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Abstract: The mineralogical and geochemical compositions of the Lopingian coals from an
exploratory drill core (ZK4-1) in the Zhongliangshan Coalfield, southwestern China are reported
in this paper. The Zhongliangshan coals are medium volatile bituminous in rank (random vitrinite
reflectance, average 1.38%), characterized by a medium-ash yield (26.84%) and high sulfur content
(3.38%). Minerals in the Zhongliangshan coals are mainly composed of clay assemblages (kaolinite,
the illite/smectite mixed layer (I/S) and chamosite), pyrite, quartz, carbonate minerals (calcite,
marcasite, ankerite, and dolomite), and anatase, followed by rutile, jarosite, natrojarosite, bassanite,
gypsum and K-feldspar, with traces of apatite, rhabdophane and barite. Compared with the average
concentrations of the world hard coals, some trace elements including Li, V, Co, Cu, Se, Y, Zr, Nb,
rare earth elements (REE), Cd, Ta, Hf and Hg, are enriched in the Zhongliangshan coals. The modes
of occurrence of chamosite, barite, rhabdophane, quartz and calcite in the Zhongliangshan coals
indicate that the coals have probably been affected by the injection of low-temperature hydrothermal
fluids. Based on the concentrations of Sc, V, Cr, Co, Ni, Cu and Zn, the ratios of Al2O3/TiO2 and the
upper continental crust-normalized rare earth element and yttrium (REY) distribution patterns of
the Zhongliangshan coals, the dominant sediment source regions are the Leshan–Longnvsi Uplift,
Hannan Upland, and Dabashan Uplift, with a small proportion of terrigenous materials from the
Kangdian Upland. The K7 and the upper portion of K1 coals have the potential as raw materials for
the recovery of REY.
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1. Introduction

Studies on the trace elements of coal and non-coal horizons in coal-bearing sequences in
southwestern China have attracted much attention, not only because some endemic diseases are
related to coal utilization [1–5], but also because some critical elements (e.g., Ge, U, Ga, rare earth
element and yttrium (REY)) are enriched in coal deposits [2,6–11].

The Zhongliangshan Coalfield, located in the eastern Sichuan Basin, is one of the main coal
resource bases in Chongqing Municipality (Figure 1). Previous studies have shown that the dominant
terrigenous material of the Lopingian coals in the Sichuan Basin is basaltic Kangdian Upland [12].
However, it has been reported recently that the dominant terrigenous materials for the Lopingian
coals in the Huayingshan and Nantong coalfields, Sichuan basin are three Uplands/uplifts (TUUs),
namely Leshan–Longnvsi Uplift, Dabashan Uplift and Hanan Upland rather than the Kangdian
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Upland [8,13]. However, the sediment source region of the Lopingian coals in the Zhongliangshan
Coalfield is not known. In addition, we have reported an anomalous enrichment of critical metals
(Nb, Ga, and REY) in the tuff underlying the coal in the Zhongliangshan Coalfield, which can be
regarded as a potential economically significant coal-bearing stratum hosting a polymetallic ore
deposit [14,15]. The concentrations of rare metals in the Lopingian coals overlying the tuff layer need
further investigation.
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From bottom to top, the sedimentary sequences in the Zhongliangshan Coalfield are composed 
of the Middle Permian, Upper Permian, Lower Triassic, Middle Triassic, and Upper Triassic strata. 
The Middle Permian stratum is the Maokou Formation (P2m), while the Upper Permian strata include 
the Longtan (P3l) and Changxing Formations (P3c). The Lower Triassic strata consisted of the 
Feixianguan (T1f) and Jialingjiang Formations (T1j). The Middle and Upper Triassic Formations are 
the Leikoupo Formation (T2l) and Xujiahe Formation (T3xj), respectively. 

The Maokou Formation occurs as bioclastic limestone and displays light gray to dark gray, 
which underlies the Longtan Formation in disconformity. It has a thickness from 80 to 250 m (166 m 
on average). 

The Longtan Formation is the coal-bearing stratum in the study area, and consists of the 
sandstone, siltstone, sandy mudstone, mudstone, and ten coal seams (indexed as K10 to K1 from 
bottom to top, Figure 2A). It is precipitated in a marine-continental transitional environment and has 
a thickness varying from 26.5 to 105.02 m (71.08 m on average). Some fossils are abundant in this 
formation, including brachiopods, fern and cephalopods.  

The tuff layer is distributed widely in the lowermost Longtan Formaion in Chongqing. It has 
been discussed in detail, not only because the tuff is one of the marker beds in the coalfields [16] and 
can provide new evidence for the origin of the end-Guadalupian mass extinction [17], but also 
because the tuff can be considered as the potential sources for the critical elements [7,14]. The 
characteristics of the tuff layer in the study area have been described by Zou et al. [14].  

Figure 1. The location and tectonic map of the Zhongliangshan Coalfield.

The purpose of this paper is to address the sediment source region and to identify whether the
Lopingian coals are enriched rare metals in the Zhongliangshan Coalfield based on the mineralogical
and geochemical data.

2. Geological Setting

From bottom to top, the sedimentary sequences in the Zhongliangshan Coalfield are composed of
the Middle Permian, Upper Permian, Lower Triassic, Middle Triassic, and Upper Triassic strata.
The Middle Permian stratum is the Maokou Formation (P2m), while the Upper Permian strata
include the Longtan (P3l) and Changxing Formations (P3c). The Lower Triassic strata consisted
of the Feixianguan (T1f) and Jialingjiang Formations (T1j). The Middle and Upper Triassic Formations
are the Leikoupo Formation (T2l) and Xujiahe Formation (T3xj), respectively.

The Maokou Formation occurs as bioclastic limestone and displays light gray to dark gray,
which underlies the Longtan Formation in disconformity. It has a thickness from 80 to 250 m (166 m
on average).

The Longtan Formation is the coal-bearing stratum in the study area, and consists of the sandstone,
siltstone, sandy mudstone, mudstone, and ten coal seams (indexed as K10 to K1 from bottom to top,
Figure 2A). It is precipitated in a marine-continental transitional environment and has a thickness
varying from 26.5 to 105.02 m (71.08 m on average). Some fossils are abundant in this formation,
including brachiopods, fern and cephalopods.

The tuff layer is distributed widely in the lowermost Longtan Formaion in Chongqing. It has
been discussed in detail, not only because the tuff is one of the marker beds in the coalfields [16] and
can provide new evidence for the origin of the end-Guadalupian mass extinction [17], but also because
the tuff can be considered as the potential sources for the critical elements [7,14]. The characteristics of
the tuff layer in the study area have been described by Zou et al. [14].
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respectively. 

The Changxing Formation, conformably overlying the Longtan Formation, consists of thick 
limestone intercalated with flint nodules and thin mudstone. It has a thickness of 102–114 m (108 m 
on average). This formation is enriched in brachiopods, spindle dragonflies, sponges, and other 
fossils.  

Besides the Kangdian Upland, the Zhongliangshan Coalfield was surrounded by the Leshan-
Longnvsi Uplift, Hannan Upland, and Dabashan Uplift (Figure 1) [8]. The Leshan-Longnvsi Uplift, 
Hannan Upland, and Dabashan Uplift were the vital positive structural units during the Lopingian 
stage, mainly composed of mudstone, sandstone and carbonate [18], could also provide the 
terrigenous materials for the coalfield during the coal-forming processes. 
  

Figure 2. Sedimentary sequences of the Zhongliangshan Coalfield (A) and the collected samples of the
ZK4-1 drill core in present study (B). Partings in blue, host rocks (roof and floor strata) in orange, tuff in
purple, and coal benches in black. The suffixes r, f, and p stand for roof, floor, and partings, respectively.

The Changxing Formation, conformably overlying the Longtan Formation, consists of thick
limestone intercalated with flint nodules and thin mudstone. It has a thickness of 102–114 m (108 m on
average). This formation is enriched in brachiopods, spindle dragonflies, sponges, and other fossils.

Besides the Kangdian Upland, the Zhongliangshan Coalfield was surrounded by the
Leshan-Longnvsi Uplift, Hannan Upland, and Dabashan Uplift (Figure 1) [8]. The Leshan-Longnvsi
Uplift, Hannan Upland, and Dabashan Uplift were the vital positive structural units during the
Lopingian stage, mainly composed of mudstone, sandstone and carbonate [18], could also provide the
terrigenous materials for the coalfield during the coal-forming processes.
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3. Sampling and Methods

A total of 40 samples of eight coal seams were taken from the exploratory drill core (No. ZK4-1)
located in the Zhongliangshan Coalfield, Chongqing, southwestern China. These include 14 coal
benches, nine partings, eight roofs, eight floors and one tuff samples (Figure 2B). Samples from each
coal seam are numbered in an increasing order from top to bottom. The roof, partings, and floor strata
were indexed with suffixes of r, p, and f, respectively. All samples were stored immediately in plastic
bags to reduce oxidation and contamination. The Figure 2B shows the sample number, thickness,
and lithology data in detail.

All the collected samples were treated through the procedures of air-drying, pulverizing, mixing and
dividing using the method of coning and quartering. The coal samples were prepared with three types
including <0.075 mm for geochemical analysis, <0.2 mm for proximate analysis, and <1 mm in size for
petrographic analysis [19].

According to the ASTM Standards D3173-11, D3175-11, D3174-11 and D3177-02 [20–23], the proximate
analysis and total sulfur were carried out. The forms of sulfur were tested based on the ASTM
Standard D2492-02 [24]. The mean random reflectance of vitrinite (percent Ro, ran) was measured at
a magnification of 500X using a Leica DM4500P microscope (Leica Inc., Wetzlar, Germany) in conjunction
with a Craic QDI 302™ spectrophotometer (Craic Technologies, San Dimas, CA, USA). The gadolinium
gallium garnet (Chinese Standard Reference GB13401) was used as the standard reference for vitrinite
reflectance determination.

The mineralogical compositions of low-temperature ashing (LTA) of coal and non-coal samples
were carried out using the powder X-ray diffraction (XRD). The instrument for the XRD analysis
is D/max-2500/PC powder diffractometer (Rigaku Corporation, Tokyo, Japan). All the X-ray
diffractograms of the coal LTAs and non-coal samples were subjected to quantitative mineralogical
analysis using Siroquant™. The Siroquant™ is a commercial interpretation software, which is set
out by Rietveld and developed by Taylor, respectively [25,26]. Ward et al. and Ruan and Ward have
provided the utilization of this technique for coal-related materials in detail [27–29].

In order to study the microstructure and morphology of minerals, a scanning electron microscope
(SEM, JSM-6610LV, JEOL, Tokyo, Japan) equipped with an energy-dispersive X-ray spectrometer
(EDX, OXFORD X-max, Oxford Instruments, Abingdon-on-Thames, Britain) was used under the
conditions of 20 kV accelerating voltage of and high vacuum mode.

The contents of carbon, hydrogen, and nitrogen in coal were determined using the elemental
analyzer (VarioMACRO, Elementar, Langenselbold, Germany). Concentrations of major elements in
the ashes (815 ◦C) were measured by X-ray fluorescence spectrometry (XRF, ARL ADVANTXP+).

Abundances of trace elements except for fluorine and mercury in all the samples were determined
using the inductively coupled plasma mass spectrometry (ICP-MS, X series II, Thermo Fisher,
Waltham, MA, USA). Before ICP-MS determination, an ultraClave microwave High Pressure Reactor
(Milestone, Sorisole, BG, Italy)) was applied to digest the samples. Note that arsenic and selium were
analyzed by ICP-MS with collision-cell technology (CCT) based on the method proposed by Li et al. [30].
The detailed ICP-MS procedures are discussed by Dai et al. [31,32]. Fluorine was analyzed using the
method of pyrohydrolysis with an ion-selective electrode described in ASTM Standard D 5987-96 [33].
Mercury was determined using a Milestone DMA-80 Hg analyzer (Milestone, Sorisole, BG, Italy).

4. Results

4.1. Coal Characteristics

The proximate and ultimate analyses, total sulfur, forms of sulfur, and random vitrinite reflectance
data for the 14 coal samples from the ZK4-1 drill core in the Zhonglianshan Coalfield are listed in
Table 1. The average volatile matter and vitrinite reflectance are 25.77% and 1.38%, respectively,
indicating a medium volatile bituminous coal based on the ASTM classification [34].
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Based on the Chinese Standard GB/T 15224.1-2010 (coals with ash yield 10–20%, 20.01–30%,
30.01–40%, 40.01–50% are low-ash, medium-ash, medium and high-ash, high-ash coal, respectively),
the K1, K4 and K10 are medium-ash coal; the K2 is low-ash coal; the K3 and K8 are medium and
high-ash coal; and the K5 and K7 is high-ash coal. Based on the Chinese Standard GB/T 15224.2-2010
(coals with total sulfur content 1.01–2%, 2.01–3%, >3% are medium-sulfur, medium and high- sulfur,
high-sulfur coal, respectively), the K1, K3 and K4 are medium-sulfur coal, the K2 is low-sulfur coal,
and the K5, K7, K8 and K10 are all high-sulfur coals. The average total sulfur of present study is up to
3.38%, higher than that in the northeast India coals [35–37]. The sulfur in K1, K2, K7, K8 and K10 coals
are mainly pyritic, however, sulfur in the K3, K4 and K5 is mainly organic.

Table 1. Proximate and ultimate analysis, forms of sulfur, and random vitrinite reflectance for coals
from the ZK4-1 drill core in the Zhongliangshan Coalfield (%).

Sample Mad Ad Vdaf Cdaf Hdaf Ndaf St,d Sp,d Ss,d So,d Ro,ran

K1-1 1.13 18.13 23.67 88.63 5.3 1.73 1.89 1.56 0.09 0.24 1.34
K1-2 1.89 27.27 23.55 86.53 4.37 1.5 2.1 0.91 0.44 0.76 1.43

K1-av. 1.51 22.70 23.61 87.58 4.84 1.62 2.00 1.24 0.27 0.50 1.39
K2 1.66 17.19 23.67 88.5 4.66 1.56 2.18 1.14 0.14 0.9 1.39
K3 1.29 32.44 24.48 87.95 4.81 1.6 1.31 0.57 0.09 0.65 1.42

K4-1 1.1 21.38 27.66 90.12 4.78 1.69 1.17 0.36 0.05 0.76 1.37
K4-2 2.26 26.31 25.99 91.63 4.78 1.66 1.22 0.47 0.07 0.67 1.34

K4-av. 1.68 23.85 26.83 90.88 4.78 1.68 1.20 0.42 0.06 0.72 1.36
K5 1.36 52.56 31.09 72.25 4.69 1.08 11.8 4.29 0.67 6.84 1.35
K7 1.09 40.92 27.61 81.96 4.58 1.39 7.16 3.66 0.32 3.18 1.38
K8 2.17 30.83 26.76 86.26 4.75 1.52 3.13 2.11 0.16 0.87 1.37

K10-1 1.13 16.62 23.58 89.09 4.87 1.57 2.01 0.92 0.17 0.91 1.42
K10-2 2.97 20.77 22.97 89.49 4.37 1.49 1.98 0.58 0.52 0.88 1.31
K10-3 1.37 30.67 28.72 85.4 5.03 1.47 2.94 1.56 0.32 1.06 1.4
K10-4 1.67 20.91 26.23 86.83 4.81 1.5 4.72 2.3 0.67 1.74 1.4
K10-5 1.52 19.72 24.84 86.06 4.74 1.49 3.75 1.94 0.45 1.36 1.42

K10-av. 1.73 21.74 25.27 87.37 4.76 1.50 3.08 1.46 0.43 1.19 1.39
Average 1.61 26.84 25.77 86.48 4.75 1.52 3.38 1.6 0.3 1.49 1.38

M: moisture; A: ash yield; V: volatile matter; C: carbon; H: hydrogen; N: nitrogen; St: total sulfur; Sp: pyritic sulfur;
So: organic sulfur; ad: air-dry basis; d: dry basis; daf: dry and ash-free basis; Ro,ran: random reflectance of vitrinite;
av: average.

4.2. Mineralogical Characteristics in the Coals

Table 2 lists the the proportion of minerals in the coal LTAs, partings, roof and floor samples
identified by X-ray diffractograms plus Siroquant. The minerals in the coal samples are composed
mainly by kaolinite, quartz, pyrite, and calcite, with small proportions of anatase. I/S (mixed minerals
of illite and smectite), chamosite, and dolomite are present in most of the samples. Marcasite, ankerite
and siderite also occur in a few samples. Either jarosite or natrojarosite occurs in the LTAs of coals
throughout the seam. The bassanite can be observed only in samples K1-1, K4-1 and K10-1, and the
gypsum can be identified only in sample K2-1. K-feldspar is relatively abundant in the studied
coals especially in sample K10-2, the proportion of which is up to 11.5% (ash basis). In addition,
apatite, rhabdophane and barite have been identified under the SEM-EDX although they are below the
detection limit of the XRD.

4.2.1. Kaolinite

From the K1 to K10, the proportion of kaolinite varies from 18.6% to 52.1% and averages 31.4%
(LTA basis). Kaolinite in the coal occurs as cell-fillings in telinite and fusinite (Figure 3A–D). This is
common in many other coals, and indicates formation by authigenic processes [38]. Vermicular kaolinite is
also present (Figure 3B–D), a feature of which indicates an in-situ precipitation [39].
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Table 2. Mineral compositions of coal LTAs and non-coal samples by X-ray diffraction (XRD) and Siroquant analysis (wt %).

Sample LTA
Yield Quartz Kaolin

ite Illite Illite/Smectite
Mixed Layer Chamosite Anata

se Rutile Pyrite Marcasite Calcite Ankerite Dolomite Siderite Jarosite Natroja
rosite Barite Bassanite Gypsum K-

Feldspar Albite

K1-1 20.74 11.2 27.5 22.8 3.6 1.9 0.8 7.9 2 17 1.8 1.6 1.9
K1-2 30.90 31 31 12 3.9 2 7.2 5.2 0.7 0.1 2.3 4.6
K2 20.29 16.2 30.5 21.1 1.1 2.2 0.4 11.8 1.5 8 0.9 2.3 4
K3 37.27 26.2 22.8 31.4 2.3 2.7 7.5 1.1 0.2 1.3 4.5

K4-1 24.52 21.6 23.2 22 1.4 1 4.4 2.1 18.6 1.3 2 2.6
K4-2 29.46 11 36.2 21.5 5.4 2.9 3.2 15.9 1.5 0.7 1.8
K5 63.69 45.3 18.6 1.7 18.4 4.8 2.2 0.8 2.7 5.5
K7 47.93 29.5 32.5 5.3 3.9 1.3 13.8 1.4 6.9 2.5 1.6 1.5
K8 35.41 20.9 34.1 24.2 2.2 7 8.1 0.6 0.7 2.2

K10-1 19.59 17.3 38.1 5 2.7 9.6 21.1 1.1 2.5 2.6
K10-2 24.35 20.2 39.3 2.3 3.7 10.9 6.2 5.8 11.5
K10-3 35.71 6.8 52.1 15.9 1.6 10.4 9.9 1.5 1.8
K10-4 26.21 10.2 30.1 16.9 1.4 2 19.7 13.7 0.9 5.1
K10-5 24.12 12.6 28 18.5 1.9 2.5 20.4 10.9 0.9 4.4
K1-r nd 24.1 6.1 42.7 2.1 13.4 0.5 0.5 4.5 5.9

K1-p1 nd 7.4 47 32.1 5.8 1.5 0.2 3.3 2.7
K1-p2 nd 13.3 31.2 30 3.5 2.2 0.5 9.2 4.8 5.2
K1-p3 nd 5.4 23 44.1 3.6 1.2 3.5 7.1 12.1
K1-f nd 13.8 18.5 37.2 3.5 2.1 0.3 15.8 3.9 4.9
K2-r nd 21.8 4.7 5.4 41.7 2.3 13.9 2.9 1 6.4
K2-f nd 14.8 1.4 31.7 3.2 2.7 3.6 1.3 22.4 8.1 10.8
K3-r nd 12.3 14 48.3 3 9.3 0.4 0.3 4.5 7.9
K3-f nd 11.2 4.9 62.5 2.7 2.8 0.6 1.2 0.9 1.4 6.6 5.1
K4-r nd 9.3 13.3 46.5 3.7 0.3 0.6 1.8 9.3 15.2

K4-p1 nd 9.6 17.6 51.4 3.3 8.9 1.9 7.4
K4-f nd 6.7 52.2 29.1 5.1 2.3 0.4 4.2
K5-r nd 14.4 20.2 38.2 1.8 16.1 0.5 3.1 5.7
K5-f nd 12.1 27.5 42.3 4.3 4.3 0.2 5.1 4.2
K7-r nd 3.7 52.8 3.6 1 32.9 6.1
K7-f nd 4.3 54.5 25.1 4.7 0.7 0.5 6.6 3.4
K8-r nd 1.8 34.3 38.2 2.3 1.5 3.6 13 5.3
K8-f nd 7.6 20 52.9 4.1 4 1 5.1 0.9 1.2 3.3

K10-r nd 6.8 37.7 35.4 2.7 6.3 0.9 0.5 2.4 0.7 6.7
K10-p1 nd 4.9 36.6 34.9 2.7 9.9 1.1 1.2 2.3 6.5
K10-p2 nd 4.9 39.5 29.8 2.3 15.7 0.3 0.2 1.6 5.7
K10-p3 nd 6.2 42.5 23.8 3.6 6.7 4 0.4 4.8 0.3 2.7 5
K10-p4 nd 2 40.6 23.3 1.7 22.6 2.1 1.6 2.3 3.8
K10-p5 nd 4.2 15 0.9 29.5 40.7 1.8 2.1 5.7
K10-f nd 2.3 20.6 32.9 2.8 1.6 9.1 5.7 20 4.9
Tuff nd 28.6 14.1 2.4 21.1 33.8

nd: no data.
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sample K1-1; (C) cell-filling kaolinite and chamosite in sample K5-1; (D) cell-filling kaolinite and 
chamosite in sample K5-2; (E) cell-filling chamosite in sample K4-2; (F) cell-filling chamosite and 
quartz in sample K10-5; (G) I/S and quartz occurred in the matrix in sample K10-4. (H) cell-filling I/S 
and kaolinite in sample K4-1. 

Figure 3. Scanning electron microscope (SEM) back-scattering images of minerals in the
Zhongliangshan coals. (A) cell-filling kaolinite in sample K8-1; (B) cell-filling kaolinite and calcite
in sample K1-1; (C) cell-filling kaolinite and chamosite in sample K5-1; (D) cell-filling kaolinite and
chamosite in sample K5-2; (E) cell-filling chamosite in sample K4-2; (F) cell-filling chamosite and quartz
in sample K10-5; (G) I/S and quartz occurred in the matrix in sample K10-4. (H) cell-filling I/S and
kaolinite in sample K4-1.



Minerals 2018, 8, 104 8 of 26

4.2.2. Chamosite

Two species of chlorite could occur in coal (chamosite and clinochlore), although it is not
commonly observed in coal. Chamosite and clinochlore have the same diffraction peaks in the XRD
patterns and can be identified by their different intensities of peaks in X-ray diffractograms [40,41].
The chlorite present in this study was identified as chamosite rather than clinochlore, not only because
of the weaker odd-order peaks (001 and 003) of XRD patterns but also because of high Fe and low Mg
percentages determined by the energy dispersive X-ray (EDX) analysis.

XRD studies indicate that chamosite occurs in all of the coal LTA residues except for the coal
samples K3, K5 and K8. The chamosite, usually coexisting with the kaolinite (Figure 3C,D), occurs as
cell-fillings in the coal (Figure 3C–F), indicating an authigenic origin.

4.2.3. Illite/Smectite Mixed Layer

The Zhongliangshan coals have significant proportions of illite/smectite mixed layer (I/S)
(Table 2). The I/S in the coal is filled in the plant matrix (Figure 3G) or in the cell cavity (Figure 3H),
indicating that the I/S in present study is of authigenic origin.

4.2.4. Pyrite

Pyrite is a common mineral in the Lopingian coal seams in southwestern China [8,39,42–44].
From the K1 to K10 coal LTA residues, the proportion of pyrite increases gradually, from 2.7% (K3-1)
to 20.4% (K10-5) and with an average of 10.5%. The pyrite in the samples occurs as euhedral crystals
(Figure 4A,B), and as replacement of the maceral components (Figure 4C).

4.2.5. Quartz

Quartz in the coal LTA residues varies from 6.8% to 45.3% and averages 20%. Quartz occurs as
cell infillings and euhedral crystal (Figure 4D–F), indicating an authigenic origin.

4.2.6. Calcite, Ankerite, Dolomite, and Siderite

Calcite is abundant in the Zhongliangshan coals, varying from 2.2% to 21.1% and with an average
of 10.4%. The dolomite was detected in all the coal LTA residues except samples K1-2, K3-1 and K10-2.
However, the ankerite and siderite were identified only in samples K1-2 and K3-1. Calcite occurs as
cell-fillings (Figure 4G,H) and fracture-fillings (Figure 5A), indicating an epigenetic origin. The mode
of occurrence of ankerite is similar to that of calcite (Figure 5B,C), indicating that it has an epigenetic
origin as well.

4.2.7. Anatase

Anatase is present commonly in the Lopingian coals in southwestern China, mainly derived from
the sediment source region from high-Ti basalt in the Kangdian upland and injection of hydrothermal
solutions [8,45]. Anatase is distributed in all the coal LTA residues, and varies from 1% to 3.7% in
abundance (2.1% on average). Anatase occurs as a replacement of glass shards or pumice (Figure 5D),
similar to that in the K2 coal in the Songzao coalfield [39].

4.2.8. Apatite, Barite and Rhabdophane

Apatite in the Zhongliangshan coals is distributed in the collodetrinte (Figure 5E). Barite occurs as
cavity-fillings, indicating an authigenic origin (Figure 5F). Rhabdophane appears to be as cell-fillings
associating with kaolinite and chamosite (Figure 5G,H).
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Figure 4. SEM back scattering images of minerals in the Zhongliangshan coals. (A) euhedral pyrite in
sample K1-1; (B) euhedral pyrite in sample K10-4; (C) pyrite in sample K7-1; (D) cell-filling quartz and
kaolinite in sample K1-2; (E) cell-filling quartz in sample K5-1; (F) quartz in sample K4-2; (G) cell-filling
calcite in sample K4-2; (H) cell-filling calcite sample K4-2.
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Figure 5. SEM back scattering images of minerals in the Zhongliangshan coals. (A) fracture-filling
calcite in sample K1-1; (B) cell-filling ankerite in sample K1-1; (C) cell-filling ankerite in sample
K10-4; (D) anatase occurring as replacement of glass shards or pumice in sample K4-2; (E) apatite
distributed in the collodetrinte in sample K10-3; (F) barite occurring as cavitiy-fillings in sample K7-1;
(G) rhabdophane, kaolinite and chamosite in sample K7-1; (H) the energy dispersive X-ray (EDX)
spectrum of rhabdophane in sample K7-1.
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4.3. Geochemical Characteristics

4.3.1. Major Elements

The major elements in the Zhongliangshan coals are dominated by SiO2 and Al2O3, and to a lesser
extent, Fe2O3 and CaO (Table 3). In comparison with Chinese coals [2], the concentrations of SiO2,
TiO2 and MgO in studied coals are slightly higher. However, the abundances of other major element
oxides are lower than those in Chinese coals. The SiO2/Al2O3 ratio (2.24) of the Zhongliangshan coals
is higher than the average Chinese coals (1.42) [2].

4.3.2. Comparison between Mineralogical and Chemical Compositions

Based on the calculation methods described by Ward et al. [27], the reliability of the quantitative
XRD data was checked by the comparison with the observed ash chemistry determined by XRF.
Before the comparison, data from the two methods were both normalized to allow for difference in
LTA, CO2, H2O+, and SO3 percentages [46]. The correlations of SiO2, Al2O3, K2O, Fe2O3, TiO2, CaO
and MgO are revealed in Figure 6.

For SiO2, Al2O3, Fe2O3 and TiO2, the points fall very close to the diagonal equality line,
indicating that the minerals indicated by the XRD analysis are highly consistent with the
independently-determined chemical data. The plots for CaO and MgO show that the data points
of CaO tend to fall above the equality line and that of MgO fall below the equality line, indicating
that partial Ca2+ was replaced by Mg2+ in the calcite, this is also observed by the SEM-EDX analysis.
The plot for Na2O also shows that the points are close to the equality line. However, the points of K2O
fall below the diagonal equality line, implying the I/S may have a lesser K+.

4.3.3. Trace Elements

From the Table 3 and Figure 7, it can be obtained that some trace elements are enriched in
comparison with the average concentrations of the world hard coals [47]. The concentration coefficients
(CC, the ratio of the trace-element concentrations in investigated samples vs. world hard coals) [32] of
trace elements between 5 and 10 include Se, Zr, Nb, Cd and Ta. Many other elements in the coals (Li, V,
Co, Cu, Hf and Hg) are slightly enriched (2<CC<5). Elements B, As, Rb, Sb, Tl and Bi are depleted, with
a CC <0.5. The remaining trace elements have concentrations close to the world hard coals, with CC
between 0.5 and 2.

Sc, V, Cr, Co, Ni, Cu and Zn

It is worthy to note that Sc, V, Cr, Co, Ni, Cu and Zn, which are significantly abundant in the
basalt of Kangdian Upland [11,43,45,48,49], are not highly enriched in the Zhongliangshan coals.
Compared with the Lopingian C2 and C3 coals in the Xinde Mine (Yunnan Province, China) [45],
with the sediment-source region of the Kangdian Upland, concentrations of Sc, V, Cr, Co, Ni, Cu
and Zn of present study are relatively lower (Figure 8). However, concentrations of Sc, V, Cr, Co, Ni,
Cu and Zn of the Zhongliangshan coals are relatively higher than those of the Lopingian coals in the
Donglin Mine and Lvshuidong Mine (Figure 8) [8,13], with the dominant sediment source regions of
the Leshan-Longnvsi Uplift, Hannan Upland, and Dabashan Uplift rather than the Kangdian Upland.

Rare Earth Elements and Yttrium

Although there are some inconsistencies on the abbreviation of “REE” or “REY” in some
geochemical literature [50], REY is adopted in this study to represent the lanthanides and Yttrium [51].
Owing to the unique geochemical behaviors, REY have been widely used as geochemical parameters
to identify sediment source region and clarify the evolution processes of coal basins [51–59].
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Table 3. Major element oxides (%) and trace elements in the coal and non-coal samples from the ZK4-1 drill core in the Zhongliangshan Coalfield (µg/g).

Sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 SiO2/Al2O3 Li Be B F Sc V Cr Co Ni Cu Zn

K1-1 7.98 0.27 4.54 2.29 0.009 0.28 1.15 0.086 0.132 0.022 1.76 35.5 2.85 21 84. 5 4.53 49.7 17.3 15.2 21.5 37.9 95.9
K1-2 14.98 0.45 5.99 3.06 0.016 0.32 0.63 0.143 0.305 0.025 2.50 44.7 3.16 24.7 100 5.86 60 27.6 12.6 21.8 46.3 32.1

K1-av. 11.48 0.36 5.27 2.68 0.01 0.30 0.89 0.11 0.22 0.02 2.13 40.05 3 22.9 92.3 5.2 54.8 22.5 13.9 21.6 42.1 64
K2 7.81 0.34 4.16 2.46 0.008 0.21 0.72 0.075 0.132 0.021 1.88 36.6 2.63 17.8 42.7 4.02 41.6 20.6 9.45 12.5 24.4 17.1
K3 17.76 1.02 7.24 2.42 0.012 0.39 1.24 0.182 0.378 0.021 2.45 49.7 4.37 30.6 95.7 7.16 96.7 40.4 10.7 42.1 45.2 21.2

K4-1 10.59 0.35 4.49 1.79 0.012 0.26 1.54 0.118 0.166 0.018 2.36 32.1 2.12 14 48.3 4.64 48.1 20.1 13.3 22 30.8 25.1
K4-2 12.00 0.76 6.92 2.47 0.013 0.32 1.37 0.182 0.164 0.024 1.73 50.3 2.95 17.5 62 8.05 108 35.1 14.6 25.6 89.2 41.1

K4-av. 11.29 0.55 5.70 2.13 0.01 0.29 1.45 0.15 0.16 0.02 2.05 41.2 2.54 15.7 55.1 6.35 78.1 27.6 13.9 23.8 60 33.1
K5 29.22 0.54 6.24 13.10 0.014 0.48 0.72 0.213 0.143 0.024 4.68 30 3.38 19.5 63.1 7.65 71.7 38.1 15.9 40.3 41.8 39
K7 20.62 0.54 6.64 9.06 0.018 0.35 1.06 0.14 0.136 0.041 3.11 37 7.37 18.7 70.2 8.6 129 30.1 35.9 58.9 84 226
K8 14.96 0.76 7.37 4.14 0.013 0.23 0.93 0.171 0.268 0.025 2.03 36.8 4.4 38.1 178 7.44 79.2 33.6 17.7 28 42.7 26.7

K10-1 7.10 0.26 3.93 2.48 0.008 0.23 1.09 0.066 0.117 0.015 1.80 34.7 3.14 22.4 72.3 4.32 42.7 17.3 8.7 12.3 33.5 20
K10-2 9.48 0.39 4.83 2.85 0.01 0.28 0.82 0.138 0.238 0.027 1.96 35.1 3.09 23.7 111 4.48 42.8 19.2 7.52 13.2 28.9 27.6
K10-3 12.90 0.70 8.53 3.80 0.022 0.27 1.64 0.107 0.15 0.051 1.51 57.3 3.86 36.4 160 5.91 67.3 27.5 11.1 20.8 40.2 17.7
K10-4 7.39 0.27 4.17 5.17 0.009 0.22 1.31 0.083 0.111 0.076 1.77 35.5 2.74 16.6 96.3 5 58.4 22 8.81 18.9 30.9 14
K10-5 7.58 0.25 4.07 4.43 0.009 0.23 1.14 0.070 0.117 0.053 1.86 38.4 2.92 19.5 78.4 4.91 56.6 19.1 8.64 16.8 27.6 10.9

K10-av. 8.89 0.37 5.11 3.74 0.01 0.25 1.20 0.09 0.15 0.04 1.78 40.2 3.15 23.7 104 4.93 53.6 21 8.96 16.4 32.2 18
All coals-av. 12.88 0.49 5.65 4.25 0.01 0.29 1.10 0.13 0.18 0.03 2.24 39.6 3.5 22.9 90.2 5.9 68 26.3 13.6 25.3 43.1 43.9

China 8.47 0.33 5.98 4.85 0.015 0.22 1.23 0.16 0.19 0.092 1.42 31.8 2.11 53 130 4.38 35.1 15.4 7.08 13.7 17.5 41.4
World nd 0.148 nd nd 0.011 nd nd nd nd 0.057 nd 14 2 47 82 3.7 28 17 6 17 16 28
K1-r 52.71 2.32 16.91 8.97 0.079 0.85 0.89 0.984 2.141 0.238 3.12 21 2.78 126 667 22.5 251 93.3 33.8 67.3 133 107

K1-p1 41.79 6.04 25.99 3.78 0.005 0.62 0.29 0.576 0.872 0.055 1.61 162 3.42 102 246 28.8 417 262 48.5 113 220 106
K1-p2 33.75 2.43 18.60 11.91 0.21 1.05 1.49 0.728 0.779 0.306 1.81 73.5 3.03 76.4 655 22.8 246 124 49.5 84 131 157
K1-p3 42.82 3.96 24.60 7.47 0.092 1.23 0.76 1.288 1.39 0.134 1.74 95.2 2.96 125 397 30.3 394 257 48 93.2 162 200
K1-f 37.36 3.01 19.17 12.83 0.157 1.07 0.77 0.798 1.062 0.075 1.95 67.4 2.64 81.6 292 24.4 274 154 51.6 81.7 128 147
K2-r 50.41 2.51 16.82 9.95 0.045 1.21 1.18 0.966 2.333 0.131 3.00 16.8 3.67 148 538 25.6 329 161 66.9 102 123 152
K2-f 38.86 2.76 15.50 18.46 0.192 1.47 2.16 1.382 1.058 0.243 2.51 36.9 1.96 64.2 489 17.9 286 194 40.3 78.8 110 120
K3-r 43.86 2.57 20.02 9.28 0.064 1.1 0.92 1.278 2.086 0.279 2.19 62 3.31 117 759 23.9 370 125 55.9 112.8 163 160
K3-f 45.25 5.11 21.66 5.85 0.035 1.08 0.80 0.948 3.117 0.11 2.09 30.6 3.82 159 654 27.9 393 191 42.7 96.6 206 150
K4-r 40.07 3.63 20.32 11.64 0.22 1.38 1.50 1.335 1.813 0.285 1.97 41.9 2.92 100 607 17.4 307 168 33.9 70 185 176

K4-p1 38.71 2.52 20.04 7.60 0.121 1 0.55 0.841 1.928 0.138 1.93 83.7 4.1 116 523 27.5 369 124 53.1 66.5 155 150
K4-f 40.24 4.48 25.93 8.01 0.037 0.79 0.35 0.684 0.558 0.064 1.55 125 5.35 94.8 284 9.97 430 178 75.9 108 216 119
K5-r 41.95 1.53 19.63 13.05 0.009 0.89 0.27 0.958 1.127 0.111 2.14 65.2 5.55 126 330 16.5 198 83.7 37.2 50.1 69.9 268
K5-f 40.43 3.93 21.71 10.46 0.072 0.9 0.37 0.977 0.969 0.056 1.86 86.2 3.73 129 362 29.9 358 191 55.4 105 209 150
K7-r 27.92 2.82 19.79 22.56 0.58 1.44 0.73 0.548 0.247 0.158 1.41 113 13.9 56.8 375 16.5 229 82.6 51.2 50.4 107 370
K7-f 36.56 4.29 24.93 9.32 0.132 0.58 0.60 0.56 0.653 0.086 1.47 126 6.97 105 398 11.2 321 186 33.4 58.8 219 155
K8-r 36.21 2.37 25.03 13.62 0.157 0.86 1.13 0.907 1.198 0.066 1.45 91.7 4 128 468 8.52 377 226 60 113 112 166
K8-f 36.74 3.32 21.20 11.22 0.135 0.84 0.69 0.689 2.102 0.076 1.73 49.8 5.76 145 932 15 265 153 48.3 83.1 142 161

K10-r 38.57 2.24 25.26 11.20 0.055 0.83 1.68 0.828 1.49 0.547 1.53 73 4.22 127 1167 21.7 295 172 42.8 93.1 94.7 191
K10-p1 36.37 2.43 24.65 11.01 0.007 0.49 1.41 0.712 1.378 0.721 1.48 72.3 3.25 122 1254 26.6 301 260 45.5 115 122 184
K10-p2 33.42 2.04 23.35 16.56 0.018 0.46 0.87 0.738 1.158 0.39 1.43 82.4 3.25 106 957 20.7 254 193 43.8 79.9 96.9 191
K10-p3 31.56 2.95 20.64 11.46 0.103 0.7 1.75 0.518 0.448 0.073 1.53 115.6 6.12 83.4 358 22.8 291 113 44 72.1 142 78.2
K10-p4 28.67 1.61 22.29 20.76 0.032 0.35 1.05 0.478 0.685 0.086 1.29 84.1 4.1 82.2 497 10.3 258 193 37.9 81.8 87.7 146
K10-p5 8.17 0.39 5.89 27.25 0.037 0.18 8.10 0.074 0.115 0.018 1.39 24.8 0.77 10.8 90.6 7.37 103 85.4 26.8 94 49.2 45.9
K10-f 33.42 2.11 23.14 16.27 0.09 1.27 2.61 0.777 1.376 0.144 1.44 70.4 3.2 105 729 18.7 263 223 44.4 87.3 83.2 156
Tuff 21.40 3.12 18.53 16.39 0.036 0.27 11.81 0.095 0.421 0.021 1.16 176 3.04 71.6 379 17.1 414 176 29.6 105 128 44.6

Sample Ga Ge As Se Rb Sr Zr Nb Mo Cd In Sn Sb Cs Ba Hf Ta W Hg Tl Pb Bi Th U

K1-1 7.87 3.51 1.57 8.09 3.54 183 173 19 2.2 0.64 0.08 2 0.39 1.83 26 4.12 1.87 1.35 0.41 bdl 11.1 0.28 5.69 3.33
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Table 3. Cont.

Sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 SiO2/Al2O3 Li Be B F Sc V Cr Co Ni Cu Zn

K1-2 9.91 3.25 2.36 8.36 9.23 141 183 25.5 1.33 0.32 0.07 2.38 0.23 1.58 58.6 4.49 1.78 2.47 0.23 0.04 14.3 0.24 6.22 2.57
K1-av. 8.89 3.38 1.96 8.22 6.38 162 178 22.2 1.77 0.48 0.07 2.19 0.31 1.70 42.3 4.3 1.83 1.91 0.32 0.04 12.7 0.26 5.95 2.95

K2 8.26 4.19 3.27 7.44 3.17 142 158 20.4 1.21 0.26 0.06 1.67 0.25 0.43 29.2 3.9 1.39 1.26 0.24 0.01 10.9 0.24 5.28 2.74
K3 11.3 2.36 1.53 8.63 9.4 226 253 42.6 2.66 0.37 0.08 3.08 0.86 2.84 107 6.35 3.22 2.41 0.26 0.15 20.1 0.29 8.69 2.5

K4-1 7.44 3.5 0.62 4.54 3.7 174 98.9 13.2 0.92 0.26 0.05 1.48 0.17 1.47 55.5 2.68 0.93 1.03 0.15 bdl 9.58 0.22 4.6 1.78
K4-2 12.2 3.22 2.08 8.21 3.79 243 185 25.2 1.22 0.61 0.07 2.37 0.33 0.82 119 4.78 1.83 1.88 0.13 bdl 12.1 0.23 6.39 2.05

K4-av. 9.83 3.36 1.35 6.38 3.75 209 142 19.2 1.07 0.43 0.06 1.92 0.25 1.14 87 3.73 1.38 1.46 0.14 bdl 10.8 0.22 5.5 1.91
K5 7.68 1.31 4.78 10 2.63 162 253 29.7 12.2 0.48 0.05 1.25 0.28 bdl 44.7 3.33 0.54 6.57 1.16 0.14 15.8 0.15 3.96 2.21
K7 11.8 2.53 9.06 8.36 2.7 215 351 24.9 4.25 1.95 0.07 2.67 0.46 0.56 857 6.72 0.94 4.65 0.57 0.07 37.9 0.2 8.65 2.58
K8 11.7 2.98 2.38 9.34 4.18 172 299 41.9 2.44 0.45 0.09 2.96 0.23 1.32 253 7.2 2.67 2.02 0.46 bdl 12 0.24 9.35 2.8

K10-1 7.03 3.8 1.64 8.39 1.63 142 113 4.61 0.35 0.22 0.06 1.64 0.1 0.46 139 2.92 bdl 0.21 0.23 bdl 8.74 0.22 4.82 2.69
K10-2 9.41 2.9 1.59 5.38 5.74 133 225 27.2 1.2 0.42 0.08 2.07 0.12 1.21 206 5.62 1.62 0.72 0.22 0.02 10.8 0.27 7.05 2.73
K10-3 15.6 3.29 3.45 8.88 5.07 188 366 63.6 2.16 0.54 0.13 3.7 0.28 bdl 244 10.3 5.61 1.72 0.72 0.1 11.1 0.35 13.4 4.66
K10-4 6.52 3.1 3.5 7.96 2.41 259 92.3 10.9 1.92 0.21 0.04 1.25 0.09 bdl 640 2.38 0.73 0.75 0.7 0.05 7.14 0.21 4.03 2.1
K10-5 6.61 3.08 2.05 6.74 2.26 219 87.8 9.95 1.52 0.18 0.05 1.22 0.09 bdl 366 2.32 0.53 0.16 0.49 0.01 6.94 0.21 4.05 2.31

K10-av. 9.03 3.23 2.45 7.47 3.42 189 177 23.3 1.43 0.31 0.07 1.98 0.14 0.83 319 4.71 2.12 0.71 0.47 0.04 8.95 0.25 6.67 2.9
All coals-av. 9.52 3.07 2.85 7.88 4.25 186 203 25.6 2.54 0.49 0.07 2.12 0.28 1.25 225 4.8 1.68 1.94 0.43 0.07 13.5 0.24 6.58 2.65

China 6.55 2.78 3.79 2.47 9.25 140 89.5 9.44 3.08 0.25 0.05 2.11 0.84 1.13 159 3.71 0.62 1.08 0.16 0.47 15.1 0.79 5.84 2.43
World 6 2.4 8.3 1.3 18 100 36 4 2.1 0.20 0.04 1.4 1.00 1.10 150.00 1.20 0.30 0.99 0.10 0.58 9.00 1.10 3.20 1.90
K1-r 25.8 1.52 27.7 3.76 44.6 604 366 46.5 1.3 0.59 0.12 3.66 0.31 6.17 208 9.29 3.33 3.03 0.19 0.28 13.3 0.14 9.64 5.02

K1-p1 40 3.1 5.07 2.79 11.5 375 669 97.4 2.84 1 0.2 5.50 0.11 1.86 139 16.5 7.77 5.91 0.11 0.04 22.8 0.14 10.6 6.86
K1-p2 23.4 1.96 6.56 3.13 16 443 359 47.3 1.05 0.65 0.11 3.09 bdl 0.41 164 8.28 3.8 2.97 0.09 0.04 13.4 0.08 8.26 2.45
K1-p3 36.1 2.09 5.33 1.56 23.8 595 419 60.2 1.28 0.75 0.14 3.76 bdl 5.13 238 10.4 5.2 1.66 0.02 0.03 10.4 0.08 9.17 2.62
K1-f 26.6 1.89 5.62 3.02 24.1 432 415 59.7 1.3 0.87 0.12 3.39 0.01 2.3 211 9.84 4.51 2.11 0.07 0.04 12.3 0.08 9.39 3.29
K2-r 26.9 2.09 27.3 5.11 65.1 549 367 42.9 3.57 0.63 0.11 3.16 0.38 2.68 299 8.7 3.26 1.62 0.12 0.21 17.6 0.15 8.48 11.7
K2-f 21.3 1.85 7.11 3.17 25.9 626 343 35.2 0.82 0.54 0.1 2.54 bdl 0.71 227 7.74 1.91 1.34 0.05 0.04 9.96 bdl 5.15 2.81
K3-r 29.2 2.16 34.8 5.07 44.1 591 462 60 5.48 0.78 0.14 4.13 0.2 0.61 291 11.7 4.28 4.82 0.18 0.3 17.7 0.18 11.6 5.98
K3-f 38.8 2.22 7.18 3.07 59.5 621 594 96.9 3.92 0.92 0.16 4.63 0.22 0.52 412 14.6 6.72 3.1 0.08 0.16 15 0.07 14.2 3.29
K4-r 30.6 1.78 0.92 3.28 23.9 550 469 88.6 bdl 0.82 0.12 5.09 bdl bdl 284 11.6 4.24 0.58 0.01 0.03 12.1 0.02 6.5 2.69

K4-p1 31.2 2.3 31.8 5.88 47.8 568 530 75.1 3.27 0.86 0.16 5.29 0.23 0.6 293 13.7 5.07 2.58 0.15 0.18 17.6 0.23 14.8 6.52
K4-f 40.3 2.48 7.78 2.95 5.73 180 696 100 1.83 1.13 0.2 6.52 0.15 bdl 52.5 17.7 8.1 3.07 0.14 0.05 15.8 0.19 2.95 6
K5-r 40 2.35 20.6 7.09 27.7 586 1154 184 11.4 1.92 0.25 11.6 0.45 bdl 146 33 14.5 3.28 0.21 0.4 28.6 0.32 34.6 12.2
K5-f 32.9 2.04 7.21 3.51 17.5 491 498 72.1 3.43 0.87 0.16 4.67 0.02 bdl 141 12.8 4.88 3.92 0.1 0.09 15.3 0.1 10.1 4.13
K7-r 31.3 2.37 2.65 3.32 3.62 578 772 115 1.08 2.99 0.18 6.55 bdl bdl 179 19 7.92 2.16 0.06 0.03 7.51 0.15 11.1 3.81
K7-f 37.4 2.38 1.05 2.34 4.54 398 547 12.4 bdl 0.99 0.16 1.35 bdl bdl 107 14 0.66 bdl 0.04 bdl 14.5 0.12 6.56 3.41
K8-r 28.6 2.41 1.54 2.05 7.98 401 257 11 bdl 0.49 0.1 1.25 bdl bdl 151 6.72 0.58 bdl 0.05 0.01 7.21 bdl 2.13 1.41
K8-f 33 2.1 8.95 4.75 25.4 511 780 145 3.71 1.29 0.18 6.86 0.07 2.26 165 19.6 5.81 2.57 0.22 0.12 22.8 0.12 12.4 5.27

K10-r 27.3 1.55 4.09 1.48 17.6 485 286 37.3 0.36 0.5 0.09 2.44 bdl bdl 136 6.94 2.45 4.11 0.1 0.04 10.7 0.02 6.81 1.69
K10-p1 26.1 2.42 5.26 1.81 18.3 422 318 40.6 0.3 0.56 0.1 2.66 bdl bdl 120 7.49 2.55 3.15 0.19 0.15 7.23 0.01 6.62 1.63
K10-p2 25 1.36 5.19 1.97 15.9 350 267 36.8 1.31 0.6 0.08 2.36 bdl bdl 139 6.64 2.28 6.04 0.25 0.08 17.8 0.01 5.73 1.25
K10-p3 31.6 2.19 28.9 5.56 8.74 511 597 99.1 3.66 0.94 0.17 5.29 0.16 bdl 1431 16 7.7 3.88 0.78 0.13 21.3 0.21 18.8 7.66
K10-p4 23 1.23 6.46 2.77 8.44 192 242 34.2 3.13 0.49 0.09 2.41 bdl bdl 204 6.5 1.96 6.92 1.39 0.14 14.6 0.02 3.87 1.54
K10-p5 4.55 0.66 19.1 8.42 0.95 726 165.5 8.35 8.92 0.36 0.02 0.8 bdl 0.22 2468 2.23 0.42 4.9 2.69 0.51 39.1 0.01 1.63 1.14
K10-f 23.6 1.4 1.96 0.56 15.6 450 244 21.5 bdl 0.41 0.09 1.91 bdl bdl 245 6.05 0.96 1.31 0.11 0.08 9.07 bdl 3.62 1.25
Tuff 30.6 1.76 7.04 3.02 15.5 374 593 84.2 1.68 2.69 0.35 6.56 3.17 14.1 72.1 14.74 9.91 6.74 0.96 0.37 30.9 0.89 16.7 12

av: average; bdl: below detection limit.
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Figure 8. Concentration comparison of Sc, V, Cr, Co, Ni, Cu and Zn in the Xinde Mine, Zhongliangshan
Coalfield, Lvshuidong Mine and Donglin Mine. The data of the Xinde, Lvshuidong and Donglin are
from Dai et al. and Chen et al., respectively [8,14].

In order to describe the REY distribution in coals more conveniently, a three-fold geochemical
classification and three enrichment types were proposed by Seredin and Dai [58]. Accordingly, normalized
to the upper continental crust (UCC) [60], three enrichment types of REY in coal were generally identified:
L-type (light-REY; LaN/LuN >1), M-type (medum-REY; LaN/SmN <1, GdN/LuN >1), and H-type
(heavy-REY; LaN/LuN <1) [58]. In addition, several REY geochemical parameters (e.g., CeN/CeN*,
EuN/EuN*, LaN/LaN*, GdN/GdN* and YN/HoN) are often used to rebuild the geochemical history [54,61],
to recognize the sediment-source region [10,13,52,62], and to explain the tectonic evolution of coal
deposits [3,63,64]. The REY concentrations and parameters of the Zhongliangshan coals are listed in
Tables 4 and 5. The content of REY varies from 112 to 396 µg/g and averages 171 µg/g, higher than that
in common world hard coals [47].

Table 4. Concentrations of rare earth element and yttrium (REY) in the coal and non-coal samples from
the ZK4-1 drill core in the Zhongliangshan Coalfield (µg/g).

Sample La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

K1-1 30.19 61.66 6.74 25.12 4.61 0.80 4.69 0.68 4.10 20.75 0.78 2.29 0.31 2.08 0.28
K1-2 26.41 55.90 6.26 23.70 4.35 0.72 4.26 0.61 3.70 18.29 0.71 2.13 0.30 2.04 0.29

K1-av. 28.30 58.78 6.50 24.41 4.48 0.76 4.47 0.65 3.90 19.52 0.75 2.21 0.30 2.06 0.29
K2 24.91 46.70 5.03 18.31 3.33 0.49 3.47 0.49 3.10 16.86 0.62 1.88 0.26 1.74 0.24
K3 31.14 67.30 7.58 29.40 5.82 1.17 5.86 0.79 4.47 21.88 0.85 2.50 0.34 2.35 0.33

K4-1 18.59 40.32 4.64 18.38 3.53 0.66 3.54 0.48 2.84 14.89 0.54 1.61 0.22 1.49 0.21
K4-2 33.14 68.48 7.67 30.22 5.91 1.07 5.78 0.78 4.44 20.95 0.78 2.26 0.29 1.96 0.26

K4-av. 25.87 54.40 6.15 24.30 4.72 0.87 4.66 0.63 3.64 17.92 0.66 1.94 0.26 1.73 0.23
K5 19.00 40.48 4.78 18.68 3.86 0.83 4.38 0.68 4.34 27.84 0.91 2.93 0.42 2.99 0.45
K7 63.94 156.86 17.58 71.19 12.72 1.63 11.06 1.36 7.57 40.43 1.45 4.52 0.63 4.34 0.62
K8 29.99 66.55 7.68 29.70 5.92 1.01 6.08 0.85 5.10 26.63 0.99 2.99 0.42 2.82 0.40

K10-1 21.08 46.23 5.28 20.39 3.87 0.63 3.98 0.55 3.36 16.50 0.63 1.96 0.27 1.88 0.25
K10-2 24.71 50.94 5.75 22.09 4.26 0.71 4.41 0.64 3.91 20.05 0.74 2.20 0.29 2.00 0.27
K10-3 28.30 56.05 6.21 23.79 4.87 0.80 5.25 0.82 4.97 25.35 0.93 2.71 0.37 2.46 0.35
K10-4 31.58 58.60 6.54 24.75 4.17 0.76 4.27 0.56 3.22 17.54 0.62 1.87 0.26 1.81 0.25
K10-5 32.11 60.13 6.67 25.44 4.28 0.70 4.35 0.57 3.48 19.18 0.67 2.12 0.29 2.01 0.28

K10-av. 27.56 54.39 6.09 23.29 4.29 0.72 4.45 0.63 3.79 19.73 0.72 2.17 0.30 2.03 0.28
Average 29.65 62.59 7.03 27.23 5.11 0.86 5.10 0.70 4.18 21.94 0.80 2.43 0.33 2.28 0.32

K1-r 52.89 124.00 14.15 60.55 14.23 3.39 14.83 1.98 10.34 43.43 1.81 4.86 0.61 4.02 0.56
K1-p1 55.04 70.46 13.94 54.39 10.34 2.64 10.83 1.47 8.09 32.61 1.41 3.87 0.51 3.55 0.47
K1-p2 46.54 107.26 12.98 57.37 14.57 3.98 14.62 1.79 9.27 44.43 1.64 4.57 0.59 3.96 0.55
K1-p3 44.44 99.74 11.49 46.97 9.52 2.40 9.37 1.31 7.25 30.67 1.28 3.54 0.46 3.07 0.41
K1-f 55.60 124.12 14.31 58.63 11.40 2.88 11.16 1.51 8.49 37.37 1.51 4.34 0.57 3.73 0.51
K2-r 43.27 101.87 11.78 48.84 10.07 2.62 9.61 1.25 6.95 31.50 1.26 3.68 0.47 3.15 0.42
K2-f 39.72 98.05 11.73 51.46 11.16 3.26 11.10 1.42 7.49 25.60 1.31 3.66 0.47 3.14 0.43
K3-r 66.65 153.79 16.73 65.34 11.30 2.75 11.24 1.48 8.78 37.87 1.69 5.04 0.69 4.63 0.63
K3-f 80.74 170.00 20.50 82.13 15.14 3.65 13.75 1.74 9.56 38.05 1.68 4.64 0.60 4.03 0.55
K4-r 50.78 122.00 13.59 56.28 10.81 2.83 10.77 1.45 8.10 25.14 1.46 4.11 0.54 3.56 0.48

K4-p1 76.76 146.10 18.32 70.21 10.97 2.10 11.33 1.73 11.01 54.95 2.18 6.65 0.92 6.25 0.88
K4-f 19.89 91.23 5.98 23.29 4.17 0.95 4.45 0.68 3.99 9.99 0.82 2.39 0.38 2.31 0.34
K5-r 157.76 344.58 43.36 176.25 37.43 5.95 38.26 5.22 29.52 144.61 5.54 16.45 2.24 15.20 2.10
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Table 4. Cont.

Sample La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

K5-f 56.64 130.14 15.03 62.04 12.23 2.49 12.58 1.84 10.39 48.68 1.96 5.55 0.76 5.22 0.71
K7-r 74.06 178.61 19.23 73.51 12.87 1.61 13.20 1.99 12.58 39.27 2.52 7.77 1.09 7.39 1.03
K7-f 48.00 125.68 13.88 55.87 10.12 1.86 9.81 1.46 8.74 21.61 1.64 4.91 0.64 4.35 0.59
K8-r 17.88 46.57 5.22 22.04 5.08 1.58 5.29 0.74 4.14 8.15 0.71 2.01 0.26 1.76 0.23
K8-f 82.29 186.95 21.47 84.09 16.00 2.58 15.86 2.35 14.15 42.00 2.73 8.27 1.15 7.91 1.10

K10-r 24.82 48.92 6.91 29.29 6.80 2.26 7.36 1.12 6.67 29.05 1.22 3.58 0.48 3.35 0.45
K10-p1 35.35 76.02 10.33 44.95 9.91 2.74 10.20 1.45 7.83 33.64 1.39 3.91 0.52 3.58 0.49
K10-p2 23.63 55.06 7.43 33.06 7.83 2.33 8.03 1.06 5.85 25.88 1.01 2.83 0.36 2.46 0.34
K10-p3 76.32 152.23 16.90 63.18 11.38 2.26 12.34 1.84 10.99 47.24 2.06 6.00 0.81 5.39 0.76
K10-p4 20.25 33.54 5.51 21.88 4.18 0.88 3.98 0.60 3.62 11.80 0.66 1.93 0.26 1.83 0.23
K10-p5 4.61 9.51 1.34 6.04 1.86 0.94 2.40 0.42 2.92 13.28 0.57 1.72 0.24 1.78 0.23
K10-f 16.20 33.11 4.14 16.47 3.47 0.97 3.61 0.55 3.40 10.07 0.63 1.93 0.27 1.88 0.25
Tuff 33.74 127.59 11.73 52.97 12.68 2.77 10.92 1.68 9.75 42.22 1.92 5.71 0.84 5.27 0.78

Table 5. REY parameters in the coal and non-coal samples from the ZK4-1 drill core in the
Zhongliangshan Coalfield.

Sample REY (µg/g) LaN/LuN LaN/SmN GdN/LuN Enrichment Type CeN/CeN* EuN/EuN* YN/HoN GdN/GdN* LaN/LaN*

K1-1 165.06 1.07 0.98 1.31 L and M 0.99 0.79 0.97 1.13 1.10
K1-2 149.67 0.92 0.91 1.17 M and H 0.99 0.77 0.93 1.12 1.07
K2 127.44 1.05 1.12 1.15 L 0.95 0.67 0.99 1.15 1.16
K3 181.77 0.94 0.80 1.40 M and H 1.00 0.92 0.94 1.18 1.10

K4-1 111.96 0.90 0.79 1.36 M and H 0.99 0.86 1.01 1.17 1.14
K4-2 183.99 1.28 0.84 1.76 L and M 0.98 0.84 0.97 1.17 1.21
K5 132.56 0.43 0.74 0.77 H 0.97 0.93 1.11 1.10 1.09
K7 395.90 1.03 0.75 1.40 L and M 1.07 0.63 1.01 1.19 1.09
K8 187.13 0.75 0.76 1.20 M and H 1.00 0.77 0.98 1.15 1.04

K10-1 126.86 0.83 0.82 1.24 M and H 1.00 0.74 0.95 1.17 1.06
K10-2 142.97 0.91 0.87 1.28 M and H 0.97 0.75 0.99 1.13 1.13
K10-3 163.23 0.82 0.87 1.20 M and H 0.96 0.73 0.99 1.09 1.19
K10-4 156.80 1.28 1.14 1.36 L 0.93 0.83 1.03 1.21 1.23
K10-5 162.28 1.15 1.13 1.23 L 0.94 0.75 1.04 1.20 1.25
K1-r 351.67 0.94 0.56 2.09 M and H 1.03 1.07 0.87 1.20 1.34

K1-p1 269.61 1.18 0.80 1.83 L and M 0.58 1.14 0.84 1.19 1.07
K1-p2 324.12 0.84 0.48 2.08 M and H 1.00 1.25 0.99 1.25 1.45
K1-p3 271.92 1.09 0.70 1.81 L and M 1.01 1.17 0.87 1.14 1.19
K1-f 336.11 1.09 0.73 1.73 L and M 1.00 1.17 0.90 1.16 1.21
K2-r 276.75 1.02 0.64 1.79 L and M 1.03 1.22 0.91 1.19 1.18
K2-f 270.00 0.92 0.53 2.03 M and H 1.04 1.35 0.71 1.22 1.33
K3-r 388.60 1.06 0.88 1.41 L and M 1.05 1.12 0.82 1.19 1.09
K3-f 446.74 1.48 0.80 1.98 L and M 0.95 1.16 0.83 1.19 1.15
K4-r 311.90 1.05 0.70 1.75 L and M 1.06 1.20 0.63 1.17 1.20

K4-p1 420.36 0.88 1.05 1.02 H 0.89 0.87 0.92 1.09 1.09
K4-f 170.86 0.59 0.72 1.04 M and H 1.91 1.01 0.44 1.10 0.90
K5-r 1024.47 0.75 0.63 1.44 M and H 0.95 0.72 0.95 1.17 1.10
K5-f 366.26 0.79 0.69 1.39 M and H 1.02 0.92 0.90 1.12 1.20
K7-r 446.73 0.72 0.86 1.01 M and H 1.08 0.57 0.57 1.10 1.00
K7-f 309.15 0.81 0.71 1.31 M and H 1.11 0.86 0.48 1.09 1.02
K8-r 121.64 0.77 0.53 1.81 M and H 1.10 1.40 0.42 1.16 1.16
K8-f 488.91 0.75 0.77 1.14 M and H 1.01 0.74 0.56 1.10 1.05

K10-r 172.28 0.55 0.55 1.28 M and H 0.85 1.47 0.86 1.11 1.24
K10-p1 242.30 0.73 0.54 1.66 M and H 0.91 1.25 0.88 1.15 1.30
K10-p2 177.16 0.70 0.45 1.89 M and H 0.95 1.35 0.93 1.20 1.32
K10-p3 409.70 1.01 1.01 1.28 L 0.97 0.88 0.83 1.13 1.12
K10-p4 111.15 0.86 0.73 1.34 M and H 0.72 0.99 0.65 1.07 1.05
K10-p5 47.87 0.20 0.37 0.81 H 0.87 2.04 0.85 1.04 1.50
K10-f 96.95 0.65 0.70 1.14 M and H 0.92 1.26 0.58 1.09 1.12
Tuff 320.57 0.43 0.40 1.11 M and H 1.46 1.08 0.80 1.03 1.27

Note: REY, sum of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb, and Lu; LaN/LuN, ratio of LaN
and LuN; LaN/SmN, ratio of LaN and SmN; GdN/LuN, ratio of GdN and LuN; YN/HoN, ratio of YN and HoN;
CeN/CeN* = CeN/(0.5LaN + 0.5PrN); EuN/EuN* = EuN/(0.5SmN + 0.5GdN); GdN/GdN* = GdN/[(SmN × 0.33)
+ (TbN × 0.67); LaN/LaN* = LaN/(3PrN-2NdN); N, REY are normalized by Upper Continental Crust (UCC) [60].

The Zhongliangshan coals, characterized by negative Ce, Eu anomalies and positive Gd,
La anomalies, with no pronounced Y anomalies (Figure 9), are dominated by M-H type and, to a lesser
extent, L- and L-M types, along with H-type (Table 5). The REY has a weakly positive correlation
with ash yield in the Zhongliangshan coals (Figure 10A). This indicates that the modes of occurrences
of REY may be not only associated with the mineral matter, but also with the organic matter in the
coal. Some studies have shown that the correlation coefficients of REY with ash yields decrease along
with atomic numbers [10,52,62,65]. However, the correlation coefficients between REY and ash yields
in present study increase from 0.28 (rLa-Ash) to 0.79 (rLu-Ash) (Figure 10B) with the increasing atomic
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number, similar to the trend of Haerwusu coals [66]. This probably suggests that the light REY have
a mixed inorganic-organic affinity and the heavy REY have an inorganic-dominated affinity. It can be
inferred that the ability being absorbed on the organic matter of LREY is higher than that of HREY,
leading to higher HREY-ash correlation coefficients than those of LREY-ash pair [66].Minerals 2018, 8, x FOR PEER REVIEW  17 of 26 
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4.4. Sediment Source Region

It is suggested that the dominant terrigenous material of the Lopingian coals in southwestern
China is the basaltic Kangdian Upland, which is typically enriched in Sc, V, Cr, Co, Ni, Cu and
Zn [10,45,64,68–71]. For example, the dominant terrigenous material for the coals in the Xinde Mine,
Yunnan Province, southwestern China is identified as the Kangdian Upland, with high concentrations
of Sc, V, Cr, Co, Ni, Cu and Zn in the coals [45]. The dominant terrigenous material of the Huayingshan
and Nantong coalfields has also been considered to be the Kangdian Upland [11,12]. However,
some studies have shown that, instead of the Kangdian Upland, the dominant terrigenous materials of
Huayingshan and Nantong coalfields are the Leshan-Longnvsi Uplift, Hannan Upland, and Dabashan
Uplift [8,13]. The abundances of Sc, V, Cr, Co, Ni, Cu and Zn in the Huayingshan Coalfield are only
3.54 µg/g, 68.4 µg/g, 18.8 µg/g, 3.03 µg/g, 7.96 µg/g, 29.2 µg/g and 31.5 µg/g, respectively [8],
while those in the Nantong coalfield are 5.81 µg/g, 37.3 µg/g, 23.4 µg/g, 2.87 µg/g, 6.32 µg/g,
16.3 µg/g and 26 µg/g, respectively [13]. A number of studies have indicated that the coals with
sediment source region consisted of felsic rocks have high concentration of lithophile elements but are
low in V, Cr, Co, Ni, Cu and Zn [72–74].

In present study, the concentrations of Sc, V, Cr, Co, Ni, Cu and Zn are not as high as those in the
Xinde Mine, and not as low as those in the Huayingshan and Nantong coalfields, neither (Figure 8).
This may indicate that the Kangdian Upland is not the dominant sediment source region for the
Zhongliangshan coals.

Many studies have shown that the Al2O3/TiO2 ratios are useful provenance indicators to
determine the terrigenous materials not only for normal sedimentary rocks but also for coal
seams [8,10,73,75,76]. It is suggested that the Al2O3/TiO2 ratios for sedimentary rocks with 3–8, 8–21,
and 21–70 are considered to originate from mafic-, intermediate-, and felsic dominated sediment source
regions, respectively [75]. In the plot of Al2O3 vs. TiO2 for coal samples from the Zhongliangshan
coalfield (Figure 11), almost all coal samples fall in the area between 8 and 21, indicating that the
terrigenous source of the studied samples is of intermediate composition. This further indicates that
the dominant sediment source region is not the mafic basalts of the Kangdian upland, where the typical
Al2O3/TiO2 ratios are between 3 and 8 [76].
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Eu anomalies in coal can also be used as an indicator to interpret the sediment source region [51].
This is because Eu anomalies in coal are usually inherited from rocks within the sediment source region,
and would not be affected between the weathering and transportation processes from the sediment source
region to the peat swamp [51,52,77,78]. However, Eu anomalies may be influenced under the conditions of
high-temperature hydrothermal fluids (>200 ◦C) and extremely reducing conditions [79,80].
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Generally, coals with input of felsic or felsic-intermediate terrigenous materials usually have
pronounced negative Eu anomalies [51], with a few exceptions of coals characterized by positive Eu
anomalies that are caused by high content of plagioclase and other feldspars [81]. On the contrary,
coals with input of mafic basalts display strongly positive Eu anomalies [45]. Chen et al. consider that
the dominant terrigenous material of the Lopingian coals in the Nantong Coalfield is not the Kangdian
Upland using the Eu anomalies. Dai et al. used the Eu anomalies to identify that the Yishan coals
have been influenced by high-temperature hydrothermal solutions [10]. However, not all the coals
influenced by hydrothermal solutions should have positive Eu anomalies [82]. For example, in some
cases, coals or stone coals affected by hydrothermal solutions have a weak negative anomaly because
the felsic sediment input overlapped the hydrothermal solutions [82].

The Figure 9 shows that almost all coals present distinctive negative Eu anomalies, different from
the Emeishan basalts. This further indicates that the dominant terrigenous material is not the basalt of
Kangdian Upland.

Note that there are some other three uplands/uplifts (TUUs) including the Leshan-Longnvsi
uplift, Hannan Upland, and Dabashan Uplift around the Zhongliangshan coalfield (Figure 1). Dai et al.
have proposed that TUUs are the dominant terrigenous materials for the Huayingshan coalfield [8].
Hence, the dominant sediment source region of present study may also be TUUs. However, based on
the abundances of Sc, V, Cr, Co, Ni, Cu and Zn in the Zhongliangshan coals and the proximity to the
Kangdian Upland, the Kangdian Upland may also provide a small proportion of terrigenous materials
for the Zhongliangshan Coalfield.

4.5. Injection of Low-Temperature Hydrothermal Fluids

Hydrothermal fluid activity plays an important role in the enrichment of mineral matter in the coals
not only from southwestern China [2,40,43,83–88], but also from some coal deposits elsewhere [89–91].
However, the characteristics and alteration mechanism of hydrothermal solution are not clear. Recently,
Dai et al. illustrate the hydrothermal solution compositions, nature and mineralization of the alkali volcanic
ash in Yunnan Province (southwestern China) based on the analysis of H-O isotope and petrological,
mineralogical and geochemical assemblages [92]. Firstly, the alkali volcanic ash was leached by the mixed
high-temperature hydrothermal solution (including acidic waters and CO2 degassing from the Emeishan
Plume) and resulted in the in situ enrichment of Al, Ti and the depletion of Nb, Zr, Ga and REY [92].
Secondly, the leached Nb, Zr, Ga and REY were precipitated under the environment of cooler, neutral or
alkaline hydrothermal fluid alteration [92], and in some cases, with injection of sea water [93].

Chamosite is not usually observed in the coal, however, it does commonly occur in the Lopingian
coals in southwestern China [39,40,42,45,49]. Two origins of chamosite have been proposed, which is
either derived from the alteration of kaolinite by the injection of Fe-Mg-rich fluids during diagenesis
process [40], or directly precipitated from hydrothermal fluids enriched Fe [49].
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The coexistence of chamosite and kaolinite and their close relationship (Figure 3C,D) indicate that
chamosite was the interaction product between the kaolinite and Fe-Mg-rich fluids, which is similar to
the mechanism reported by Dai and Chou [40]. Chamosite of hydrothermal origin was also observed
(Figure 3E), where chamosite was independent of kaolinite and occurred as cell-fillings.

Besides chamosite, the modes of occurrence of barite (Figure 5F) and rhabdophane (Figure 5G) in
the coal also illustrate that these minerals were precipitated from hydrothermal fluids. Barite has been
indicated to be formed by the injection of hydrothermal fluids [8]. Rhabdophane is often observed in
some REY-rich coals and derived from hydrothermal fluids in southwestern China [8,39,45,84].

The cell-filling quartz (Figure 4D,E) indicates an authigenic origin. In addition, calcite in the present
study, which infills cell (Figure 4G,H) and fracture cavities (Figure 5A) indicate an epigenetic origin.

Based on the strong negative Eu anomalies of coals (Figure 9), the temperature of hydrothermal
fluids may be all relatively low (<200 ◦C), although the multi-stage injection of hydrothermal fluids
has been put forward. Otherwise, the Eu anomaly would be expected to be strong positive due to the
ingress of hydrothermal fluids at >200 ◦C during the peatification, in that the reduction of Eu requires
not only extremely reducing conditions but also high-temperature [10,51].

4.6. Evaluation of Rare Metals

Some Lopingian coals or non-coal strata in southwestern China are considered as potential economic
sources for critical metals including Nb, Zr, Ga and REY [7,8,14,94]. In order to assess the REY in coal ashes
as economic raw materials, several criteria (including the REY cut-off grade and the individual elemental
composition) were proposed by Seredin and Dai [58]. Seredin and Dai have also proposed the cut-off
grade for recovery from the coal ash (REY oxides (REO) ≥ 1000 µg/g) [58]. Based on the classification
reported by Dai et al. [9], the Coutl-REO graph is plotted in Figure 12 to evaluate industrial potential of REY
in present study (Coutl = [(Nd + Eu + Tb + Dy + Er + Y)/ΣREY]/[(Ce + Ho + Tm + Yb + Lu)/ΣREY]) [58].
It can be obtained that the REY concentrations in most samples of the Zhongliangshan coals are lower
than the cut-off grade except for samples K1-1, K7 and K5-r. Thus, the K7 and the upper portion of K1
have the potential to be a source of raw material for REY recovery. However, the K2, K3, K4, K5, K8 and
K10 coals cannot be considered as REY raw material sources. It is noted that some coal seams in other
coalfields surrounding Zhongliangshan coalfield enrich REY (Figure 13), where the REO in coal ash are
higher than 1000 ppm. However, the REY data in the Shuijiang, Nantong, Xishui, Junlian, and Furong
Coalfields, are lower than the cut-off grade or absent, which needs further research.

In addition to factors as mentioned above that could lead to enrichment of REY in coal deposit,
some other factors such as alkaline volcanic ashes [95] and to a lesser extent, ground water leaching [96],
can also play an important roles in the Lopingian coals. Similar to the K7 and the upper portion of K1
coal seams, the coals subjected to alkaline volcanic ashes and in some cases, groundwater leaching,
usually have a high potential of REY [95,96].
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5. Conclusions

The Lopingian coals from the ZK4-1 drill core in the Zhongliangshan Coalfield are medium
volatile bituminous coal, which are characterized by a medium-ash yield (26.84%) and high sulfur
content (3.38%). Minerals in the Zhongliangshan coals are mainly composed of kaolinite, pyrite, quartz
and calcite, with small proportions of anatase. The illite/smectite mixed layer (I/S), chamosite, rutile,
marcasite, ankerite, dolomite, jarosite, natrojarosite, bassanite, gypsum and K-feldspar are also present
in various coal samples. In addition, apatite, rhabdophane and barite are observed under the SEM-EDX
although they are below the detection limit of the XRD.

Compared with the average concentrations of the world hard coals [47], some trace elements
including Li, V, Co, Cu, Se, Y, Zr, Nb, REE, Cd, Ta, Hf and Hg, are enriched in the Zhongliangshan
coals. Based on the concentrations of Sc, V, Cr, Co, Ni, Cu and Zn, the ratios of Al2O3/TiO2 and
the UCC-normalized REY distribution patterns of the Zhongliangshan coals, the dominant sediment
source region are the Leshan-Longnvsi Uplift, Hannan Upland, and Dabashan, Uplift, with a small
proportion of terrigenous materials from the Kangdian Upland. The modes of occurrence of chamosite,
barite, rhabdophane, quartz and calcite indicate that the Zhongliangshan coals have probably been
affected by the injection of different low-temperature hydrothermal fluids. The K7 and the upper
portion of K1 have the potential to be a source of raw material for REY recovery.
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