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Abstract: This investigation aims to demonstrate the effects of hydrophobic tails on the affinity and
relevant flotation response of sulfonate-based collectors for fluorite. For this purpose, a series of
alkyl sulfonates with different hydrophobic tails, namely sodium decanesulfonate (C10), sodium
dodecylsulfate (C12), sodium hexadecanesulfonate (C16), and sodium dodecylbenzenesulfonate
(C12B) were applied. The flotation tests showed that C12 and C12B had a better collecting performance
than C10 and C16 at pH < 10, and the flotation recovery of fluorite was higher when adopting C12B
as a collector compared with C12 with a strong base. The adsorption behaviors of collectors on the
fluorite surface were studied through zeta potential, Fourier transform infrared (FTIR), and X-ray
photoelectron spectroscopy (XPS) analyses. It was found that the affinity of alkyl sulfonates for
fluorite was enhanced with the increase of the alkyl chain length from C10 to C16. The existence of
phenyl in the hydrophobic tail of sulfonates could improve its activity for fluorite by reducing its
surface tension. The abnormal phenomenon C16 with a high affinity for fluorite had a low collecting
performance for fluorite mainly due to its overlong alkyl chain, resulting in low solubility in pulp,
which restrained its interaction with fluorite. We concluded that C12B was the most applicable
collector for fluorite among these reagents due to its high activity, high solubility, and low cost, which
was further substantiated by calculating their molecular frontier orbital energy.
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1. Introduction

Fluorite (CaF2), an important nonrenewable mineral that is primarily used for the manufacture of
hydrofluoric acid, glass, cement, fillers, and as a flux regent in steel making, has in recent years been
considered an important strategic mineral [1–4]. In natural ore deposits, fluorite is mostly associated
with other calcium-bearing minerals, such as calcite and scheelite. By now, flotation has been regarded
as one of the most commonly used techniques for separating fluorite from gangue minerals, employing
fatty-acid collectors and sometimes associated with highly selective depressants [5,6]. However,
it should be noted that the flotation separation of fluorite from calcium-bearing minerals is a very
challenging task due the fact that their surface reactivity is similar to that of traditional fatty-acid
collectors [7,8].

As fatty-acid collectors possess poor selectivity and low water-solubility at a low temperature, the
separation is not always satisfactory on an industrial level without adding highly selective depressants.
Therefore, the previous study suggested the use of alkyl sulfonates as collectors, since they are more
selective than fatty-acid salts [9]. Alkyl sulfonates are a kind of well-known organic surfactant that
have received considerable attention in many fields. The main active substance of the alkyl sulfonates
collector is sulfonate, which has a highly hydrophilic sulfogroup connected with alkyl, giving rise
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to a structural formula of RSO3Na, where R is an alkyl group [10,11]. Sulfonate is also the main
active component of sodium petroleum sulfonate (SPS), which is the byproduct of petroleum under
refining; the source of alkyl sulfonates is therefore abundant. In the literature, there are many studies
focusing on the utilization of alkyl sulfonates in froth flotation in mineral processing. For instance,
Martínez-L et al. [12] reported that celestite could be selectively separated using sodium dodecyl
sulfonate (C12) as a collector and that the celestite concentrates contained about 98% of SrSO4 grade
with up to 96% of SrSO4 recovery under optimum conditions. The synergistic effects between C12 and
a mixed fatty-acids collector for apatite flotation were investigated by Cao et al. [13]; it was found that
the addition of C12 could benefit the apatite flotation at pH 9.5 by improving the surfactant adsorption
at the apatite surface. González-Martín et al. [9] studied the interaction mechanism of C12 with fluorite
by infrared attenuated total reflection (ATR), proposing a two-step mechanisms: sulfonate ions first
chemisorbed on the fluorite surface, followed by a physisorption process. It is worth pointing out
that the alkyl sulfonates applied in these earlier studies were usually the sulfonate with a dodecyl
hydrophobic tail.

For an amphiphilic surfactant, apart from the polar functional group, the hydrophobic aliphatic
chain also plays an important role in determining its properties in an aqueous solution, e.g., a steric
effect. Chen et al. [11] utilized SPS with different molecular weights as collectors for the flotation of
kyanite ore and demonstrated that the higher molecular weight of the collector was, the higher the
kyanite recovery obtained was. Due to the similar hydrophilic polar head of SPS, different molecular
weights indicated that there were different kinds of hydrophobic tails connecting to the polar head
groups, possessing discrepant reactivity of SPS for kyanite. Taguta et al. [14] recently studied the effect
of alkyl chain length thiol collectors on the heat of adsorption and floatability of sulphide, finding that
both the heat of adsorption and flotation recoveries increased with an increase in the collector chain
length for xanthate homologues. The effects of hydrophobic tails on the properties of xanthates, amines,
and fatty-acids collectors have also been studied by Ackerman and Fuerstenau [15,16], respectively.
Meanwhile, to the best of our knowledge, systematic studies of the characteristics of sulfonate-based
collectors with different hydrophobic tails have seldom been reported [11].

In the present work, several common alkyl sulfonates, which connected with a decane (C10),
dodecyl (C12), hexadecane (C16), and dodecylbenzene (C12B) hydrophobic tail, respectively, were
utilized as collectors to investigate their collecting performance for fluorite. In addition, surface tension
analyses, zeta potential measurements, FTIR, and XPS were employed to elucidate the adsorption
behaviors of collectors on the fluorite surface. The chemical reactivity and water-solubility were
further analyzed by calculating their molecular frontier orbital energy and via hydrophile–lipophile
balance (HLB).

2. Materials and Methods

2.1. Materials and Reagents

The natural colorless fluorite (CF) sample was obtained from the Inner Mongolia fluorite deposit
in China. The hand-picked high-grade fluorite sample was first crushed with a hammer, then ground
in laboratory porcelain, before being screened to obtain a 45–74 µm size fraction for micro-flotation
tests. A portion of the −45 µm size fraction particles was further ground to −5 µm for zeta potential
measurements, FTIR studies and XPS analyses. The XRD pattern of the powdered fluorite is given in
Figure 1, showing that the fluorite sample utilized in the tests was of high purity.

The sulfonate-based collectors (C10, C12, C16, and C12B) with chemical pure grade (≥98%) were
purchased from Sinopharm Chemical Regent Co., Ltd. (Shanghai, China), and their chemical structures
are shown in Figure 2. All pH adjustments were done using hydrochloric acid (HCl) and sodium
hydroxide (NaOH) solutions. For the zeta potential measurements, potassium chloride (KCl) was
used as the background electrolyte. The water used throughout the experiments was deionized water,
whose resistivity was 18.25 MΩ·cm.
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2.2. Methods

2.2.1. Micro-Flotation Tests

The micro-flotation tests were carried out in a laboratory XFG-35 flotation apparatus (Rock Crush
& Grand Equipment Co., Ltd., Wuhan, China) with an effective volume of 120 mL at room temperature.
For each test, prepared mineral particles (10.0 g) were placed into a plexiglass cell and then filled with
100 mL of deionized water. 1 mol/L of HCl or NaOH solution was added to adjust the pulp pH. After
adding the desired amount of collector reagents, the suspension was continuously agitated at 1600 rpm
for 2 min. The flotation test duration was 5 min. The obtained concentrate products and tailings were
filtered, dried, and weighed to calculate the flotation recovery of the fluorite sample under various
flotation conditions.

2.2.2. Zeta Potential Measurements

Zeta potential measurements were carried out by a Zeta Nano ZS90 zeta potential analyzer
(Malvern Instruments Ltd., Worcestershire, UK). A suspension containing 0.1 wt % mineral particles
(−5 µm size fraction) was prepared in a 1 mM KCl solution and conditioned by magnetic stirring for
5 min with or without collectors. After allowing the solution to settle for 10 min, the supernatant of
the diluted fine particle suspension was removed for zeta potential characterization. Each sample was
measured three times and the average values were reported.

2.2.3. Surface Tension Measurements

The surface tension of the collector solution was performed via the Wilhelmy plate method using
using the K100MK2 tensiometer (Krűss GmbH, Hamburg, Germany). The desired amount of collector
solution with a given pH value was added into the sample pool, and the measurement was performed
automatically as the plate came into contact with the solution surface. The value of the surface tension
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of each solution can be read on the screen after measurement completion. Each solution was measured
several times as the standard deviation was below the default and the average value was adopted.

2.2.4. FTIR Measurements

Fourier transform infrared (FTIR) spectra were recorded on a Nicolet 6700 spectrometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA) at room temperature (25 ◦C) in the range of 4000–400 cm−1.
Prior to the test, the samples conditioned with collectors were washed three times with distilled water
and then vacuum dried at 40 ◦C. The spectra of the solids were taken with KBr pellets.

2.2.5. XPS Analyses

XPS spectra of the mineral samples with or without treatment of collectors were recorded by an
ESCALAB 250Xi spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The Al Kα X-rays
meter with an energy of 20 eV for narrow scans was employed for observations, and the pressure in
the analysis chamber was more than 5 × 10−10 mbar. The pretreatment of samples to be tested was the
same as for the FTIR measurements described above.

2.2.6. Calculation of Frontier Orbital Energy

The frontier orbital energy of the collector molecule was calculated using the generalized gradient
approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional based on the density
functional theory, with the help of the DMol3 module in the Materials Studio 8.0 package (Accelrys,
Inc., San Diego, CA, USA) [17]. The all-electron Kohn–Sham wave functions and double numerical
plus polarization (DNP) with a basis file of 3.5 were selected. Other parameters were default settings,
as applied in previous studies [18,19].

3. Results and Discussion

3.1. Micro-Flotation Test Results

Using alkyl sulfonates with different hydrophobic tails as collectors, the flotation performance of
fluorite was evaluated via single mineral flotation tests and the results are given in Figure 3. Figure 3a
reveals the flotation recovery of fluorite as a function of the agent dosage of the four collectors. The
general trend in flotation recovery of fluorite was similar for different collectors when increasing their
dosage. Using C12B or C12 as collectors, the recovery of fluorite increased rapidly and achieved a high
value even at low concentrations, while the fluorite recoveries were low for C10 and C16. The flotation
experiments showed that C12B and C12 had a much better collecting performance for fluorite than did
C10 and C16.
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Furthermore, Figure 3b shows that the sulfonate-based collectors with different hydrophobic tails
possessed totally different collecting performances for fluorite, even though their polar functional
groups are the same (−SO3

−). The flotation recoveries of fluorite using C12 and C12B were higher
than those of C10 and C16, and they remained about 92% at a pH of 2–8. The C10 and C16 yielded an
unsatisfactory recovery below 40% in the total pH range, and they decreased as the pulp pH increased.
As the pulp pH exceeded 10, the fluorite recoveries dropped rapidly when adopting C12 and C12B as
collectors. The main reason might be the decrease of the adsorption capacity of collectors on the fluorite
surface due to the electrostatic repulsion between collectors and the fluorite surface, because fluorite
charged a negative potential under the strong alkaline environment. C12B showed a stronger affinity
for fluorite than did C12 in a strong base given its higher recovery. The results of the flotation tests
indicated that hydrophobic tails could influence the properties of surfactants, performing a different
affinity for fluorite.

3.2. Zeta Potential Measurement Results

The zeta potentials of fluorites in the absence and presence of sulfonate-based collectors holding
the same concentration are illustrated as a function of the pH in Figure 4. For bare fluorite, the zeta
potential remained at a high positive level (60 mV) at pH < 8 and decreased markedly when the
solution became alkaline. In the presence of C10 and C12, the potential of fluorite witnessed different
decreases (with C10 from 60 mV to 40 mV, and C12 from 60 mV to 15 mV), but still appeared to be a
positive potential. It was interesting that with treatment of C16 and C12B, the potential of fluorites
changed from positive to negative over the entire pH range. The significant drops in zeta potential were
attributed to the adsorption of anionic molecules (RSO3

−) on the fluorite surface through electrostatic
forces, changing its surface properties in the solutions [2].
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The zeta potential of fluorite decreased more after addition of C12 than C10, and even became
negative after addition of C12B or C16, indicating a different adsorption capacity of the collectors on the
fluorite surface; we deduced from this that the hydrophobic tails of alkyl sulfonates would influence
their affinity for fluorite. Concretely, the increase in the alkyl chain length of alkane sulfonates could
favor their affinity for fluorite, and the addition of a phenyl in the hydrophobic tail of the collector was
also advantageous when comparing C12B with C12.

3.3. Surface Tension Measurement Results

The hydrophilic and hydrophobic properties of the solid surface are important factors affecting
the wetting film stability during the flotation process. The property of a liquid, such as surface tension,
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is of equal importance because flotation is a complex process involving all three phases: liquid, gas, and
solid. Surfactants can reduce the surface tension of the aqueous solution and facilitate the formation
of bubbles, which are necessary for separation by flotation. In addition, the surface tension of a
surfactant solution reflects its surface activity [20]; the surface tension of alkyl sulfonate solutions with
the same concentration was therefore measured as a function of the pH. As shown in Figure 5, the
surface tension of the water solution was about 72.57 mN/m at pH = 7, nearing its theoretical value
(72.37 mN/m) [21] before decreasing remarkably in the strong alkaline solution. With the addition
of C10 and C12, the surface tension of the solution declined slightly compared to water. Meanwhile,
the situation was quite different when C16 and C12B were added to the solution. The surface tension
decreased from about 72 mN/m to 58 mN/m and to 50 mN/m with the presence of C16 and of C12B,
respectively. The lower the surface tension of the solution is, the higher its surface activity is. The
surface tension results of alkyl sulfonate solutions indicated that the surfactants C12B and C16 owned
a higher surface activity than did C10 and C12, which was in accordance with the experimental results
obtained above.
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3.4. IR Spectroscopic Analysis Results

In order to investigate the adsorption behaviors of sulfonate-based collectors on the fluorite
surface, the infrared spectra of collectors and fluorites treated with C10, C12, C16, and C12B at pH = 7
were measured. The results are shown in Figure 6. For all collectors, the adsorption band around
2957 cm−1 was related to the asymmetric stretching vibration of −CH3 in alkyl chains, and the peaks
around 2920 cm−1 and 2850 cm−1 were attributed to −CH2 asymmetric and symmetric stretching
frequencies [3,22]. A strong band at about 1468 cm−1 existing in C10, C12, and C16 was attributed to the
deformation vibration of −CH2, associated with wagging of −(CH2)n at 720 cm−1 [9]. The significant
bands of sulfonate were −S=O vibrations, which were found around 1170 cm−1 (antisymmetric
stretching) and 1065 cm−1 (symmetric stretching) [9].

With the treatment of the collectors, the stretching bands of the –CH3 and –CH2 groups emerged
around 2920 cm−1 and 2850 cm−1, indicating that the collectors have been adsorbed on to the surface
of the fluorites. For C10, the −S=O vibration was not detected on the treated fluorite mainly due to
its low adsorption capacity on the fluorite surface, limiting the possibility of detection during the
IR analysis. For C12, the shifts of the −S=O stretching bands from 1171.2 cm−1 to 1182.3 cm−1 and
from 1066.8 cm−1 to 1076.6 cm−1 suggested that the adsorption was in essence chemical [9,23,24]. The
−S=O stretching bands were also detected on the fluorite surface with the C16 treatment. For C12B,
due to the existence of phenyl in the hydrophobic tail, the −S=O stretching information was hidden
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3.5. XPS Analyses

To further examine the interactions between sulfonate-based collectors and the fluorite surface,
the XPS spectra of fluorite samples were obtained before and after reacting with collectors, and the
results are given in Figure 7. As expected, C, O, Ca, and F were the major constituents and no evidence
of contamination by other elements or impurities was found in bare fluorite. The existence of C and
O elements were mainly due to adventitious contamination that occurred during the pretreatment
or measurement of the samples. After the adsorption of the collectors on the fluorite, apart from the
presence of the characteristic peaks of C(1s), O(1s), Ca(2p), and F(1s); the peaks of S(2p) and S(2s);
and the positioned element of the sulfonates, were detected with a binding energy at approximately
168.8 eV and 229.5 eV on the fluorite samples treated with C12, C16, and C12B.
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Figure 7. Full-scan XPS spectra of fluorites with and without pretreatment of sulfonate-based collectors.

Table 1 reveals the relative atomic concentration of the fluorite surface elements after the treatment
with the collectors. The atomic concentration of C and O increased after the adsorption of the collectors,
as did the detection of the sulfur element. The increase in the XPS S concentration that was due to
the different adsorption capacities of the collectors on the fluorite surface. By further analyzing the
accurately narrow S(2p) spectra of samples, it was found that the S(2p) peak could be detected on all
samples, indicating that all the collectors have been adsorbed on to the surface of the fluorites (Figure 8).
Furthermore, we found that the signal-to-noise ratio (SNR) of S(2p) spectra was in a totally different
level: the SNR of S(2p) from CF + C10 (Figure 8a) was stronger than the others, also demonstrating a
lower adsorption capacity of C10 on the fluorite, which was consistent with the results in Table 1.

Table 1. Relative atomic concentration of the fluorite surface elements in the absence and presence of
the collectors.

Sample
Relative Atomic Concentration (%)

Ca(2p) F(1s) C(1s) O(1s) S(2p)

CF 29.72 59.24 6.71 4.33 -
CF + C10 28.71 58.91 7.48 4.67 0.23
CF + C12 26.47 51.16 15.96 5.45 0.96

CF + C12B 26.09 49.26 17.95 5.57 1.13
CF + C16 23.42 46.12 22.58 6.49 1.39
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3.6. Molecular Frontier Orbital Energy and HLB Calculation

The molecular orbital theory has been very successful in predicting chemical behaviors for an
enormous number of molecules; it was first proposed by Fukui in 1952 [25]. The central idea of
the theory was that the highest occupation molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) played a prominent role in governing the chemical reactions of organics [24].
The energy gap between HOMO and LUMO is an important stability index, e.g., a large HOMO–LUMO
gap implies a high stability for the molecule in chemical reactions [26,27]. Therefore, the molecular
frontier orbital energies of sulfonate-based collectors were calculated to predict their chemical
characteristics, and the results are given in Figure 9 and Table 2.
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Table 2. Frontier orbital energies of sulfonate-based collectors

Sulfonate Type EHOMO (eV) ELUMO (eV) 4E (eV)

C10 −5.559 1.362 6.921
C12 −5.561 1.352 6.913
C16 −5.561 1.340 6.901

C12B −5.709 −1.448 4.261

As shown in Figure 9, the HOMO isosurfaces of C12B and C12 were all located on the sulfonate
group with the energy of −5.709 eV and −5.561 eV. On the other hand, the distributions of their LUMO
isosurfaces were absolutely different: the LUMO isosurface of C12 mainly distributed over the alkyl
chain; for C12B, the LUMO isosurface was located on the six-membered aromatic phenyl group with
an energy of −1.448 eV. The isosurfaces of the frontier orbitals of C10 and C16 were similar to C12, and
were not shown on paper. Additionally, their frontier orbital energies and associated HOMO–LUMO
gap were calculated in Table 2. It was obvious that the HOMO–LUMO gap of C12B was the lowest
among the collectors, reflecting that C12B has the highest chemical reactivity based on the frontier
molecular orbital theory. These results can explain why C12B possessed a high collecting performance
for the fluorite mineral, which was also in accordance with the above analyses.

It should be noted that theoretically C16 also possessed a high affinity for fluorite based on its
property analysis above, while the practical fluorite recovery was at a low level when adopting C16 as
a collector, which seemed to be abnormal. As is commonly known of collectors, apart from reactivity,
their water solubility plays a significant role in determining the collecting performance for a mineral
because the flotation of the mineral is conducted in a solution system. In other words, the behavior of
long-chain collectors in a solution is determined by the properties of the polar heads and hydrophobic
tails and their resultant solvent power [20]. The intensity of the polar portion to non-polar portion in a
molecule of the collector can be quantitatively evaluated by the values of the hydrophile–lipophile
balance (HLB), which can be calculated via the Davies equation [28]

HLB = Σ(hydrophilic group numbers) − Σ(hydrophobic group numbers) + 7 (1)

The values of the hydrophilic and hydrophobic group numbers of the different surfactants can
be obtained via a table lookup. By these means, we were able to calculate that the HLB value would
gradually decrease with the increase of the alkyl chain length of the surfactant from C10 to C16.
The results showed that C16 possessed a much lower solubility than did C10 and C12 in the water
solutions [28,29], further retraining its collecting performance for minerals during flotation, which
would offer a good explanation as to why C16 contained an unexpectedly weak collecting performance
for the fluorite.

4. Conclusions

We investigated the flotation performance of fluorite that adopted sulfonate-based collectors with
different hydrophobic tails. We found that hydrophobic tails played a significant role in determining
the properties of surfactants (collectors), further affecting their collecting performance for fluorite
during flotation experiments. C12 and C12B possessed a better collecting performance for fluorite
than did C10 and C16. The surface tension of the collectors decreased with an increase of the alkyl
chain length from C10 to C16, as well as with the existence of phenyl in the hydrophobic tail. However,
the overlong alkyl chain length made C16 have low solubility in water due to its lower HLB, thus
having a dissatisfactory collecting performance for fluorite. The zeta potential results showed that the
fluorite potential decreased because of the adsorption of anionic molecules (RSO3

−) on the fluorite
surface through electrostatic forces. It was further found that the reducing of fluorite potential was in
a different degree mainly due to a different adsorption capacity of the collectors on the fluorite surface.
The FTIR measurements demonstrated that all the collectors were chemisorbed on the fluorite surface,
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which was confirmed by the XPS analyses. What was more, the XPS analyses also demonstrated
the different adsorption capacity of sulfonate-based collectors on fluorite: C16 and C12B possessed
a higher affinity for fluorite than C10 and C12 due to their higher relative atomic concentration of
S(2p). In conclusion, C12B, having the highest chemical reactivity, was regarded as the most applicable
collector for fluorite among the four surfactants, which was testified by calculating their molecular
frontier orbital energy. The findings in this study suggested that the effects of hydrophobic tails of
sulfonate-based collectors should not be neglected during the design, development, and selection of
reagents for flotation.
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