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Abstract: The Malyy (Little) Murun massif of the Aldan Shield of the Siberian Craton has long
been a kind of Siberian Mecca for geologists. It has attracted thousands of geologists, prospectors,
and mineral collectors despite its remote location. It is famous for a dozen new and rare
minerals, including the gemstones charoite and dianite (the latter is the market name for strontian
potassicrichrerite), as well as for a range of uncommon alkaline igneous rocks. Despite this, the age
of the Malyy Murun igneous complex and associated metasomatic and hydrothermal mineral
associations has remained poorly constrained until now. In this paper, we provide extensive
40Ar/39Ar geochronological data to reveal its age and temporal history. It appears that, although
unique in terms of rocks and constituent minerals, the Malyy Murun is just one of multiple alkaline
massifs and lavas emplaced in the Early Cretaceous (~137–128 Ma) within a framework of the
extensional setting of the Aldan Shield and nearby Transbaikalian region. The extension took place
40–60 million years after the supposed closure of the Mongolia–Okhotsk Ocean and orogenic peak in
the Early–Middle Jurassic.
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1. Introduction

The Malyy (Little) Murun massif of the Aldan Shield of the Siberian Craton (Figure 1), though
located in remote Siberia, is familiar to several generations of Russian geologists and to the international
community due to a specific assemblage of alkaline igneous rocks [1–16] and mineral deposits for U,
Th, Au, Pb, Ti, Sr, and Ba, associated with intrusive and post-intrusive stages of this massif [12–19].
At last, but not least, the Malyy Murun massif is famous for the only world occurrence of gemstone
charoite [20–24].

In the 1980s, up to several thousand geologists and miners worked at the Malyy Murun
massif during the short Siberian summers in search for various metal and non-metal resources.
Today, only limited mining operations are conducted there for the gemstone market (charoite,
dianite—the market name for strontian potassicrichrerite [24]), and metallurgy (Ba–Sr benstonite
carbonatite [12–14]). The Malyy Murun has a high potential for mineralogists and petrologists.
It is worth mentioning that a number of new minerals and mineral varieties have been
discovered there (charoite [20,25], tinaksite [26,27], tokkoite [27,28], frankamenite [29,30], strontian
potassicrichrerite [31,32], tausonite [33,34], murunskite [35,36], vladykinite [37]), and various exotic
rocks such as lamproites, carbonatites, alkaline granites, and various syenitic rocks.
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Despite the enormous efforts for understanding the geology of the Malyy Murun massif,
its geochronology was constrained to Early Cretaceous by an outdated K-Ar dating of voluminously
predominant syenites [38]. A few attempts were also made recently to limit the timing of the charoite
mineralization by 40Ar/39Ar dating [39,40]. In this study, we provide new 40Ar/39Ar results on
all major igneous and hydrothermal stages recognized in the Malyy Murun massif. We use this
geochronological information to constrain the duration of magmatic and later hydrothermal activity
within the massif and to compare it with the information on alkaline magmatism of the Aldan Shield
of the Siberian Craton and the Transbaikalian rifted region [41–53] (Figure 1).
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Figure 1. Location of the Malyy Murun and some other alkaline complexes in the tectonic framework of
the Siberian Craton and the Mongolia–Okhotsk belt (modified after [39]). The latter is a Jurassic orogen
formed due to the closure of an ocean of the same name. Aldan Shield is the cratonic basement intruded
by numerous Cretaceous small volume alkaline intrusions [38]. TB (hatched) is a Transbaikalian region
rifted in Cretaceous with the formation of basins and associated alkaline basaltic volcanism [45].
Acronyms: MM—Malyy Murun, I—Inagly, R—Ryabinovy, O—Oshurkov.

2. Materials and Methods

According to [15], the Malyy Murun massif can be subdivided into four igneous phases or stages
(early intrusive, main intrusive, volcanic, and late intrusive). The relation between different igneous
stages was not always clear because the rocks classified to one or another of the four stages are usually
separated by faults, and no direct contacts can be observed for all rock types to establish the complete
scheme based purely on geological relationships. Thus, it is not surprising that other subdivisions can
be found in the literature (e.g., [22]). Here we follow the subdivision of [15], though we slightly modify
it as indicated below.

Rocks of the early intrusive stage are predominantly located in the northeastern part of the
massif (Figure 2), where they were recovered through drilling and mining of an exploratory
gallery. Biotite-pyroxenites, K-ijolites, olivine lamproites, feldspar-shonkinites, leucitic shonkinites,
and cumulative olivine-spinel and olivine-pyroxene-phlogopite-monticellite rocks form a layered
complex. For the geochronological purpose, mica was separated from biotite-pyroxenite, olivine
lamproite, and olivine-pyroxene-phlogopite-monticellite rock (Appendix A).
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Figure 2. A schematic map of the Malyy Murun massif with the location of the studied samples.

Rocks of the main intrusive stage composed the central part of the massif (Figure 2), which consists
of different types of syenites (leucitic, feldspar–calcilitic, biotite–pyroxene–K-feldspar). For 40Ar/39Ar
dating, we separated mica from abundant biotite-pyroxene-K-feldspar syenite (referred to as alkaline
syenite by Russian geologists).

The volcanic stage was recognized by the lava of leucitic lamproites and melaphonolites and
volcanic breccia. The latter includes clasts of rocks of the main intrusive stage. Dykes of tinguaites,
richterite–sanidine lamproites, trachyte–porphyries, syenite–porphyries, and (eudialyte-bearing)
lujavrites were included into the volcanic stage. For 40Ar/39Ar dating, we separated mica from
leucitic lamproite lava and lujavrite dyke.

According to [15], the late intrusive stage includes benstonite, calcite, and quartz–calcite
carbonatites (Figure 3) and various types of silicate–carbonate rocks (with a variable content of
K-feldspar, pyroxene, and calcite) spatially-associated with charoitites (Figure 4). For the purpose
of this study, we kept carbonatites as the true representatives of the late intrusive stage, whilst
considering other silicate–carbonate and silicate rocks (often referred to as fenites (e.g., [22])) within



Minerals 2018, 8, 602 4 of 21

the charoite complex (Figure 2). In addition, we included, into the late intrusive stage, alkaline granites
of spatially-separated Kedroviy stock (Figure 2), which were considered within the main intrusive
stage [15] or a late stage [22]. For 40Ar/39Ar dating of the late intrusive stage, we separated tinaksite
and K-feldspar from benstonite carbonatite and K-feldspar from calcite carbonatite. In order to obtain
the age constraints on alkaline granites of the Kedroviy stock, we separated alkaline amphibole
(strontian potassicrichrerite [31]) from a metasomatic contact zone.
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Figure 3. The “carbonated” open pit: (A) a general view with shown sites of benstonite carbonatite
(Bc) and quartz carbonatite (Qc) blocks separated by a fault; (B) a close view of benstonite carbonatite
(Bc) cut by calcite carbonatite (Cc) veins.

Hydrothermal activity within, and in the vicinity, of the Malyy Murun massif is represented
by quartz veins, which commonly contain rutile–brookite–anatase ore-grade mineralization [19].
For 40Ar/39Ar dating, we collected K-feldspar from one of such veins within the Kedroviy stock.

For the dating of the charoitite complex, we separated K-feldspar from charoitite and K-feldspar
from a microcline monomineralic vein (Figure 4). In addition to this, we used own-published data [40]
for K-feldspar from a museum sample, which likely was collected from massive K-feldspar (microcline)
monomineralic rock. We also collected rare minerals, such as frankamenite, tinaksite, tokkoite,
and K-arvfedsonite, taken from field samples and museum collections.
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3. Results 

3.1. Igneous Stages 

3.1.1. Early Intrusive Stage 

Figure 4. Different types of K-feldspar-bearing (microcline) rocks: (A) A polished hand specimen
(~20 cm in long direction) of granular microcline (K-Fsp) in intergrowth with charoite (Ch); (B) a
large xenolith of a massive monomineralic microcline rock (K-Fsp) within a charoitite (Cht) cut-block;
(C) interlayering of white and dark green microcline veins (K-Fsp) with charoitite (Cht) in a natural
outcrop. Reactional snow-white microcline is seen between massive microcline and charoitite in (B).
A hammer with a 50-cm long handle is shown in (B,C) for the scale.

40Ar/39Ar dating was performed at the Centre for Geodynamics and Geochronology at the
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences (Irkutsk, Russia).
The analytical procedure was published elsewhere (e.g., [54]), thus only a brief description is given here.
The instrument used was a noble-gas mass-spectrometer ARGUS VI (Thermo Scientific TM (Waltham,
MA, USA)) equipped with a double-vacuum resistance oven and a gas cleaning system with few
SAES-getters (Lainate (Milan), Italy). Ages were calculated using the conventional decay constants [55]
and a revised atmospheric 40Ar/36Ar ratio of 298.56 [56]. J-factor was derived from measurements
of the BERN-4M monitor located between every 3 to 4 unknown-age samples. In order to make the
40Ar/39Ar calculated age values consistent with the U-Pb-based geochronological scale (i.e., ~1%
older [57–59]), we assigned, to BERN-4M, an age of 18.885 Ma [60]. Age values were calculated
using Isoplot macros for Excel [61] in a stepwise heating diagram and inverse isochron coordinates
(36Ar/40Ar vs. 39Ar/40Ar). We defined a plateau as 4 or more consecutive steps within analytical
error, which account for >60% of released 39Ar, and whose age values overlap within an error with
an age value derived by inverse isochron for the same steps. If one of the criteria above was not met,
for example, 4 or more steps with <60% of released 39Ar, we considered such part of the argon released
spectrum as a sub-plateau, reliability of which is discussed for each case individually. If no part of the
argon released spectrum could be considered as plateau or sub-plateau, we calculated the average as
an approximate estimate of age. If an isochron intersects with the 36Ar/40Ar axis at a non-atmospheric
ratio we preferred the isochron over the plateau. In other cases, the plateau age value was preferred
as the true estimate of the emplacement age. A summary of geochronological results is provided in
Appendix A. Original data are available in supplementary Table S1.



Minerals 2018, 8, 602 6 of 21

3. Results

3.1. Igneous Stages

3.1.1. Early Intrusive Stage

None of the three measured samples of the early stage intrusions yielded plateau spectrum on the
argon release diagram (Figure 5). Phlogopite from the sample Cha 1/225a showed six steps within
their analytical errors, with the weighted age value of 134.26 ± 0.32 Ma, and a consistent isochron
age value with an atmospheric argon initial ratio. Similarly, biotites from samples Cha126 and Cha
233 showed sub-plateau age values of 133.14 ± 0.45 Ma and 135.17 ± 0.91 Ma, respectively. However,
the amount of released 39Ar was <60%. The obtained age values were probably partially reset.
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Figure 5. Argon release spectra for the early stage intrusions: (A) Sample Cha1/225a—cumulative
olivine-pyroxene-phlogopite-monticellite rock; (B) sample Cha126—biotite-pyroxenite; and (C) sample
Cha233—olivine lamproite. Steps used for calculation of sub-plateau and isochron age values
are shadowed.
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3.1.2. Main Intrusive and Volcanic Stages

Biotite from the volumetrically predominant biotite–pyroxene syenite (alkaline syenite according
to the notion of Russian geologists) yielded a well-defined plateau with an age value of
135.76 ± 0.68 Ma, and a consistent isochron age value with an atmospheric argon initial ratio
(Figure 6A). Biotite from leucite lamproite lava showed no plateau, but its argon release spectrum
was flattened. We calculated an average of 142.66 ± 0.70 Ma for 13 steps, which is consistent with the
isochron age value (Figure 6B). Biotite from a small lujavrite intrusion yielded a plateau age value of
136.60 ± 0.88 Ma, with a consistent isochron age value and an atmospheric isotopic composition of
initially trapped argon (Figure 6C).

3.1.3. Late Intrusive Stage

K-feldspar separates from benstonite and calcite carbonatites yielded plateau age values
of 128.92 ± 0.80 Ma and 129.56 ± 0.76 Ma, respectively (Figure 7A,B). These were statistically
indistinguishable from each other, though calcite carbonatites cut through benstonite carbonatites
(Figure 3B). Tinaksite from another benstonite carbonatite sample yielded a sub-plateau (only three
steps), with a similar, though slightly older, age value of 130.93 ± 0.79 Ma (Figure 7C).

3.2. Kedroviy Stock

Strontian potassicrichrerite from the metasomatic contact of alkaline granite of the Kedroviy
stock yielded a plateau with age value of 128.5 ± 1.1 Ma (Figure 8A). In inverse isochron coordinates
(36Ar/40Ar vs. 39Ar/40Ar), all points plot within their errors near the 39Ar/40Ar axis, which does not
allow for a linear regression to be drawn through the points. It does not affect the age calculations but
prohibits the estimation of the initially-trapped argon isotope composition. We assigned this age value
to the true age of the alkaline granite intrusion.

K-feldspar from a quartz-feldspar-brookite hydrothermal vein, developed in the vicinity of the
Kedroviy stock, did not yield a plateau. All steps scattered near an average of 123.3 ± 0.3 Ma (Figure 8B).
The isochron age value was consistent with this value and showed the atmospheric isotopic ratio for
the initially-trapped argon.

3.3. Charoitite Complex

K-feldspar from different types of microcline monomineralic rocks yielded statistically different
age values. For example, granular K-feldspar from association with charoite (shown in Figure 4A)
yielded a well-defined plateau age value of 126.8 ± 1.1 Ma (Figure 9A). K-feldspar of a museum
sample dated in our previous study [40] also showed a well-defined plateau, but with a significantly
different age value of 135.79 ± 0.42 Ma (Figure 9B). This sample represented massive microclines such
as shown in Figure 4B. K-feldspar from a sample of microcline veins (such as in Figure 4C) showed a
slightly disturbed age spectrum with a sub-plateau age value of 129.43 ± 0.87 Ma (Figure 9C), which
was intermediate between the age values obtained for the two other samples.

Tokkoite from a museum sample of charoitite yielded a plateau age value of 135.93 ± 0.49 Ma
(Figure 10A), which was statistically indistinguishable from the age value obtained for K-feldspar from
massive microcline monomineralic rock (Figure 9B). For the purpose of this study, we re-irradiated
tokkoite from the same museum sample. It also showed a plateau, but with a slightly younger age
value of 133.9 ± 1.4 Ma (Figure 10B). However, in inverse isochron coordinates the plateau steps
showed the strongly non-atmospheric isotopic composition of trapped argon (40Ar/39Ar = 184 ± 57)
and, thus, the isochron age value became slightly older (135.9 ± 1.4 Ma), which was in full agreement
with the age value obtained in our previous study [40].
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Figure 6. Argon release spectra for intrusions and lava of the main and volcanic stages: (A)
Sample Cha174—biotite-pyroxene-syenite; (B) sample Cha235—leucite lamproite; and (C) sample
Cha29/6—lujavrite. Steps used for calculation of plateau, average, and isochron age values are shadowed.
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Figure 7. Argon release spectra for carbonatites of the late intrusive stage: (A) Sample
Cha21/14—K-feldspar from calcite carbonatite; (B) sample Cha212/15—K-feldspar from benstonite
carbonatite; and (C) sample Cha24/3—tinaksite (NaK2Ca2TiSi7O19(OH)) from benstonite carbonatite.
Steps used for calculation of plateau, sub-plateau, and isochron age values are shadowed.
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Figure 8. Argon release spectra for metasomatic and hydrothermal minerals: (A) Sample
Kedr-1—strontian potassicrichrerite (K[(Ca,Sr)Na][Mg5]Si8O22(OH)2) in a contact zone of alkaline
granite intrusion; (B) sample Cha55/1—K-feldspar from a quartz-feldspar-brookite hydrothermal vein.
Steps used for calculation of plateau, average, and isochron age values are shadowed.
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Figure 9. Argon release spectra for K-feldspar of different rocks of the charoitite complex: (A) Sample
Cha 24/21—K-feldspar from charoitite; (B) museum sample of massive microclinite [40]; and (C)
sample Cha50/8—K-feldspar from a microcline vein. Steps used for calculation of sub-plateau, plateau,
and isochron age values are shadowed.
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Figure 10. Argon release spectra for two different crystals of tokkoite (K2Ca4Si7O17(O,OH,F)4) of a
museum charoitite sample: (A) Obtained in [40] and (B) in this study. For the sample dated in this study,
the isochron age is preferred due to the non-atmospheric trapped argon. Steps used for calculation of
plateau and isochron age values are shadowed.

Tinaksite from a museum sample of charoitite analyzed in the study [40] yielded a plateau age
value of 135.86 ± 0.43 Ma (Figure 11A), which was in full agreement with age values on K-feldspar
from massive microcline monomineralic rock (Figure 9B) and tokkoite (Figure 10A,B). Large errors for
the isotopic composition of initially-trapped argon were due to the location of all points close to the
x-axis (39Ar/40Ar) of the inverse isochron plot.



Minerals 2018, 8, 602 13 of 21

Minerals 2018, 8, x FOR PEER REVIEW  13 of 21 

 

 

Figure 11. Argon release spectra for two different minerals of charoitites: (A) Tinaksite 

(NaK2Ca2TiSi7O19(OH)) of a museum charoitite sample analyzed in [40]; and (B) K-arfvedsonite 

analyzed in this study. Steps used for calculation of plateau and isochron age values are shadowed. 

Figure 11. Argon release spectra for two different minerals of charoitites: (A) Tinaksite
(NaK2Ca2TiSi7O19(OH)) of a museum charoitite sample analyzed in [40]; and (B) K-arfvedsonite
analyzed in this study. Steps used for calculation of plateau and isochron age values are shadowed.

K-arfvedsonite of a charoitite sample Cha117/3 yielded a well-defined plateau with a age value
of 133.11 ± 0.34 Ma (Figure 11B), which was intermediate between a few age values at about 136 Ma
for tinaksite and tokkoite, and an age value of ~126 Ma obtained for granular K-feldspar in association
with charoite.

Frankamenite of a museum charoitie sample analyzed in [40] yielded a sub-plateau age value of
137.55 ± 0.46 Ma (Figure 12A), which, so far, was the oldest among age values obtained for minerals of
the charoitite complex. Frankamenite from the same sample reanalyzed in this study showed a similar
argon-release pattern; however, no steps could be grouped as either plateau or sub-plateau. The oldest
measured age value for a single step of this sample was 133.95 ± 0.77 Ma (Figure 12B). Frankamenite
of another charoitite sample yielded a sub-plateau age value of 135.1 ± 1.7 Ma (Figure 12C).
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Figure 12. Argon release spectra for frankamenite (Ca5Na3K3(Si12O30)F3OH·nH2O) crystals of two
different charoitite samples: (A) Obtained in [40], (B) frankamenite from the same museum sample
reanalyzed in this study; and (C) frankamenite from another sample Cha 117/4. Steps used for
calculation of sub-plateau and single step age values are shadowed.
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4. Discussion

4.1. The Timing of the Cretaceous Alkaline Magmatism of the Aldan Shield and Transbaikalia

The age of the Malyy Murun magmatism was considered as the Early Cretaceous based
on K-Ar dating of biotite, K-feldspar, and pyroxene separates from feldspar–calcilitic and
biotite–pyroxene–K-feldspar (referred to as alkaline) syenites of the main intrusive stage [38]. Using
original data from [38] and conventional 40K decay constants [42], Wang et al. [39] recalculated the
mean age value for syenites of the main stage as 131 ± 2.4 Ma, excluding a few age values, which
they considered as outliers. This mean age value is younger than the new 40Ar/39Ar age value
(135.76 ± 0.68 Ma) obtained for the main stage biotite–pyroxene–K-feldspar syenite, even considering
the systematic difference of the order of 0.9% between ages by [39] and this study due to different 40K
decay constants used. We give the priority in the interpretation of the geochronological data to our
new, precise, and more accurate 40Ar/39Ar results over the refined K-Ar results of [38,39].

In this study, we clearly see, at least, two episodes of magmatism within the Malyy Murun
massif defined by the plateau age values: ~135–137 Ma, for the main intrusive and volcanic stages,
and ~128–130 Ma, for the late intrusive stage (Figure 13). The former is mainly composed of variable
syenites. The latter is represented by low volume carbonatitic and alkaline granitic intrusions. With the
present number of dated samples; however, it is impossible to conclude if these were two separate
episodes of magmatism, or if there was continuous magmatic activity between 137 and 128 Ma.
For example, the rocks of the presumably early intrusive stage may indeed be younger than the main
phase syenites, or they could be reset by the main stage syenites and later intrusions (Figure 13). It also
cannot be excluded that similar rocks could form during different episodes of the igneous complex
development. We cannot determine, either, if magmatism started at about 137 Ma or earlier, having in
mind an older (~142 Ma) age value for pseudo-leucite lamproite lava (Figure 13).

The Early Cretaceous alkaline magmatism, and associated ore deposits, were widespread within
the Aldan Shield of the Siberian Craton and its surrounding along the Mongolia–Okhotsk suture
zone (Figure 1). This magmatism and ore formation mark the post-collisional extension, which
occurred 40–60 million years after the supposed closure of the Mongolia–Okhotsk Ocean and peak
of orogeny in the Early–Middle Jurassic (e.g., [41,42]). For example, available Rb-Sr, 40Ar/39Ar,
and U-Pb age values for Transbaikalian volcanic rocks limit the Early Cretaceous rift-related volcanism
to an interval of 133–104 Ma [43–46], whereas K-Ar age values suggest a wider age interval of
150–100 Ma [47,48]. Oshurkov massif is the best studied in Transbaikalia (Figure 1). It contains
granites, syenites, gabbro and lamprohyric rocks, and carbonatites [44]. The oldest among them is
leucocratic granite (132.8 ± 0.66 Ma by U-Pb SHRIMP on zircon), the youngest is granitic pegmatite
(111.6 ± 1 Ma by 40Ar/39Ar on amphibole), with numerous ages obtained by Rb-Sr, 40Ar/39Ar, and
U-Pb methods for other rock types in between these two [44].

Similarly, according to K-Ar dating, there was the Early Cretaceous alkaline magmatism within
the Aldan Shield, which was also linked to rifting [38], though there were no rift basins developed.
However, 40Ar/39Ar and U-Pb studies are rare for the Early Cretaceous alkaline intrusives of the Aldan
Shield. It seems that alkaline massifs located in the northern part of the Aldan Shield are coeval; Malyy
Murun—137–128 Ma (this study); Inagly—142–128 Ma [49]; Ryabinovy—142–133 Ma [50]. Whereas,
volcanic fields and intrusions located in the southern and eastern part of the Aldan shield are generally
younger and fall into an interval of 126–115 Ma [51–53]. But such generalization needs additional
geochronologic studies.
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Figure 13. Summary of 40Ar/39Ar age values for the Malyy Murun massif (see Appendix A).
Red squares and blue circles denote the plateau and sub-plateau/isochron age values, respectively.
Horizontal grey bands show the reliably-dated intervals of igneous activity within the Malyy
Murun massif. Abbreviations for dated minerals: Mca—mica (biotite in most cases and phlogopite
for some early stage intrusions), Fsp—K-feldspar, Amph—amphibole (strontian potassicrichrerite),
Tnk—tinaksite, Tok—tokkoite, Fkm—frankamenite, K-arv—K-arvfedsonite.

4.2. The Charoitite Complex

The charoitite complex contains a number of unique and rare minerals, which either were not
discovered anywhere else (i.e., charoite, tokkoite, frankamenite) or only were found at one or two
other world localities (i.e., tinaksite and fedorite). The general opinion is that the charoitite complex is
metasomatic in origin [62]. However, the alternative point of view is that charoitite is of magmatic
origin and associated with the evolution of lamproite and carbonatite melts [14,15].

Direct 40Ar/39Ar dating of charoite has shown that this mineral does not retain radiogenic argon
due to its fibrous structure, and thus its age was assessed indirectly by laser ablation 40Ar/39Ar
dating on associated K-feldspar and tinaksite [39]. Individual laser ablation analyses revealed a set
of age values from 134.1 ± 2.9 Ma to 113.3 ± 3.4 Ma for K-feldspar and from 133.0 ± 3.0 Ma to
115.7 ± 4.3 Ma for tinaksite [39]. The oldest and youngest ages have been interpreted as the true
crystallization ages and the time for cessation of hydrothermal activity, respectively. In the present and
a related study [40], we applied stepwise-heating 40Ar/39Ar dating on K-feldspar, tinaksite, tokkoite,
frankamenite, fedorite, and K-arvfedsonite. Fedorite has shown a staircase argon release pattern with
significant radiogenic argon loss similar to charoite (and due to such effect is not discussed here).
Frankamenite has shown disturbed age spectra (Figure 12). All other minerals have shown plateau age
values (Figures 9–11), which vary from ~136 Ma to ~127 Ma (Figure 13). Thus, the charoitite complex
was not formed at once. Its constituent minerals crystallized during the entire range of the Malyy
Murun magmatism.

The geochronological data alone do not provide the final word in the discussion of metasomatic
versus magmatic origin of charoitites. We wish to note; however, that the prolonged crystallization
of minerals of charoitites would, rather, be more consistent with the interpretation of the charoitite
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complex, as fenites originated due to an interaction of alkalic magma fluid with carbonate and clastic
sedimentary rocks [63].

The hydrothermal activity was dated via analyzing K-feldspar from the quartz-feldspar-brookite
vein of the Kedroviy stock [19]. This K-feldspar did not yield a plateau, but its flattened argon release
pattern suggests that it crystallized around 123 Ma (Figure 8B). The hydrothermal activity could last
even longer, until ~113 Ma, as suggested by laser ablation 40Ar/39Ar dating of K-feldspar and tinaksite
for the charoitite complex [39].

For example, high-temperature alteration at the Ryabinovy massif lead to crystallization of
aegirine-bearing K-feldspar rock, which was dated by U-Pb SHRIMP on recrystallized zircon to
132 ± 2 Ma, whereas the intrusive phases at this massif were dated to 142–133 Ma [50]. The ore-related
metasomatic alteration within Ryabinovy massif continued until 122 Ma [50].

5. Conclusions

The Malyy Murun massif was formed at about 137–128 Ma and it was just one of many alkaline
intrusive massifs and lavas emplaced in the Early Cretaceous within the extensional tectonic framework
of the Aldan Shield and Transbaikalia.

The unique and rare minerals of the charoitite complex were not crystallized at once.
Their 40Ar/39Ar age values are fully consistent with the range of age values obtained for igneous rocks
of the Malyy Murun massif.

The hydrothermal activity within the Malyy Murun massif, which played an important role
in remobilization of ore components, continued for several million years after the cessation of the
igneous activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/8/12/602/
s1, Table S1: 40Ar/39Ar data.
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Appendix A

Table A1. Summary of Geochronological Results.

Rock Name/Intrusive Stage, Complex Dated Mineral Preferred 40Ar/39Ar age Value

Olivine-pyroxene-phlogopite-monticellite
rocks/Early intrusive stage Phlogopite 134.26 ± 0.32 Ma (sub-plateau)

Biotite-pyroxenite/Early intrusive stage Biotite 133.14 ± 0.45 Ma (sub-plateau)
Olivine-lamproites/Early intrusive stage Biotite 135.17 ± 0.91 Ma (sub-plateau)

Biotite-pyroxene-syenite (alkaline
syenite)/Main intrusive stage Biotite 135.76 ± 0.68 Ma (plateau)

1 Leucite-lamproite/Volcanic stage Biotite 142.66 ± 0.70 Ma (average)
Lujavrite/Volcanic stage Biotite 136.60 ± 0.88 Ma (plateau)

Calcite-carbonatite/Late intrusive stage K-feldspar 129.56 ± 0.76 Ma (plateau)

Benstonite-carbonatite/Late intrusive stage K-feldspar Tinaksite 128.92 ± 0.80 Ma (plateau)
130.93 ± 0.79 Ma (sub-plateau)

Alkaline granite/Late intrusive stage Strontian potassicrichterite 128.5 ± 1.1 Ma (plateau

http://www.mdpi.com/2075-163X/8/12/602/s1
http://www.mdpi.com/2075-163X/8/12/602/s1
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Table A1. Cont.

Rock Name/Intrusive Stage, Complex Dated Mineral Preferred 40Ar/39Ar age Value

Charoitite/Charoitite complex

K-feldspar 126.8 ± 1.1 Ma (plateau)
Tokkoite 135.93 ± 0.49 Ma (plateau)
Tokkoite 135.9 ± 1.4 Ma (isochron)
Tinaksite 135.86 ± 0.43 Ma (plateau)

K-arfvedsonite 133.11 ± 0.34 Ma (plateau)
Frankamenite 137.55 ± 0.46 Ma (sub-plateau)
Frankamenite 135.1 ± 1. 7 Ma (sub-plateau)
Frankamenite 133.95 ± 0.77 Ma (oldest step)

Microcline monomineralic rock/Charoitite
complex

K-feldspar 135.79 ± 0.42 Ma (plateau)
K-feldspar 129.43 ± 0.87 Ma (sub-plateau)

Quartz-feldspar-brookite-vein K-feldspar 123.3 ± 0.3 (average)
1 Leucite in all rocks is recrystallized and identified by its crystal morphology.
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