstract: The Shimensi deposit (Northern Jiangxi, South China) is a recently discovered super-large
tungsten deposit. Muscovite 40Ar/39Ar dating yielded a plateau age of 145.7 ± 0.9 Ma, with normal
and inverse isochronal ages being 145.4 ± 1.4 Ma and 145.3 ± 1.4 Ma, respectively. The muscovite
40Ar/39Ar age, which can represent the mineralization age, coincides well with the published zircon
U–Pb ages (143–148 Ma) of the ore-hosting granites, which indicates that the tungsten mineralization
was syn-magmatic. The new age reported here confirms that the Shimensi tungsten deposit is part
of a large Early Cretaceous (147–136 Ma) tungsten-polymetallic belt in South China. Measured and
calculated sulfur isotopic compositions (δ34Sminerals = −3.0h to 1.1h, average −1.3h; δ34SH2S =
−4.5h to +1.2h, average −1.8h) of the Shimensi ore-forming fluids indicate that the sulfur was
mainly magmatic-derived. The calculated and measured oxygen and hydrogen isotopic compositions
(δ18OH2O = 4.1h to 6.7h, δD = −62.7h to −68h) of the ore-forming fluids indicate a dominantly
magmatic source with a meteoric water input. Oxygen isotopic modelling of the boiling/mixing
processes indicates that the Shimensi tungsten mineralization was caused mainly by fluid mixing of
magmatic hydrothermal fluid with meteoric water.
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1. Introduction

South China is well endowed with tungsten resources. Previous exploration efforts were
concentrated in the Nanling region (especially southern Jiangxi). Recent discoveries of some
super-large tungsten deposits in northern Jiangxi have given this region some of the largest tungsten
mines (e.g., Dahutang and Zhuxi) in the world [1,2]. Unlike southern Jiangxi, where tungsten
mineralization is associated with tin, tungsten mineralization in northern Jiangxi is associated with
copper [3]. The origin of the northern Jiangxi W-Cu deposits has been extensively investigated,
and various metallogenic models have been proposed [2–9]. For example, Jiang et al. [2] proposed
a two-stage metallogenic model: the first and second mineralization stage were likely related to
porphyritic granite and fine grained granite and granite porphyry, respectively. During the extreme
fractionation of the granitic magma, metals were concentrated in the late magmatic hydrothermal
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fluids and finally deposited as giant orebodies via a two-stage magmatism and mineralization process.
The ore-fluid circulation model has been proposed, and fluid driving factors are mainly ascribed to
temperature and pressure gradients [9].

The Dahutang tungsten ore district is located in the newly delineated North Yangtze Tungsten
Belt (NYTB), which is situated to the north of the Nanling W-Sn metallogenic belt (Figure 1a) [1,4].
The total resource is estimated to be >1 million tons (Mt) of tungsten (0.185%) and 0.65 Mt of copper
(0.16%) [5]. Previous exploration mainly focus on wolframite, whereas recent exploration has suggested
good potential of veinlet/disseminated scheelite (CaWO4) mineralization in areas of wolframite
mineralization [6].
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the Middle-Lower Yangtze River Metallogenic Belt (MLYRB) and (b) the Dahutang tungsten ore
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Preliminarily investigations in Shimensi have focused on the local geology and a tentative
genetic model [7–13]. The mineralizing fluid was magmatic water [14], but the mixing of two
different fluids (e.g., magmatic hydrothermal fluid and meteoric water) was responsible for the
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mineralization [13]. The granitic magma is the direct source of tungsten-bearing fluids [1],
the sequences of metasedimentary rocks that host the granitic plutons may be another significant metal
source [14]. The Re-Os isochron ages of molybdenite vary from 139.2 ± 1.0 to 149.6 ± 1.4 Ma [7,8,15].
Despite previous research, the possible ore-forming fluid sources [1,14] and their interactions in
metals transportation, as well as the mineralization age [7,8,15] remain poorly constrained. In this
study, we conducted muscovite 40Ar/39Ar dating and stable isotope (H, O, and S) analyses to address
these issues.

2. Geological Background

2.1. Regional Geology

South China includes the Yangtze Block in the northwest and Cathaysia Block in the southeast,
and is bordered with the North China Craton in the north and the Tibetan Plateau in the west [16].
The Jiangshan-Shaoxing Fault Zone represents the Yangtze-Cathaysia suture zone that contains
widespread ophiolite occurrences [17]. The Dahutang deposit is located in the northern margin
of the Yangtze Block. The Middle-Lower Yangtze River Belt (MLYRB) is bounded by several large
strike-slip fault systems, including the Xiangfan-Guangji Fault in the northwest, the Tancheng-Lujiang
Fault in the northeast and the Yangxing-Changzhou Fault in the south [4]. Exposed rock units in the
MLYRB include those of Mesoproterozoic (dominant), Neoproterozoic, Palaeozoic and Mesozoic [6].
Proterozoic rocks in the MLYRB have high tungsten and copper contents, especially in the Jiuling
Mountain area (mean W = 9.13 ppm, Cu = 38.1 ppm) [3].

In the Dahutang area, most of the granites were emplaced into the Neoproterozoic granodiorite
batholith, and some intruded the Neoproterozoic Shuangqiaoshan Formation greenschist-facies
metamorphic rocks (Figure 1b). The Shuangqiaoshan Group comprises thick meta-turbidite sequences,
including phyllite, slate, and meta-siltstone [2,12]. Structures (ductile shear zones, fractures and joints)
are well-developed in the Duhutang area, and the major ones are mainly EW- or NE-ENE-trending [6].
Local Mesozoic (ca. 150–140 Ma) [8,12] granitoids, e.g., granite, porphyry and granodiorite, occur as
small stocks intruding both the Neoproterozoic granodiorite batholiths and Precambrian rocks [4,12].

2.2. Deposit Geology

The Dahutang tungsten ore field contains the Shimensi deposit and five surrounding deposits.
Quaternary sediments unconformably overlie Neoproterozoic biotite granodiorite and late Mesozoic
granites in the Shimensi area. The late Mesozoic granite stocks and dikes are widespread at Shimensi
and are genetically related to the tungsten mineralization [7,8,12]. The tungsten mineralization occurs
along the contact between the late Mesozoic granite stocks and the Neoproterozoic granodiorite
batholith [8,12]. The late Mesozoic granitic rocks consist predominately of porphyritic biotite granite
and fine-grained biotite granite and granite porphyry. The rocks are strongly peraluminous, high-K
calc-alkaline, and are classified as highly fractionated S-type granite [4,12]. At Shimensi, a series of
EW-striking shear zones is present in the Neoproterozoic biotite granodiorite batholith [18,19]. The best
developed NNE-trending faults are steeply SW-dipping, and play a key role in granitoid emplacement
and ore formation (Figure 2a) [2,19].

Three mineralization styles are documented in Shimensi ore district (i.e., veinlet-disseminated,
quartz vein, and hydrothermal cryptoexplosive breccia), and they commonly co-exist and overprint
one another [1,8,10]. The veinlet-disseminated ore bodies are mainly distributed in both the
endocontact/exocontact between the Late Mesozoic granite and the Jinningian biotite granodiorite
(Figure 2b). This mineralization style is dominated by scheelite and accounts for 74% of total
tungsten reserve [18]. The major ore mineral is scheelite, accompanied by small amounts of
wolframite, molybdenite, and chalcopyrite, and the gangue minerals are quartz, biotite, muscovite,
and fluorite [13,14].
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Quartz vein-type ore bodies are mainly distributed in the late Mesozoic porphyritic biotite granite
(Figure 2b). Most of the veins trend nearly EW, NNE, and NW. There are more than 60 ore veins
at Shimensi. In general, the veins are 200 to 800 m long and 0.2 to 0.7 m thick [2]. Ore minerals
include mainly wolframite, chalcopyrite, and molybdenite, with trace amounts of scheelite [10,13].
This mineralization type cross-cuts all the granites and the other two ore types, indicative of being the
latest mineralization at Shimensi [14,19].

The hydrothermal cryptoexplosive breccia-type mineralization occurs at the centre of the deposit
(Figure 2b). The mineralization is mainly distributed on the top of the porphyritic biotite granite,
and in some places extends to the Jinningian biotite granodiorite batholith [2]. The breccias contain
porphyritic biotite granite and biotite granodiorite clasts. Ore minerals include mainly scheelite,
wolframite, chalcopyrite, and molybdenite, and gangue minerals include quartz, muscovite, K-feldspar,
biotite, and fluorite [10,14]. In summary, three mineralization styles contain roughly the same ore
mineral types, implying that the ore-forming fluid compositions are approximately similar.

Ore minerals at Shimensi include mainly wolframite, scheelite, chalcopyrite, and molybdenite
with minor arsenopyrite, cassiterite, pyrite, and bornite. Gangue minerals are predominately quartz
with minor mica and feldspar. The ores have blocky, brecciated, and veinlet-disseminated structures,
and euhedral-anhedral granular, metasomatic, and cataclastic textures [1,18]. Hydrothermal alteration
is widespread and includes mainly greisen, K-feldspar, silicic, and chlorite alterations [10].

3. Sampling and Analytical Methods

3.1. Muscovite Ar-Ar Dating Method

Muscovite sample (SMS-34) was collected from a muscovite-quartz vein for Ar-Ar dating.
The muscovite occurs as euhedral aggregates with a diameter of about 1 to 5 mm. Undeformed
mineral separates were handpicked under a binocular microscope. Step-heating 40Ar/39Ar analyses
were performed at the Ar-Ar Laboratory of the Institute of Geology and Geophysics, Chinese Academy
of Sciences. The analytical procedures were as described by Wang et al. [20]. Data-processing was
performed using ArArCALC 2.4 software [21]. The 40Ar/36Ar vs. 39Ar/36Ar isochron diagram was
constructed using Isoplot 4.0.
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3.2. Stable Isotope

Representative samples (quartz and sulfides) from the Shimensi deposit were chosen for the
hydrogen, oxygen, and sulfur isotope analyses. Quartz and sulfides (pyrite, bornite, chalcopyrite,
and molybdenite) were separated by careful handpicking under a binocular microscope. Stable isotope
analyses were measured at the Stable Isotope Laboratory of the Beijing Geological Research Institute
of Nuclear Industry.

Oxygen isotopes of quartz were analysed with the conventional BrF5 method [22]. For hydrogen
isotopes, water from fluid inclusions was extracted by heating the samples to ca. 500 ◦C, and then the
water reacted with zinc powder at 410 ◦C to generate hydrogen [23]. The H and O isotopic compositions
were determined using a MAT 251 EM mass spectrometer. All values are reported relative to the
V-SMOW standard and the precisions were ±2h and ±0.2h for δD and δ18O, respectively. Sulfur
isotope analyses used the continuous flow isotope ratio mass spectrometry. The procedures described
by Grassineau et al. [24] were followed in the analysis. The data are reported relative to CDT, and the
analytical precision was ±0.2h.

4. Analytical Results

4.1. Muscovite Ar-Ar Age

The Ar-Ar isotopic data of muscovite are given in Table 1 and illustrated in Figure 3. In this study,
the muscovite was incrementally heated by 13 steps from 700 ◦C to 1220 ◦C and yielded a concordant
age spectrum. The plateau comprises 13 continuous steps accounting for 98.8% of the released total
39Ar and defined a plateau age of 145.7 ± 0.9 Ma (2σ, MSWD = 0.22), consistent with normal and
inverse isochron ages of 145.4 ± 1.4 Ma and 145.3 ± 1.4 Ma, respectively (Figure 3). The spectral
characteristics and the initial 40Ar/36Ar values of 298.6 ± 6.4 and 298 ± 11 are very close to the
atmospheric value (298.6 ± 0.3, the superior precision measurements determined by Lee et al. [25]).
This implies that argon loss or excess argon did not occur or that their influence on the measured age
was negligible, i.e., the muscovite system analyzed remained closed during its geological evolution,
and thus the Ar-Ar age is reliable.

Table 1. 40Ar/39Ar analytical data for muscovite from the Shimensi tungsten deposit, South China.

T
(◦C) (40Ar/39Ar)m

(36Ar/39Ar)m (37Ar0/39Ar)m (38Ar/39Ar)m
40Ar
(%)

F
39Ar

(×10−14 mol)

39Ar (Cum.)
(%)

Age
(Ma)

±1σ
(Ma)

700 94.2546 0.2635 3.4274 0.0727 17.64 16.6767 0.02 0.08 144.0 20.0
770 25.9362 0.0291 0.0093 0.0162 66.79 17.3232 0.23 0.84 149.0 2.5
820 22.9143 0.0201 0.0576 0.0167 74.05 16.9697 0.38 2.15 146.1 1.9
860 22.1199 0.0176 0.1290 0.0166 76.49 16.9215 0.66 4.41 145.7 1.6
900 21.2446 0.0146 0.0235 0.0154 79.69 16.9292 1.70 10.20 145.7 1.5
940 17.9495 0.0038 0.0252 0.0134 93.81 16.8385 3.85 23.31 145.0 1.4
980 17.4116 0.0018 0.0044 0.0130 96.94 16.8793 5.19 41.00 145.3 1.4
1020 17.4304 0.0019 0.0062 0.0130 96.80 16.8734 5.80 60.78 145.3 1.4
1060 17.5796 0.0023 0.0164 0.0131 96.19 16.9102 3.73 73.51 145.6 1.4
1100 17.8003 0.0028 0.0402 0.0133 95.28 16.9599 2.20 81.01 146.0 1.4
1160 17.4189 0.0015 0.0030 0.0129 97.42 16.9693 3.86 94.17 146.1 1.4
1220 17.2956 0.0014 0.0438 0.0131 97.66 16.8919 1.37 98.84 145.4 1.4
1400 18.8968 0.0086 0.3145 0.0154 86.71 16.3887 0.34 100.00 141.3 2.1

4.2. Stable Isotopes

The oxygen and hydrogen isotopic results obtained are given in Table 2. The δD of the fluid
inclusions in quartz vary from −62.7h to −68.0h (average −64.8h). Oxygen isotopic compositions
of hydrothermal waters in equilibrium with quartz were calculated using an extrapolation of the
fractionation formula from Clayton et al. [26]. Since fluid inclusion assemblages (i.e., inclusions with
similar vapour-to-liquid ratios and heating behaviour) can provide more reliable information [27],
the homogenisation temperatures of fluid inclusion assemblages were determined (Table 2). In general,
homogenisation temperatures are lower than the fluid inclusion trapping temperatures during
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crystallisation. Consequently, we used the highest homogenisation temperatures to calculate the
δ18OH2O. The calculated oxygen isotopic compositions of the fluids (δ18O) range from 4.1h to 6.7h
(average 5.5h).

Table 2. Results of the δ18O–δD study from Shimensi (data are relative to V–SMOW).

Sample No. Mineralization Style Mineral δD (h) δ18OQuartz (h) δ18OH2O (h) Th (◦C)

SMS-10 Quartz vein Quartz −68.0 12.1 4.5 262–279
SMS-9 Quartz vein Quartz −63.9 12.5 6.3 302–318
SMS-17 Quartz vein Quartz −66.1 12.7 5.3 274–285
SMS-5 Quartz vein Quartz −63.0 13.6 6.7 281–298
SMS-16 Cryptoexplosion breccia Quartz −64.9 12.2 4.1 256–267
SMS-24 Cryptoexplosion breccia Quartz −62.7 12.8 6.3 295–311

New and published sulfur isotopic data [13,14] are given in Table 3. In this study, δ34S values of
sulfides from the different samples range from −3.0h to −0.8h (average −1.8h). In combination
with published data, the δ34S values of sulfides vary in a relatively broad range of −3.0h to 1.1h
(average −1.3h).
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Table 3. Sulfur isotope data from Shimensi (data are relative to V–CDT).

Sample No Mineralization Style Mineral δ34S Sulfide h δ34SH2S h Data Sources

SMS-16 Cryptoexplosion breccia Chalcopyrite −1.4 −1.2

This study

SMS-24 Cryptoexplosion breccia Chalcopyrite −1.7 −1.6
SMS-16 Cryptoexplosion breccia Molybdenite −2.5 −4.0
SMS-9 Quartz vein type Chalcopyrite −1.4 −1.3
SMS-10 Quartz vein type Chalcopyrite −0.8 −0.6
SMS-10 Quartz vein type Molybdenite −3.0 −4.5
SMS-17 Quartz vein type Molybdenite −1.9 −3.3
SMS-5 Quartz vein type Bornite −1.6 −1.8

SMS-17 Quartz vein type Chalcopyrite −1.2 −1.0
SMS-7 * Quartz vein type Pyrite −2.2 −3.4

SMS-40 * Quartz vein type Molybdenite −2.0 −3.9
SMS-22 * Quartz vein type Molybdenite −1.4 −2.8

Y08 Cryptoexplosion breccia Chalcopyrite −0.5 −0.4

Ruan et al. [13]

Y17 Cryptoexplosion breccia Chalcopyrite −1.0 −0.9
Y40-2 Cryptoexplosion breccia Chalcopyrite −1.4 −1.3
Y40-2 Cryptoexplosion breccia Chalcopyrite −0.6 −0.5
Y43 Cryptoexplosion breccia Chalcopyrite −0.2 −0.1

Y61-2 Cryptoexplosion breccia Chalcopyrite −1.3 −1.2
Y62-2 Cryptoexplosion breccia Chalcopyrite −0.5 −0.4
Y63 Cryptoexplosion breccia Chalcopyrite −0.1 0.0
Y66 Cryptoexplosion breccia Chalcopyrite −1.2 −1.1

Y67-2 Cryptoexplosion breccia Chalcopyrite −1.0 −0.9
Y68 Cryptoexplosion breccia Chalcopyrite −0.9 −0.8

Y76-2 Cryptoexplosion breccia Chalcopyrite 1.1 1.2
Y12 Cryptoexplosion breccia Molybdenite −0.8 −1.8

Y40-1 Cryptoexplosion breccia Molybdenite −0.4 −1.4
Y62-1 Cryptoexplosion breccia Molybdenite 0.2 −0.8

SM156-1 Cryptoexplosion breccia Chalcopyrite −1.7 −1.6

Wang [14]

SM156-2 Cryptoexplosion breccia Chalcopyrite −1.6 −1.5
Mo-SP1 Cryptoexplosion breccia Molybdenite −2.5 −3.7
Mo-SP2 Cryptoexplosion breccia Molybdenite −1.0 −2.2
Mo-SP4 Cryptoexplosion breccia Molybdenite −2.0 −3.2
Mo-SP6 Cryptoexplosion breccia Molybdenite −1.8 −3.0
Mo-SP8 Cryptoexplosion breccia Molybdenite −1.9 −3.0
Mo-SP3 Quartz vein type Molybdenite −1.6 −2.8
Mo-SP5 Quartz vein type Molybdenite −1.9 −3.1
Mo-SP7 Quartz vein type Molybdenite −2.0 −3.2

* Temperature data come from Liu et al. [28].

5. Discussion

5.1. Age of Mineralization

Previous molybdenite Re-Os dating of the Shimensi tungsten mineralization had yielded diverse
isochron ages, such as 139.2 ± 1.0 Ma [8], 143.7 ± 1.2 Ma [7], 145.1 ± 1.0 Ma [29], and 149.6 ± 1.4 Ma [15].
All of these data were obtained from the same laboratory, and thus the age differences may have been
caused by the Re-Os decoupling in large molybdenite grains [30–34]. An alternative explanation for
this wide molybdenite Re-Os age range may have been caused by a complex history of magmatism
and mineralization at Shimensi. Muscovite 40Ar/39Ar dating is widely used to determine the timing
of hydrothermal mineralization, particularly that related to tungsten deposits [16,35].

The closure temperature for argon isotope systematics in muscovite was determined to be
350 ◦C under rapid cooling [36] and 270 ◦C under slow cooling or extended reheating [37]. Recent
experimental data [38] suggest that the retentivity of argon in muscovite is greater than previously
thought, and muscovite closure temperature is substantially higher (e.g., 425 ◦C for cooling at
100 ◦C/Ma). At Shimensi, homogenisation temperatures of fluid inclusions in the mineralization-phase
quartz (152 to 387 ◦C) [1,13,28] are clearly lower than the muscovite Ar-Ar closure temperatures and
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no obvious overprinting exists in the argon age-spectrum plateau data, implying that the 40Ar/39Ar
ages of the muscovite were not affected by later thermal disturbance. Therefore, the Ar-Ar plateau age
reflects the timing of mineralization.

Our new precise muscovite Ar-Ar mineralization age (145.70 ± 0.90 Ma) is indinguishable to the
Re-Os isochron age (145.1 ± 1.0 Ma; [29]) and the zircon U-Pb ages for the ore-related granitoids, e.g.,
ca. 147.4 to 148.3 Ma (porphyritic biotite granite), 146.1 ± 0.6 Ma (fine-grained granite), and ca. 143.0
to 143.1 Ma (granite porphyry) [8]. This suggests that the granitoids at Shimensi were both spatially
and temporally related to the tungsten mineralization.

5.2. Source of Sulfur

Sulfur isotopic compositions of metallic minerals (δ34S) and ore-forming fluids (δ34S∑S) can
constrain the possible sources of sulfur and other metallogenic elements, and help in deciphering
the metallogenic conditions [39]. The range of δ34S is narrow among the different Shimensi ore
and sulfide types (−3.0h to 1.1h; Table 3). Other W deposits have similar S isotope values,
namely the world-class Chinese deposits of Xihuashan (δ34S −1.6h–+0.6h; [40]), Taoxikeng
(δ34S −2.3h–+0.1h; [41]), and Dengfuxian (δ34S −1.4h–+0.1h; [42]) and the Panasqueira W deposit
(Portugal) (δ34S −0.91h–+2.03h; [43]). The absence of oxidised minerals (hematite) and sulphates
in the hydrothermal veins indicate that reduced sulfur (H2S) was the main sulfur species in the
hydrothermal fluids [39]. δ34SH2S values of the hydrothermal fluids were calculated using the
mineral-H2S equations from Ohmoto and Rye [39] (Table 3). Calculated sulfur isotopic compositions
for the hydrothermal fluids reveal a narrow δ34SH2S range (−4.5h to 1.2h, average −1.8h), which
is also consistent with a magmatic (±mantle) sulfur source (Figure 4) [39,44]. This further supports
that the Shimensi ore-forming fluids were closely related to the late Mesozoic magmatism (ca. 143 to
148 Ma; [8]).
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5.3. Source of Ore-Forming Fluids

The H-O isotopic compositions of the ore-forming fluid plot between the magmatic field and
the global meteoric water line in the δD vs. δ18O diagram (Figure 5), suggesting that magmatic
fluids may have been important for the ore formation. These values are similar to those for several
granite-related W deposits in the Nanling region of South China, Portugal, and Bolivia (Figure 5).
The Shimensi ore-forming fluids were characterized by middle-low salinities, distinct from typical
high temperature/salinity magmatic-derived fluids [45]. This implies that meteoric water may have
contributed to the ore-forming fluids.
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5.4. Boiling or Mixing?

To further constrain the ore-forming processes, we performed quantitative modelling on the
isotopic effects of cooling and mixing (Figure 6) using the quartz δ18O data and the method
of Wagner et al. [47,48]. The calculations used the mineral-water isotope fractionation equation
of Matsuhisa et al. [49]. The equilibrium temperature was assumed to be 390 ◦C (the highest
homogenisation temperature of fluid inclusions in quartz) [13]. For the calculations, we chose the
end-member δ18O values (+11.5h) for the fluids in equilibrium with the magmatic end-member and
−7.5h for the Mesozoic meteoric waters [50]. Temperatures of the meteoric end-member varied
between 50 and 200 ◦C to reflect natural systems. The measured data do not fit the boiling/cooling
curves, but do match the mixing trends (mass fractions of meteoric water: 0.2 to 0.4). Although there is
evidence suggesting boiling (from fluid inclusions in quartz) had occurred, local boiling was probably
less important for the hydrothermal evolution at Shimensi. We propose that magmatic-meteoric fluid
mixing may have been the dominant mechanism for the tungsten mineralization.
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5.5. Ore Deposition Processes

The high-grade Shimensi tungsten deposit suggests an effective ore-enrichment mechanism that
may have caused tungsten super-saturation in the ore-forming fluids. Theoretical constraints indicate
that NaHWO4, NaWO4

−, HWO4
−, and WO4

2− were the dominant tungsten species in the ore-forming
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fluids, which were likely formed under a moderately acidic pH and an oxygen fugacity (f O2) close
to the quartz–fayalite–magnetite (QFM) buffer [51]. The selective precipitation of wolframite and
scheelite from the ore-forming fluids can be induced by an increase in f O2 and pH and/or decrease in
temperature and chloride ligand/ion activities [51]. The main mechanisms for initiating wolframite
and scheelite precipitation are regarded to be boiling [52], fluid mixing [53,54], cooling [55], wall-rock
alteration [56], and pressure decrease [57].

Mineralization-related wall-rock alteration (e.g., chlorite and greisen alterations) at Shimensi
increases the fluid acidity and thus tungsten solubility [58]. Previous studies suggested that tungsten
solubility is only weakly dependent on pressure and f O2 [59]; therefore, cooling alone was unlikely to
be enough for the high-grade tungsten ore formation.

Boiling would have oxidised the ore-forming fluids, decreased their temperature, significantly
increased their pH due to the loss of acidic volatiles [48], and eventually promoted the precipitation
of wolframite and scheelite. However, boiled fluid inclusions in quartz from Shimensi are rare [38].
Therefore, boiling may have occurred to a limited extent during the main ore-forming event. Moreover,
18O enrichment and D depletion, which are common phenomena in boiling/vapour separation [59,60],
are not apparent in the measured δ18O and δD at Shimensi. Quantitative modelling of boiling and
fluid mixing mechanisms also shows that boiling was unlikely a major process in the ore-forming fluid
evolution. Instead, the occurrence of magmatic-meteoric fluid mixing is supported by the observed
quartz δ18O values. Fluid mixing may have decreased chloride concentration of the ore-forming fluids,
leading to substantial tungsten solubility decrease and thus ore mineral precipitation [61].

5.6. Tectonic Setting of the Shimensi Deposit

Tungsten mineralization in the world took place within a large time span, although it peaked
during Paleozoic and Mesozoic and sustained different deposit types (such as quartz vein-, skarn-,
porphyry-, and disseminated-type) [62]. Paleozoic tungsten deposits are dominated by quartz vein
type, followed by skarn type. By far the majority of the global tungsten resources (70%), represented
mainly by vein-, skarn-, and porphyry-type, were formed in the Mesozoic [63]. The Panasqueira
Mine (Portugal), a world-class W-Sn-Cu vein-type deposit that was formed during 296–292 Ma [37], is
interpreted to have been associated with crust-mantle reaction [64]. Important tungsten mineralization
formed during ca. 100–40 Ma in Japan [65], at ca. 210–140 Ma in Pan-African, and in ca. 96–90 Ma
in North America [66] are all interpreted to have been associated with orogenic belts [67]. Tungsten
deposits occurrences in Europe (340 to 320 Ma and 300 to 275 Ma) are related to extensional setting [67].
Based on contrastive analysis, one of the main factors that determine where the tungsten deposits are
located is not so much geologic age, but proximity to tectonic setting [63,67].

South China is one of the most important W-polymetallic provinces in the world. Based on
field relations and existing geochronological data, Mao et al. [68] proposed that the Mesozoic
W-polymetallic mineralization in South China can be divided into three episodes: Late Triassic
W-Sn-Nb-Ta mineralization (230–210 Ma), Late Jurassic W-Sn mineralization (160–150 Ma), and the
Early Cretaceous Sn-W-Cu-Au mineralization (134–80 Ma). The Jurassic and Cretaceous mineralization
may were formed under a continental arc environment, with widespread magmatism and related
metallogenic events caused by the subduction of the Paleo-Pacific plate [68,69]. Previous studies
considered that ca. 150–130 Ma was a relatively tranquil period of magmatism and mineralization in
most of the South China Block [68]. The molybdenite Re-Os ages from the Shiweidong [7], Zhuxi [70]
and Yangchuling [71] W-Cu deposits are 140.9 ± 3.6 Ma, 145.1 ± 1.5 Ma, and 146.4 ± 1.0 Ma,
respectively. Therefore, Mao et al. [71] proposed that there was also a weak W-Cu mineralization epoch
during 147–136 Ma in South China. It is generally accepted that continental crust extension occurred
in South China during the Cretaceous, which was characterized by mafic dykes, pull-apart basins,
and volcanic basins [12,69–71]. Crust-mantle interactions were important in forming the granite-related
W polymetallic deposits of the Nanling and adjacent areas in the South China interior and were
probably related to the magmatic and hydrothermal activities associated with lithospheric thinning
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in South China. The Sr-Nd-Hf isotopic compositions indicate that the Shimensi W deposit-related
granitoids are derived from the Neoproterozoic Shuangqiaoshan Group with mantle material [4,11].
As already stated, the Shimensi deposit belongs to the important Early Cretaceous (147–136 Ma) W-Cu
mineralization event in South China, indicating that it occurred under lithospheric extension.

6. Conclusions

(1) Muscovite 40Ar/39Ar age (145.70 ± 0.90 Ma) of the Shimensi deposit is consistent with
the published zircon U-Pb age (143 to 148 Ma) of the ore-hosting granites, indicating a
spatial-temporal link between them. The new age reported here confirms that the Shimensi
tungsten deposit is part of a large Early Cretaceous (147–136 Ma) tungsten-polymetallic belt in
South China.

(2) A combination of δ34S, δD and δ18O evidence shows that the ore fluids are mixtures of magmatic
and meteoric waters.

(3) Quantitative modelling of isotopic compositions of quartz shows that magmatic-meteoric fluid
mixing was likely the main metallogenic mechanism for the wolframite and scheelite precipitation
at Shimensi.
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