Supplementary material

Mineral Phase-element Associations Based on Sequential Leaching of Ferromanganese Crusts, Amerasia Basin Arctic Ocean

Natalia Konstantinova ^{1,2,*}, James R. Hein ³, Amy Gartman ³, Kira Mizell ^{3,4}, Pedro Barrulas ⁵, Georgy Cherkashov ^{1,2}, Pavel Mikhailik ^{6,7} and Alexander Khanchuk ⁶

- ¹ Institute of Earth Sciences, Saint-Petersburg State University, St. Petersburg, 199034, Russia, npkonstantinova@gmail.com (N.K.); gcherkashov@gmail.com (G.C.)
- ² Department of Geology and Mineral Resources, Institute for Geology and Mineral Resources of the Ocean (VNIIOkeangeologia), St. Petersburg, 190121, Russia
- ³ Pacific Coastal & Marine Science Center, U.S. Geological Survey, Santa Cruz, CA 95060, USA, jhein@usgs.gov (J.R.H.); agartman@usgs.gov (A.G.); kmizell@ucsc.edu (K.M.)
- ⁴ Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA,
- ⁵ The Laboratory HERCULES, University of Evora, Évora, 7000-809, Portugal, pbarrulas@uevora.pt
- ⁶ Laboratory of regional geology and tectonic, Far East Geological Institute FEB RAS, Vladivostok, 690022, Russia, mikhailik@fegi.ru (P.M.); director@fegi.ru (A.K.)
- 7 School of Engineering, Far East Federal University, Vladivostok, 690950, Russia
- * Correspondence: NPKonstantinova@gmail.com; Tel.: +7 812 7138379; fax: +7 812 7141470

Table S1. Correlation coefficient matrix for the ferromanganese mineral association.

	Ν	Na	Mg	Al	Si	Р	S	Cl	K	Ca	Sc	Ti	Mn	Fe	Со	Ni
Na	113	1	-0.21	0	-0.22	-0.3	0.1	-0.14	0.04	0.32	0.29	-0.42	0.29	-0.4	-0.5	0.02
Mg	121	-0.21	1	-0.14	-0.24	-0.36	0.62	-0.26	-0.16	-0.14	-0.26	0.45	0.35	-0.48	0.61	0.15
Al	121	0	-0.14	1	0.51	0.44	-0.23	-0.02	0.26	-0.2	0.09	-0.4	-0.27	0.05	0.36	-0.47
Si	121	-0.22	-0.24	0.51	1	0.37	-0.3	0.06	0.75	-0.37	-0.08	-0.1	-0.48	0.26	0.13	0.02
Р	118	-0.3	-0.36	0.44	0.37	1	-0.29	0.19	0.04	-0.51	0.09	0.03	-0.71	0.74	-0.09	-0.38
S	109	0.1	0.62	-0.23	-0.3	-0.29	1	-0.32	-0.1	0.15	-0.08	0.31	0.33	-0.42	0.47	-0.04
Cl	121	-0.14	-0.26	-0.02	0.06	0.19	-0.32	1	-0.12	0.04	-0.16	-0.01	-0.2	0.26	0.4	0.24
K	92	0.04	-0.16	0.26	0.75	0.04	-0.1	-0.12	1	-0.11	0.08	-0.05	-0.09	0	-0.25	0.31
Ca	121	0.32	-0.14	-0.2	-0.37	-0.51	0.15	0.04	-0.11	1	0.06	-0.24	0.64	-0.37	0.27	0.08
Sc	91	0.29	-0.26	0.09	-0.08	0.09	-0.08	-0.16	0.08	0.06	1	-0.10	-0.01	0.05	0.66	0.05
Ti	80	-0.42	0.45	-0.4	-0.1	0.03	0.31	-0.01	-0.05	-0.24	-0.10	1	-0.02	0.17	0.23	-0.01
Mn	121	0.29	0.35	-0.27	-0.48	-0.71	0.33	-0.2	-0.09	0.64	-0.01	-0.02	1	-0.75	0.35	0.63
Fe	121	-0.4	-0.48	0.05	0.26	0.74	-0.42	0.26	0	-0.37	0.05	0.17	-0.75	1	-0.08	-0.37
Co	10	-0.5	0.61	0.36	0.13	-0.09	0.47	0.4	-0.25	0.27	0.66	0.23	0.35	-0.08	1	0.13
Ni	28	0.02	0.15	-0.47	0.02	-0.38	-0.04	0.24	0.31	0.08	0.05	-0.01	0.63	-0.37	0.13	1

N — number of samples. Bolded red values reflect values above zero point of correlation at the 99% confident level.

Figure S1. Back-scatter photomicrographs of organic relicts replaced by iron minerals. Chemical composition (SEM-EDS) for spots 1-4 presented in Table S2.

							-				-	-								
-		Na	Mg	Al	Si	Р	S	Cl	K	Ca	Sc	Ti	V	Mn	Fe					
	1	BD	1.18	2.64	4.41	0.84	BD	1.34	BD	0.54	BD	0.41	BD	BD	57.1					
	2	0.57	2.34	10.9	13.8	0.94	.94 0.19 0.89 1.75 0.49 BD 0.31 BD 0.71 31.1													
	2 0.57 2.34 10.9 13.8 0.94 0.19 0.89 1.75 0.49 BD 0.31 BD 0.71 31 3 1.67 1.96 5.24 2.13 1.46 0.34 0.6 0.18 1.17 BD 0.48 BD 5.37 45																			
	4	0.99	2.18	5.27	4.22	1.46	0.31	1.33	0.26	0.91	0.07	0.28	0.14	0.98	49.2					
							BD=b	elow d	detect	ion.										

Table S2. Chemical composition (SEM-EDS) of points in Figure S1.

Table S3. Correlation coefficient matrix for the iron mineral association.

	Ν	Na	Mg	Al	Si	Р	S	Cl	Κ	Ca	Sc	Ti	V	Mn	Fe
Na	32	1	-0.07	-0.15	0.35	-0.07	0.12	0.1	-0.14	0.28	0.08	0.33	-0.35	0.33	-0.3
Mg	54	-0.07	1	0.52	-0.24	0.4	-0.05	0.04	-0.29	0	0.27	0.25	-0.23	0.18	-0.53
Al	54	-0.15	0.52	1	0.36	0.37	-0.37	0.17	0.15	-0.27	-0.17	-0.12	-0.52	-0.04	-0.45
Si	54	0.35	-0.24	0.36	1	-0.33	-0.41	0.1	0.79	-0.29	-0.30	0.04	-0.43	-0.27	-0.21
Р	54	-0.07	0.4	0.37	-0.33	1	0.26	0.17	-0.25	-0.02	0.51	0.11	0.29	-0.18	-0.02
S	29	0.12	-0.05	-0.37	-0.41	0.26	1	0.12	-0.07	0.68	0.62	0.36	0.07	0.23	-0.03
Cl	46	0.1	0.04	0.17	0.1	0.17	0.12	1	-0.19	0.04	-0.10	-0.08	-0.25	0.01	0.26
Κ	36	-0.14	-0.29	0.15	0.79	-0.25	-0.07	-0.19	1	-0.49	-0.05	-0.02	-0.33	-0.26	-0.3
Ca	54	0.28	0	-0.27	-0.29	-0.02	0.68	0.04	-0.49	1	0.05	0.36	-0.1	0.52	0.03
Sc	44	0.08	0.27	-0.17	-0.30	0.51	0.62	-0.10	-0.05	0.05	1.00	0.59	-0.05	-0.34	0.10
Ti	40	0.33	0.25	-0.12	0.04	0.11	0.36	-0.08	-0.02	0.36	0.59	1	0.44	-0.02	-0.28
V	17	-0.35	-0.23	-0.52	-0.43	0.29	0.07	-0.25	-0.33	-0.1	-0.05	0.44	1	-0.33	0.62
Mn	45	0.33	0.18	-0.04	-0.27	-0.18	0.23	0.01	-0.26	0.52	-0.34	-0.02	-0.33	1	-0.31
Fe	54	-0.3	-0.53	-0.45	-0.21	-0.02	-0.03	0.26	-0.3	0.03	0.10	-0.28	0.62	-0.31	1

N = number of samples. Bolded red values reflect values above zero point of correlation at the 95% confident level.

%	L1	L2	L3	L4	Total
DR5-D-A	16.2	27.1	19.5	34.8	97.6
DS5-042/1	11.7	26.7	23.4	34	95.8
DS5-042/2	11.3	28.5	26.1	28.6	94.5
DS1-001/A	21.1	21.9	20.5	33.5	97
DS1-001/B	10.4	26.3	30.6	28.6	95.9
DS1-001C	7.7	16.9	30.5	38.8	93.9
DS1-001D	24.2	15	18.9	40.2	98.3
DR4-003A	6.6	39.9	21.3	27.7	95.5
09-648/1	19.8	33.2	25.8	18.3	97.1
09-648/2	12.2	30.6	33.4	19.7	95.9
09-648/3	14.2	20.1	29.6	31.4	95.3
10/1	9.7	31.9	23.5	30.6	95.7
D07-33	12.6	44.3	29.5	7.5	93.9

Table S4. Leach phase mass percentages for 13 samples.

L1-L4 - four sequential leaching fractions.

		DR5	-D-A	-A DS5-042/1						DS5-	042/2			DS1-	001/A			DS1-	001/B			DS1-	001/C			DS1-	001D	
	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4
Li	10. 1	51. 4	3.9	34. 7	10. 3	44. 2	5.7	39. 8	9.4	51. 6	4.2	34. 8	14. 4	46. 6	5.2	33. 8	10. 2	53. 4	5.4	31. 0	7.9	42. 3	5.2	44. 6	8.1	36. 6	5.2	50. 0
Ma	40.	24.	14.	19.	42.	23.	14.	19.	45.	19.	15.	18.	46.	18.	15.	19.	43.	17.	19.	19.	39.	13.	20.	26.	40.	12.	17.	29.
wig	6	7	9	8	7	4	9	0	5	8	8	8	5	7	2	6	7	5	3	5	7	8	0	6	6	3	2	9
K	-	-	-	-	16. 6	4.2	1.8	77. 4	17. 4	4.7	1.5	76. 4	-	-	-	-	18. 8	4.5	2.1	74. 6	14. 1	3.5	1.4	81. 0	-	-	-	-
Ca	62. 5	28. 7	1.0	7.8	65. 2	24. 5	1.6	8.7	66. 4	25. 6	1.2	6.7	65. 5	21. 9	1.4	11. 1	68. 3	22. 6	2.3	6.9	62. 5	20. 7	0.9	15. 9	61. 9	18. 4	0.6	19. 2
Sr	50. 7	37. 2	2.2	10. 0	50. 3	39. 3	1.9	8.6	47. 0	44. 7	1.8	6.4	54. 5	29. 9	2.1	13. 5	51. 3	37. 8	2.7	8.2	49. 9	29. 5	3.3	17. 3	52. 5	23. 9	2.7	20. 9
Cs	0.2	0.8	3.2	95. 8	0.5	1.3	4.8	93. 4	0.3	1.1	4.3	94. 4	0.4	1.8	5.6	92. 2	0.6	2.1	5.0	92. 3	0.2	1.5	5.1	93. 2	-	-	-	-
Ba	0.0	39. 4	6.7	53. 9	0.0	42. 6	6.6	50. 7	0.0	50. 2	7.3	42. 4	0.0	34. 9	4.7	60. 4	0.2	46. 0	8.3	45. 5	0.0	29. 8	5.7	64. 5	0.0	24. 5	3.1	72. 4
Mn	0.0	97. 9	2.0	0.1	0.0	97. 8	2.1	0.1	0.0	97. 4	2.6	0.1	0.0	98. 0	1.8	0.2	0.0	96. 0	3.8	0.2	0.0	96. 1	3.7	0.2	0.0	97. 1	2.7	0.2
Со	0.0	98. 7	1.1	0.2	0.0	98. 7	1.1	0.2	0.0	98. 4	1.4	0.2	0.0	98. 8	0.8	0.3	0.1	98. 3	1.3	0.3	0.1	97. 1	2.0	0.8	0.1	97. 5	1.6	0.9
Ni	0.2	96. 3	2.7	0.8	0.5	95. 1	3.8	0.7	0.3	94. 6	4.2	0.9	0.7	95. 6	2.7	0.9	0.8	92. 4	5.5	1.3	0.5	89. 8	6.6	3.1	0.7	91. 8	4.5	3.0
Zn	0.0	47. 4	34. 0	18. 7	0.0	49. 4	35. 5	15. 1	0.0	45. 7	37. 5	16. 8	0.0	44. 9	36. 9	18. 1	0.0	37. 4	42. 6	20. 0	-	-	-	-	0.0	29. 7	41. 0	29. 4
Cu	1.5	48. 2	39. 3	11. 0	-	-	-	-	-	-	-	-	2.5	48. 2	40. 1	9.3	1.4	38. 3	47. 8	12. 5	-	-	-	-	3.0	34. 9	47. 6	14. 5
Y	0.0	69. 3	23. 3	7.4	0.0	72. 1	22. 7	5.2	0.0	74. 7	20. 5	4.9	0.0	68. 0	24. 1	7.9	0.0	72. 1	22. 2	5.8	0.0	63. 3	27. 4	9.3	0.0	64. 3	25. 1	10. 6
La	0.0	66. 2	18. 7	15. 1	0.0	71. 9	18. 4	9.7	0.0	74. 2	17. 6	8.2	0.0	63. 5	20. 0	16. 5	0.0	71. 3	19. 1	9.6	0.0	58. 0	22. 9	19. 0	0.0	54. 0	21. 8	24. 2
Ce	0.0	77. 0	18. 6	4.4	0.0	76. 8	20. 2	3.0	0.0	81. 9	16. 0	2.1	0.0	77. 4	17. 6	5.1	0.0	79. 5	18. 4	2.1	0.0	74. 4	20. 8	4.9	0.0	74. 1	18. 7	7.2
Pr	0.0	62. 9	22. 0	15. 0	0.0	68. 2	23. 6	8.2	0.0	69. 7	21. 5	8.7	0.0	60. 1	23. 3	16. 6	0.0	68. 4	21. 7	9.9	0.0	56. 5	25. 7	17. 8	0.0	54. 0	24. 5	21. 5
Nd	-	-	-	-	-	-	-	-	0.0	80. 6	14. 8	4.6	-	-	-	-	0.0	78. 4	15. 7	5.9	-	-	-	-	-	-	-	-
Gd	0.0	77. 7	18. 2	4.1	0.0	76. 6	20. 6	2.8	0.0	80. 8	17. 3	2.0	0.0	78. 6	17. 0	4.3	0.0	79. 9	17. 6	2.5	0.0	73. 6	22. 2	4.1	-	-	-	-
Dy	0.0	69. 9	25. 4	4.7	0.0	70. 1	26. 0	3.9	0.0	73. 1	23. 8	3.0	0.0	70. 0	25. 1	4.8	0.0	72. 5	23. 9	3.6	0.0	65. 8	28. 4	5.8	0.0	67. 9	25. 8	6.3

Table S5. Complete set of sequential leaching results for 13 FeMn crust samples from the Arctic Ocean and two from the Pacific Ocean.

Tm	0.0	46. 5	40. 1	13. 4	0.0	49. 5	41. 8	8.6	0.0	48. 9	40. 5	10. 6	0.0	45. 5	41. 2	13. 3	0.0	48. 5	40. 3	11. 1	0.0	43. 7	40. 7	15. 6	0.0	43. 4	40. 7	15. 9
Pb	0.0	26. 7	70. 2	3.2	0.0	27. 3	69. 8	2.9	0.0	18. 9	78. 3	2.9	0.0	31. 7	64. 9	3.4	0.0	24. 6	72. 5	2.9	0.0	19. 2	75. 3	5.5	0.0	28. 1	65. 7	6.1
U	15. 2	9.3	66. 2	9.3	18. 6	8.2	65. 6	7.6	12. 3	6.7	74. 4	6.6	24. 7	11. 3	53. 7	10. 3	16. 4	12. 4	63. 4	7.9	10. 2	11. 8	66. 4	11. 6	18. 3	13. 5	54. 7	13. 4
Cd	0.9	83. 3	13. 5	2.2	1.0	83. 0	14. 6	1.4	0.9	85. 8	12. 2	1.1	2.2	80. 2	14. 9	2.7	2.0	81. 2	15. 4	1.4	-	-	-	-	2.3	75. 9	17. 2	4.6
Al	0.1	20. 3	22. 0	57. 6	0.1	21. 8	23. 3	54. 8	0.1	21. 9	25. 9	52. 1	0.3	20. 2	21. 3	58. 2	0.2	20. 0	28. 6	51. 3	0.0	12. 4	24. 9	62. 6	-	-	-	-
Ti	0.0	0.2	43. 9	55. 9	0.0	0.2	50. 3	49. 5	0.0	0.3	49. 2	50. 5	-	-	-	-	0.0	0.2	50. 4	49. 4	0.0	0.1	36. 6	63. 3	-	-	-	-
Fe	0.0	18. 0	62. 4	19. 6	0.0	20. 1	61. 6	18. 2	0.0	18. 4	62. 7	18. 9	0.0	18. 3	63. 8	17. 9	0.0	14. 5	67. 3	18. 2	0.0	11. 9	67. 5	20. 6	0.0	15. 3	62. 3	22. 4
Th	-	-	-	-	0.0	0.1	93. 5	6.4	0.0	0.6	92. 0	7.4	0.0	0.1	87. 7	12. 2	0.0	0.2	92. 8	7.0	0.0	0.2	88. 0	11. 9	0.0	0.2	84. 0	15. 9
V	0.0	28. 2	50. 1	21. 7	0.0	30. 6	48. 2	21. 2	0.0	29. 4	49. 5	21. 1	0.0	27. 0	51. 8	21. 2	0.1	23. 1	57. 0	19. 9	0.0	21. 9	55. 8	22. 3	0.0	24. 9	47. 9	27. 2
Cr	11. 2	0.0	33. 1	55. 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11. 3	0.0	26. 3	62. 3
As	0.1	0.8	73. 6	25. 5	0.1	0.9	74. 8	24. 3	0.1	1.1	76. 8	22. 0	0.1	0.8	76. 0	23. 1	0.1	0.6	74. 6	24. 7	0.1	0.5	73. 9	25. 5	0.1	0.7	74. 4	24. 9

Continue Table S5

		DR4	I-003			09-6	648/1			09-6	48/2			09-6	48/3			10)/1		D	07-33	(Pacifi	c)	G	Govoro (Pac	v Guy cific)	ot
	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4	L1	L2	L3	L4
Li	15. 4	73. 3	2.2	9.0	-	-	-	-	13. 3	53. 0	4.2	29. 6	9.4	41. 4	4.7	44. 4	5.9	78. 5	5.6	10. 0	18. 2	47. 0	13. 6	21. 2	-	-	-	-
Mg	35. 1	45. 9	10. 0	9.0	53. 4	23. 2	13. 3	10. 1	51. 3	20. 8	16. 6	11. 3	46. 9	15. 6	18. 4	19. 1	44. 4	28. 8	14. 5	12. 4	66. 4	25. 3	4.3	4.0	64. 8	25. 7	3.9	5.5
К	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	57. 7	24. 3	1.1	16. 9	61. 6	21. 9	0.0	16. 6
Ca	55. 7	34. 6	1.3	8.4	67. 5	20. 7	0.3	11. 5	71. 4	23. 0	0.7	5.0	65. 3	19. 2	1.5	14. 0	67. 5	20. 7	0.3	11. 5	60. 5	33. 0	0.1	6.4	56. 3	39. 9	0.6	3.3
Sr	41. 4	48. 8	1.9	7.8	48. 5	41. 6	1.5	8.3	50. 2	44. 7	1.7	3.4	51. 3	34. 1	2.3	12. 3	48. 5	41. 6	1.5	8.3	34. 4	63. 4	1.0	1.2	30. 4	68. 3	0.8	0.5

Cs	1.2	1.4	3.2	94. 3	0.4	1.4	5.6	92. 7	0.4	2.3	5.0	92. 2	0.5	1.5	4.0	93. 9	0.4	1.4	5.6	92. 7	-	-	-	-	-	-	-	-
Ba	0.0	47. 4	9.6	43. 0	0.0	60. 5	6.5	33. 1	0.0	59. 6	13. 4	27. 1	6.6	38. 1	5.7	49. 6	0.0	60. 5	6.5	33. 1	-	-	-	-	0.1	89. 5	9.0	1.4
Mn	0.0	97. 5	2.4	0.1	0.0	96. 5	3.5	0.0	0.0	95. 5	4.4	0.1	0.0	96. 4	3.4	0.2	0.0	95. 9	4.0	0.1	0.0	97. 6	2.4	0.0	0.0	97. 3	2.6	0.0
Со	0.0	97. 0	2.9	0.1	0.0	98. 3	1.7	0.1	0.0	97. 8	2.0	0.2	0.0	97. 8	1.7	0.5	0.0	97. 7	1.9	0.3	0.0	98. 2	1.8	0.0	0.0	89. 6	10. 3	0.1
Ni	0.2	95. 3	4.3	0.2	-	_	-	-	0.5	90. 3	8.5	0.6	0.7	91. 0	6.5	1.7	0.5	92. 2	6.0	1.3	0.2	93. 3	6.3	0.1	1.1	83. 2	15. 6	0.1
Zn	0.0	65. 5	26. 5	8.0	0.0	52. 3	36. 4	11. 3	-	-	-	-	0.0	35. 7	44. 9	19. 5	0.0	41. 5	45. 5	12. 9	0.3	67. 2	30. 3	2.1	3.2	66. 5	28. 8	1.4
Cu	-	-	-	-	1.5	47. 6	41. 4	9.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Y	0.0	70. 9	24. 0	5.1	0.0	77. 5	19. 8	2.7	0.0	78. 5	18. 9	2.6	0.0	71. 3	22. 4	6.3	0.0	66. 7	27. 6	5.7	0.0	77. 7	20. 9	1.4	30. 4	68. 3	0.8	0.5
La	0.0	68. 2	18. 8	13. 0	0.0	81. 9	15. 4	2.7	0.0	81. 7	14. 8	3.5	0.0	71. 6	17. 7	10. 7	0.0	69. 6	21. 0	9.4	0.0	83. 6	15. 7	0.7	0.5	64. 5	10. 2	24. 8
Ce	0.0	71. 5	23. 9	4.6	0.0	79. 7	19. 5	0.9	0.0	83. 2	15. 9	0.9	0.0	79. 4	17. 3	3.4	0.0	76. 9	19. 7	3.4	0.0	80. 6	19. 2	0.2	0.0	48. 3	14. 2	37. 5
Pr	0.0	64. 5	24. 4	11. 2	0.0	76. 8	19. 7	3.5	0.0	77. 2	18. 7	4.0	0.0	67. 3	21. 2	11. 5	0.0	64. 6	25. 5	9.8	0.0	76. 9	21. 2	1.9	0.7	43. 9	13. 7	41. 8
Nd	-	-	-	-	0.0	82. 6	15. 7	1.6	0.0	84. 8	13. 4	1.8	-	-	-	-	-	-	-	-	0.0	85. 4	14. 6	0.0	0.9	41. 4	13. 1	44. 6
Gd	0.0	71. 6	24. 0	4.4	0.0	81. 1	18. 0	0.9	0.0	82. 9	16. 4	0.7	0.0	79. 6	17. 7	2.7	0.0	77. 3	21. 5	1.2	0.0	83. 5	16. 5	0.0	1.5	37. 6	17. 2	43. 7
Dy	0.0	66. 7	29. 3	4.0	0.0	76. 0	22. 4	1.6	0.0	76. 7	21. 9	1.4	0.0	71. 9	24. 5	3.6	0.0	67. 5	29. 7	2.8	0.0	77. 0	22. 5	0.5	1.4	37. 4	30. 4	30. 8
Tm	0.0	50. 2	42. 4	7.4	0.0	53. 4	40. 0	6.6	0.0	52. 6	40. 3	7.1	0.0	47. 7	40. 1	12. 3	0.0	45. 5	42. 4	12. 1	0.0	52. 5	43. 2	4.2	1.1	37. 0	47. 7	14. 3
Pb	-	-	-	-	-	-	-	-	-	-	-	-	0.0	24. 3	72. 7	3.0	0.0	17. 7	79. 7	2.6	-	-	-	-	-	-	-	-
U	-	-	-	-	25. 4	10. 7	60. 1	3.8	-	-	-	-	11. 2	13. 1	65. 7	10. 0	10. 5	7.1	75. 6	6.8	-	-	-	-	29. 5	8.9	61. 0	0.5
Cd	0.8	83. 6	14. 1	1.4	2.1	80. 9	15. 9	1.2	-	-	-	-	1.7	79. 2	17. 4	1.7	1.6	79. 8	17. 4	1.1	1.6	77. 1	21. 0	0.4	4.2	76. 9	18. 6	0.3

Al	0.1	27. 6	30. 2	42. 1	-	-	-	-	0.1	24. 6	34. 2	41. 1	0.0	15. 5	25. 5	59. 0	0.0	21. 8	29. 0	49. 1	0.1	29. 9	29. 0	41. 0	-	-	-	-
Ti	0.0	0.6	54. 8	44. 5	0.0	0.4	72. 8	26. 9	0.0	1.4	67. 1	31. 5	0.0	0.2	42. 9	56. 9	0.0	0.1	53. 4	46. 4	0.0	0.5	94. 7	4.8	0.0	0.8	96. 2	3.0
Fe	0.0	21. 4	65. 3	13. 3	-	-	-	-	0.0	18. 2	73. 7	8.0	0.0	16. 5	68. 9	14. 6	0.0	17. 0	73. 6	9.4	0.0	31. 3	63. 7	4.9	0.0	14. 6	81. 8	3.6
Th	0.0	1.1	89. 6	9.3	-	-	-	-	0.0	2.3	94. 3	3.4	0.0	0.3	90. 1	9.6	0.0	0.1	93. 2	6.7	-	-	-	-	0.1	0.0	93. 2	6.7
v	0.0	36. 2	47. 5	16. 3	-	-	-	-	0.0	29. 9	61. 6	8.5	0.0	30. 6	53. 8	15. 5	0.0	38. 7	52. 3	9.0	0.0	42. 5	52. 9	4.7	0.0	75. 8	22. 7	1.5
Cr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As	0.1	2.2	77. 0	20. 8	0.1	0.9	80. 8	18. 2	-	-	-	-	0.1	0.7	83. 0	16. 2	0.1	0.6	88. 3	10. 9	0.2	3.7	85. 3	10. 8	-	-	-	-

- analytical data with poor recovery through the leaching steps with respect to the bulk analyses using a cutoff of 100%±20% recovery.