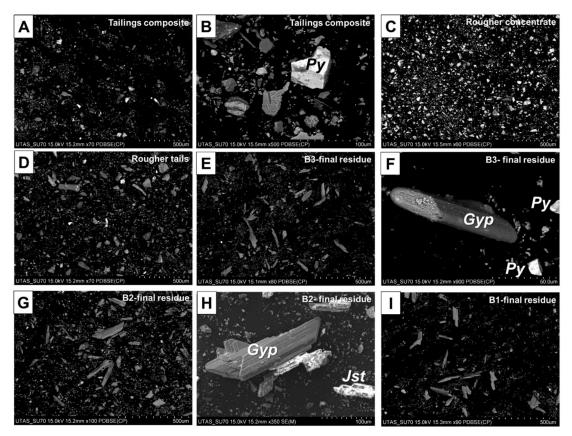

Supplementary Materials


A Geometallurgical Approach to Tailings Management: An Example from the Savage River Fe-ore Mine, Western Tasmania

Anita Parbhakar-Fox 1,*, John Glen ² and Bonita Raimondo ²

- ¹ ARC Transforming the Mining Value Chain Research Hub, Private Bag 79, Sandy Bay, Tasmania, 7005, Australia
- ² ALS-Metallurgy, 39 River Road, Wivenhoe, Tasmania, 7320, Australia; john.glen@alsglobal.com(J.G.); bonita.raimondo@alsglobal.com (B.R.)
- * Correspondence: anitap1@utas.edu.au; Tel.: +61 0400850831

Figure S1. X-ray diffractometry patters for the concentrate and solids taken from B1, B2 and B3 tanks at the end of the experiment.

Figure S2. Back scattered electron (BSE) images of solid residues from the tailings composite, rougher concentrate and each tank. (A) Tailings composite material comprising bulk materials collected from Zones 1-4; (B) Pyrite contained in the tailings composite; (C) Rougher concentrate produced after tailings flotation; (D) New tailings stream produced after flotation; (E) Final bioleached residue from tank B3 (i.e., least oxidised) ; (F) Gypsum contained in the tank B3 residue; (G) Final residue from tank B2; H) Gypsum contained in tank B2; (I) Final bioleached materials from the most oxidized bioleached tank confirming the majority of pyrite had been oxidized (abbreviations: Gyp, gypsum; Jst, jarosite, Py, pyrite).