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Abstract: A natural chromian spinel with the composition (Mg0.48(3)Fe0.52(3))(Fe0.06(1)Al0.28(1)Cr0.66(2))2O4

was investigated up to 15 GPa via synchrotron X-ray diffraction with a diamond-anvil cell at room
temperature. No phase transition was clearly observed up to the maximum experimental pressure.
The pressure–volume data fitted to the third-order Birch–Murnaghan equation of state yielded
an isothermal bulk modulus (KT0) of 207(5) GPa and its first pressure derivative (K′T0) of 3.2(7),
or KT0 = 202(2) GPa with K′T0 fixed as 4. With this new experimental result and the results on some
natural chromian spinels in the literature, a simple algorithm describing the relation between the
KT0 and the compositions of the natural chromian spinels was proposed. To examine this algorithm
further, more compression experiments should be performed on natural chromian spinels with
different chemical compositions.
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1. Introduction

The 2-3 spinel oxides, with the general chemical formula AB2O4 (A = 2+ and B = 3+), as
well as the so-called 4-2 spinel oxides (A = 4+ and B = 2+; ringwoodite (Mg,Fe)2SiO4-spinel for
example), are geologically important minerals, and are frequently found in different types of rocks in
different geological settings [1]. They all have the cubic Fd3m structure, but show wide compositional
variation [2]. Due to their compositional diversity, they have been used as key petrogenetic indicators
of many geological processes [2–4] and played important roles in constraining pressure, temperature,
oxygen fugacity, and other quantities [5–7].

The only major mineral source for metal chromium is the 2-3 natural chromian spinels (termed
as Spss hereafter) [8]. These chromian spinels are also among the most common mineral inclusions
found in cratonic diamonds, and therefore can be used to estimate the formation P and T of the
diamonds. To achieve this goal of the P–T estimation, the isothermal bulk moduli (KT0) of the
natural chromian spinels and their compositional dependence should be accurately known. To date,
there have been very limited experimental studies on the KT0 of the Spss [9–11]. Considering the
complicated correlations between the KT0 and compositions of the solid solution series of some
minerals [12–14], more experimental investigations should be conducted to determine the KT0 of the
Spss with different compositions.
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In this study, the KT0 of an Spss was determined by performing compression experiments at room
T using a diamond-anvil cell (DAC) coupled with synchrotron X-ray radiation. Comparing this new
result with the results in the literature, the correlation between the KT0 and the compositions of the
Spss is tentatively discussed.

2. Experimental Method

The Spss-bearing sample was sourced from the Big Daddy Deposit, Sudbury, ON, Canada [15].
The spinel crystals were black and exhibited good octahedral shape (grain size up to ~400 µm).
Nineteen electron microprobe analyses were done with a JEOL JXA-8100 at the School of Earth and
Space Sciences, Peking University and gave out the following compositional data, FeO 23.20 wt %,
MgO 10.04 wt %, Cr2O3 51.49 wt %, and Al2O3 14.86 wt %, leading to the chemical formula of
(Mg0.48(3)Fe0.52(3))(Fe0.06(1)Al0.28(1)Cr0.66(2))2O4. Some spinel crystals were picked up and ground into
a fine powder, which was then loaded into a DAC. In the DAC experiments, we used a rhenium
gasket and a Neon pressure medium, which was loaded by employing the GSECARS high-pressure
gas- loading system. A flake of gold (~20 µm in diameter) was placed on the top of the sample to
serve as pressure standard and position marker. In-situ high-pressure synchrotron X-ray diffraction
experiments with the loaded DAC were performed up to ~15.00 GPa at the beamline 16-ID-B of
HPCAT, the Advanced Photon Source of the Argonne National Laboratory. The sample was probed
with a monochromatic X-ray beam (beam size 3 × 3 µm2, wavelength 0.37379 Å) and the data were
collected with a 2-dimensional CCD detector. The sample-to-detector distance and orientation of the
detector were calibrated by using a CeO2 powder standard.

3. Result and Discussion

In total, 26 X-ray diffraction (XRD) patterns were collected at pressures from 0.90 to 15.00 GPa
(Table 1), with the pressures determined using the Au equation of state (EoS) from Fei et al. [16].
Some XRD patterns are shown in Figure 1. As pressure increases, all XRD peaks shift continuously
toward higher 2θ angles. No apparent peak-splitting or new peak has been observed, indicating no
phase transition for this spinel up to the maximum experimental pressure. However, several XRD peaks
such as the 311 and 511 peaks show slight peak-broadening, potentially implying a structural instability
which was somehow kinetically hindered due to the low experimental temperature. The used pressure
medium neon can maintain a good hydrostatic experimental condition up to ~15 GPa [17], and should
not be the major reason for the observed minor peak-broadening. To ensure a high accuracy in the
unit-cell volume refinement, we excluded the peaks 311 and 511 because of their slight broadening.
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Figure 1. Some X-ray diffraction patterns of the natural chromian spinel (cubic Fd3m) at 1.4, 4.4, 8.2,
12.4, and 15.0 GPa. All major peaks can be assigned to the structures of our 2-3 natural chromian
spinels (Spss) and Au (marked with asterisks).
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Table 1. Unit-cell parameters of chromium spinel at high pressures.

P (GPa) a (Å) V (Å3)

0.90(7) a 8.284(1) 568.57(14)
1.37(1) 8.281(1) 567.76(11)
1.46(2) 8.283(2) 567.76(38)
1.78(3) 8.275(2) 566.70(38)
2.07(1) 8.270(1) 565.59(26)
2.17(2) 8.270(1) 565.53(27)
3.06(1) 8.258(1) 563.10(25)
3.61(6) 8.249(1) 561.21(24)
4.46(4) 8.240(1) 559.45(22)
5.87(5) 8.223(2) 556.08(30)
6.92(6) 8.213(1) 553.97(19)
8.24(4) 8.196(2) 550.49(35)
9.36(2) 8.181(2) 547.58(46)
10.20(2) 8.172(3) 545.74(52)
10.96(9) 8.163(3) 543.89(52)
11.45(7) 8.159(2) 543.03(48)
12.37(1) 8.150(2) 541.25(46)
12.39(6) 8.147(2) 540.80(33)
12.42(8) 8.145(4) 540.26(69)
12.86(7) 8.139(3) 539.11(63)
13.10(8) 8.135(3) 538.44(59)
13.33(9) 8.133(3) 537.99(59)

13.62(10) 8.130(3) 537.43(67)
13.93(5) 8.124(4) 536.22(87)
14.46(4) 8.123(4) 535.89(74)
15.00(4) 8.117(3) 534.84(66)

a Numbers in parentheses represent one standard deviation.

The P–V data are summarized in Table 1 and shown in Figure 2. They were fitted to the third-order
Birch–Murnaghan equation of state (BM-EoS; [18]):
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where P is the pressure (GPa), KT0 the isothermal bulk modulus (GPa), K′T0 the first pressure derivative
of the KT0, V0 the volume at zero pressure, and V the volume at high pressure. Using the software
EosFit 5.2 [19], we obtained KT0 = 207(5) GPa, K′T0 = 3.2(7), and V0 = 571.69(15) Å3, or KT0 = 202(2)
GPa with K′T0 fixed to 4 and V0 = 571.79(10) Å3.

The quality of our derived BM-EoS can be evaluated by a linear fitting of the normalized pressure
(F) as a function of the Eulerian strain (fE) (i.e., the fE–F plot) [20]. The two variables, F and fE, are
defined as:
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The third-order BM-EoS can then be rewritten as:

F =
3
2

KT0
(
K′T0 − 4

)
fE + KT0, (4)

where the slope of the line defined by the experimental data is equal to 3/2KT0(K′T0 − 4), and the
intercept value is the KT0. Accordingly, a slope of zero means K′T0 = 4, a negative slope K′T0 < 4, and a
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positive slope K′T0 > 4. Figure 3 clearly shows that the K′T0 of our Spss should be close to 4, supporting
a 2nd-order truncation of the BM-EoS fit.
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Figure 2. Effect of pressure on the volume of some Spss (300 K). Note that most experimental data
points have error bars approximate to or smaller than the symbols. Shu et al. [9], (Mn0.02Mg0.30Fe0.68)
(Al0.07Fe0.10Cr0.83)2O4; Fan et al. [10], (Na0.01Mg0.68Fe0.28)0.97(Cr1.49Al0.54)2.03O4; Matsukage et al. [11],
(Mg0.77Fe0.23)(Cr0.46Al0.5Fe0.04)2O4. The curves are drawn using the second-order Birch–Murnaghan
equation of state, as listed in Table 2. The equations in red are for the natural chromian spinel,
(Mg0.48Fe0.52)(Fe0.06Al0.28Cr0.66)2O4, investigated in this study.
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Figure 3. Eulerian strain-normalized pressure (fE–F) plot. Standard deviations were calculated
following the method from Heinz and Jeanloz [21]. The solid line represents a weighted linear
fit through our data.

Following Matsukage et al. [11], our Spss can be viewed as a complicated solid solution made of
the following six end-members, spinel (Sp, MgAl2O4), hercynite (He, FeAl2O4), magnesiochromite
(Mg-Ch, MgCr2O4), chromite (Ch, FeCr2O4), magnesioferrite (Mg-Fe, MgFe2O4), and magnetite
(Ma, Fe3O4), with their mole percentages calculated as 13.44%, 14.56%, 31.68%, 34.32%, 2.88%, and
3.12%, respectively. The KT0 values of these six end-members were experimentally constrained, and
are summarized in Table 2. On the assumption of K′T0 = 4 for all spinel oxides, as proposed by
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Liu et al. [13,14], the KT0 of our Spss (Sp13He15Mg-Ch32Ch34Mg-Fe3Ma3) was approximated as 193.4(7)
GPa with the following simple algorithm:

KT0−Spss = ∑ xiKT0−i, (5)

where KT0−Spss denotes the KT0 of the Spss, xi the mole fraction of the i-th end-member, and KT0−i the
KT0 of the i-th end-member. The absolute difference and relative difference between the approximated
bulk modulus and our experimentally measured value were only ~9 GPa and ~4.5%, respectively.

Table 2. Birch–Murnaghan equation of state (BM-EoS) parameters of some Spss, and their six
end-members (ambient P and T).

Spinel V0 KT0 K
′
T0 Experimental Details a Reference

Spss
571.7(1) b 207(5) 3.2(7) 0–15; Gold; Ne; Powder This study
571.8(1) 202(2) 4

Spss
579.6(9) 179(10) 3.9(9) 0–29; Ruby; He; SC [9]
579.6(9) 179(1) 4 c

Spss
557.86 209(9) 7(1) 0–26.8; Mo; MEW; Powder [10]

556.5(8) 242(7) 4 c

Spss
560.6(2) 192(7) 4(1) 0–10.19; Ruby; ME;

Powder [11]

560.6(2) 192(7) 3.6(13)

MgAl2O4 529.37 196(1) 4.7(3) 0–65; Gold; ME; powder [22]
Sp 529.37 201.6(6) 4 c

FeAl2O4 542.58 193.9(2) 6.0(5) 0–7.5; Quartz; ME; SC [23]
He 542.58 200.9(7) 4 c

MgCr2O4 573.9 182.5(4) 5.8(4) 0–8.2; Quartz; ME; SC [24]
Mg-Ch 573.9 189.6(7) 4 c

FeCr2O4 588.47 184.8(2) 6.1(5) 0–9.2; Quartz; ME; SC [24]
Ch 588.47 193(1) 4 c

MgFe2O4 590.7 179(2) 3.3(2) 0–53; Ruby; He; Powder [25]
Mg-Fe 590.7 170.5(8) 4 c

Fe3O4 591.5 181(2) 5.5(15) 0–4.5; Ruby; ME; SC [26]
Ma 591.5 187(11) 4 c

a All compression experiments were done with the diamond-anvil cell (DAC), with some of the experimental details
listed in the following order: P range (GPa), pressure scale, pressure medium, and XRD method. Gold, pressure
scale of gold from Fei et al. [16] or Heinz and Jeanloz [21]; Ruby, pressure scale of ruby from Mao et al. [27]; Mo,
pressure scale of Zhao et al. [28]; Quartz, pressure scale of quartz from Angel et al. [29]. Ne, pressure medium of
neon; He, pressure medium of helium; MEW, pressure medium of a 16:3:1 methanol–ethanol–water mixture; ME,
pressure medium of a 4:1 methanol–ethanol mixture. Powder, powder XRD; SC, single-crystal XRD. b Numbers
in parentheses represent one standard deviation. c If the reference did not provide the value of KT0 at K′T0 = 4, we
calculated it from the P–V data.

Matsukage et al. [11] compressed another Spss (Sp38He12Mg-Ch35Ch11Mg-Fe3Ma1) with the
chemical formula (Mg0.77Fe0.23)(Cr0.46Al0.5Fe0.04)2O4 using similar experimental techniques (Table 2;
Figure 2). The experimentally-obtained KT0 was 192 GPa, and the approximated KT0 with the above
algorithm was 195 GPa, suggesting a relative difference of only 1.5%. Shu et al. [9] studied another
Spss (Sp2He5Mg-Ch25Ch56Mg-Fe3Ma7Mn2; Mn standing for manganochromite, MnCr2O4) with the
chemical formula (Mn0.02Mg0.30Fe0.68)(Al0.07Fe0.10Cr0.83)2O4. The experimentally-obtained KT0 was
179 GPa (Table 2) and the approximated KT0 was 193 GPa, suggesting a large relative difference of
8%, which was presumably caused by the limited and scattering data points (seven data as shown in
Figure 2). Fan et al. [10] investigated another Spss (Sp19He8Mg-Ch51Ch22) with the chemical formula
(Na0.01Mg0.68Fe0.28)0.97(Cr1.49Al0.54)2.03O4 (Figure 2). Fitting their P–V data at room T to Equation (1),
we obtained KT0 = 242(7) GPa as K′T0 fixed at 4 or KT0 = 194(17) GPa with K′T0 = 9(2). In comparison,
the approximated KT0 was only 192 GPa, being 50 GPa smaller than the experimentally-obtained value
(with a large relative difference of ~21%; K′T0 fixed at 4). As pointed out by Fan et al. [10], the 16:3:1
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methanol–ethanol–water mixture pressure medium used in their experiments resulted in somewhat
non-hydrostatic experimental condition at P > ~10 GPa, which in turn should have led to the nominally
much larger KT0 [30].

It is rather interesting that the simple algorithm of Equation (5) could reproduce so well the
KT0 values of the Spss established by the properly-performed experiments, but reject the KT0 values
of the Spss yielded by the malfunctioned experiments (Figure 4); According to our experience, a
relative difference of ~5% (or even much larger) among the KT0 values determined for certain minerals
using similar experimental techniques is not unusual [7,13]. If this observation is confirmed by
further experimental studies on the Spss of different compositions, Equation (5) may provide a
convenient method to estimate the KT0 of those Spss inclusions hosted by the diamonds. Meanwhile,
we should keep in mind that Liu et al. [14] discovered a non-monotonic correlation between the KT0

and composition for the (Mg1-xMnx)Cr2O4 spinel solid solutions. Nevertheless, it is highly possible
that the cations in the Spss might more randomly enter the spinel structure, which should then result
in a generally ideal mixing behavior, whereas the Mg and Mn cations in the (Mg1-xMnx)Cr2O4 spinel
solid solutions can compete for the T-site only, which eventually leads to a significant deviation from
an ideal mixing.Minerals 2018, 8, x FOR PEER REVIEW  5 of 8 
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Figure 4. KT0 vs. V0 of some Spss and their six end-members Sp, He, Mg-Ch, Ch, Ma, and Mg-Fe. The
plotted experimental results and their sources for the six end-members, plus some experimental details,
are listed in Table 2. The symbols for the Spss are the same as those in Figure 2, with the filled symbols
standing for the experimental results whereas the empty symbols represent the approximated results.
Note that the Spss from [9] can be recasted as Sp2He5Mg-Ch25Ch56Mg-Fe3Ma7Mn2; that from [10] as
Sp19He8Mg-Ch51Ch22; that from [11] as Sp38He12Mg-Ch35Ch11Mg-Fe3Ma1; and that from this study
as Sp13He15Mg-Ch32Ch34Mg-Fe3Ma3. The Spss from [9] has 2% manganochromite (Mn, MnCr2O4),
which has KT0 = 199.2(106) GPa with a fixed K′T0 of 4 [14].
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