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Abstract: There are increasing demands and great potential of coal gasification in China, but
there is a lack of studies focused on the disposal and utilization of coal fly ash produced by
the gasification process. In this study, a coal fly ash sample derived from a gasifier in Jincheng,
China, was utilized as raw material for the synthesis of zeolite by alkali fusion followed by
hydrothermal treatments. The effects of operation conditions on the cation exchange capacity
(CEC) of synthesized zeolite were investigated. The synthesized zeolite with the highest CEC
(270.4 meq/100 g), with abundant zeolite X and small amount of zeolite A, was produced
by 1.5 h alkali fusion under 550 ◦C with NaOH/coal fly ash ratio 1.2 g/g followed by 15 h
hydrothermal treatment under 90 ◦C with liquid/solid ratio 5 mL/g and applied in Ni2+

removal from water. The removal rate and the adsorption capacity of Ni2+ from water by the
synthesized zeolite were determined at the different pH, contact time, adsorbent dose and initial
Ni2+ concentration. The experimental data of adsorption were interpreted in terms of Freundlich and
Langmuir equations. The adsorption of Ni2+ by the synthesized zeolite was found to fit sufficient
using the Langmuir isotherm. More than 90% of Ni2+ in water could be removed by synthesized
zeolite under the proper conditions. We show that the coal fly ash produced by the gasification process
has great potential to be used as an alternative and cheap source in the production of adsorbents.
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1. Introduction

Nickel is widely used in electroplating and metal finishing for improving the corrosion resistance
as well as decorative characteristics [1]. A large number of Ni2+-containing wastewater is produced.
Nickel may cause different types of diseases, such as lung cancer, kidney problems, gastrointestinal
disorders, pulmonary fibrosis, skin dermatitis, rapid respiration, cyanosis, and extreme weakness if it
is beyond the permitted concentration [2–5]. The treatment of wastewater containing heavy metals in
a safe, effective and economic way is always challenging. Several methods have been developed to
remove heavy metals from wastewater, such as precipitation, ion exchange, adsorption, membrane
filtration and electrodialysis, but many of these methods need high capital costs when they are applied
to large scale wastewater treatment. Adsorption is recognized to be a feasible method for the removal
of heavy metals from wastewater because the adsorbent can be chosen from a wide variety of budget
materials, such as synthetic zeolite from coal fly ash [6,7].

In China, more than 60% of primary energy is generated from coal. Coal fly ash is mainly
generated from the combustion of pulverized coal in coal-fired power plants [8,9], which has consumed
nearly 60% of coal in China in recent years. According to the National Development and Reform
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Commission (NDRC) of China, 540 million ton of coal fly ash was generated in 2015. The coal fly ash
is recognized to be environmental pollutant if it cannot be disposed properly [9], but it is a budget
absorbent to remove organic compounds, dyes and heavy metals from wastewater. Rao et al. [10]
compared the sorption of Cr6+ and Ni2+ by coal fly ash and activated carbon under various conditions.
To enhance the removal efficiencies and adsorption capacities, the modifications of coal fly ash are
needed [11]. The cation exchange capacities of synthetic zeolite from coal fly ash were improved
in comparison to the initial coal fly ashes [7]. The adsorption of heavy metals of the coal fly ashes
could be enhanced by alkaline modification [6,7]. Molina et al. [12] reported a further improvement of
the cation exchange capacities of synthetic zeolite from coal fly ash by introducing an alkali fusion
stage prior to the conventional zeolite synthesis process. The synthesis and character of different
type zeolites from coal fly ash under various operation conditions were studied by Kunecki et al. [13].
Wdowin et al. [14] and Querol et al. [15] reported the synthesis of zeolite from coal fly ash at sub-pilot
and pilot scales. There are some publications about the regeneration of synthesized zeolite [16,17],
but only 60% adsorption capacity could be recovered and the chemical reagents were consumed
during the regeneration. The zeolite from coal fly ash is low-cost adsorbent, and the reuse of zeolite
is not economical. Usually, heavy metals could be stabilized and immobilized by zeolite to avoid
the pollution of water [18,19]. All the aforementioned procedures are based on coal fly ash from
combustion and very little research has been conducted on the field of coal fly ash from gasification.

Coal gasification is an important industrial process in which coal is converted to synthesize gas for
use in power generation or as precursors for other transformations [20]. Coal gasification for advanced
power generation has certain advantages over traditional pulverized-fuel combustion, such as high
thermal efficiency and high efficiency in the removal of hazardous trace elements prior to combustion
compared to post combustion systems [21]. To reduce the dependence on imported oil, the synthetic
fuels industry from coal via gasification and subsequent liquefaction of fuel gases are continuously
gaining ground in China. Due to the increasing demand and the great potential of coal gasification,
it is meaningful to study the disposal and reuse of coal fly ash produced by the gasification process.
The synthesis of zeolite to be used as a low-cost adsorbent is a feasible way for coal fly ash utilization,
and the synthesis of zeolite from coal fly ash produced by combustion is widely reported [6,7,22,23].
There is, however, lack of information about the properties of zeolite synthesized from coal fly ash
produced by gasification. In the gasification process, the coal fly ash is formatted under an inducing
atmosphere, which results in the different mechanisms in mineral matter transfer and mineralogical
properties of coal fly ash compared to combustion processes [24,25]. The mineralogical components in
coal fly ash may affect the properties of the synthesized zeolite. This study aimed at investigating the
potential of synthetic zeolite from gasification coal fly ash to be used as a low-cost adsorbent for the
removal of heavy metals from water.

In this study, the characteristics of zeolite synthesized from coal fly ash produced by the
gasification process by alkali fusion followed by hydrothermal treatments under varied conditions
were analyzed. The adsorption behavior of synthetic zeolite of Ni2+ in water is discussed.

2. Materials and Methods

2.1. Materials and Preparation

The coal fly ash sample was obtained from a Shell gasifier in Jincheng, China. A S8 Tiger
X-ray fluorescence (XRF) spectrometry (Bruker, Billerica, MA, USA) was employed to quantify major
chemical compounds in the coal fly ash sample. The major chemical compounds of coal fly ash sample
are SiO2 (39.84%), Al2O3 (22.42%), CaO (6.12%), Fe2O3 (5.91%), K2O (1.47%) and unburned carbon
(15.20%) (Table 1). The unburnt carbon was removed by calcination at 815 (± 10) ◦C for 5 h. To remove
the alkaline oxide (CaO, Fe2O3 and K2O), the coal fly ash sample was mixed with excessive HCl (mass
concentration 20%) with stirring for 1 h. The coal fly ash sample was filtered and washed with distilled
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water until no Cl− was detected by AgNO3, then dried for subsequent processes. The adsorption
capacity of the coal fly ash for Ni2+ is 0.91 mg/g.

Table 1. The major chemical compounds of coal fly ash from gasification (wt %, dry basis).

Compound SiO2 Al2O3 CaO Fe2O3 K2O Unburnt Carbon Others

Content (%) 39.84 22.42 6.12 5.91 1.47 15.20 9.04

2.2. Zeolite Synthesis

The zeolite was synthesized from the coal fly ash by alkali fusion followed by hydrothermal
treatments [26]. The weighted NaAlO2 was added to the coal fly ash sample to modify the
Si/Al ratio in mole to 2:1. The mixture of NaOH and coal fly ash sample in a pre-determined
ratio was milled and fused at desired temperatures ranging from 450 to 650 ◦C for 0.5 to 2 h.
The NaOH/coal fly ash ratio (by weight) was varied from 1 to 1.5 g/g. The mixture was then
cooled to room temperature. The distilled water was added to the mixture at desired ratio from 3
to 15 mL/g. The slurry thus obtained was stirred mechanically for 12 h. It was then crystallized by
hydrothermal process under static conditions at desired temperatures ranging from 70 to 100 ◦C for 8
to 24 h. The resultant precipitate was repeatedly washed by distilled water and filtered until excess
NaOH was completely removed. The synthesized zeolite was obtained after the drying of precipitate.

2.3. Characterization of Samples

The cation exchange capacity (CEC) of sample was determined by a modified ammonium acetate
method [12]. The 5 g sample was mixed with 100 mL of 1 M ammonium acetate solution under room
temperature for 16 h with stirring at 150 r/min. The solid was then filtered and rinsed with methanol
to remove the ammonium acetate solution. The ammonia was liberated by distillation of the solid
mixed with 100 distilled water containing 4 g magnesium oxide, then absorbed in 50 mL of boric acid
solution (mass concentration 2%). The resultant absorbed solution was directly titrated with 0.1 M
HCl solution. The CEC value of sample was calculated as following:

CEC =
N × (V −V0)

m
× 100 (1)

where, CEC is the cation exchange capacity value of sample, meq/100 g; N is the mole concentration,
mol/L; V and V0 are the volumes of HCl consumed by absorbed solution and blank solution,
respectively, mL; m is the weight of sample, g. The tests for each sample were implemented 3 times.
The errors were less than ±5 meq/100 g.

The mineralogical composition of the zeolitic materials was identified by X-ray diffraction (XRD)
with D8 Advance X-ray diffractometer (Bruker). The morphological analysis of sample was performed
by scanning electron microscope (SEM) with Quanta FEG 250 (FEI, Thermo Fisher Scientific, Waltham,
MA, USA).

2.4. Adsorption Experiments

For each experiment, a calculated amount of adsorbent was added to 100 mL of synthetic aqueous
solution containing Ni2+ in 200 mL shake flask. The adsorbent dose and the concentration of Ni2+ were
ranging from 1 to 6 g/L and from 10 to 100 mg/L, respectively. The pH adjustment of solution was
done by using 1.0 M HCL and 1.0 M NaOH. The shake flask was agitated at a speed of 100 rpm in a
mechanical shaker with water bath at 30 ◦C (±0.5). At the end, the adsorbent particles were separated
from the suspensions by filtration. The residual concentration of Ni2+ in the filtrate was determined by
a UV-2500 spectrophotometer (Shimadzu, Kyoto, Japan). The adsorption capacity of adsorbent was
calculated as following:

qt =
(C0 − Ct)V × 10−3

m
(2)
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where, qt is the adsorption capacity of the adsorbent at time t, mg/g; C0 is the initial concentration
of Ni2+ in aqueous solution, mg/L; Ct is the residual concentration of Ni2+ in aqueous solution at
time t, mg/L; V is the volume of aqueous solution sample, mL; m is the mass of adsorbent, g. The Ni2+

removal rate was calculated as following:

ηt =
C0 − Ct

C0
× 100% (3)

where, ηt is the Ni2+ removal rate at time t, %. The tests for each sample were implemented 3 times.
The errors were less than ±3%.

3. Results and Discussion

3.1. Effect of Operation Conditions on the Cation Exchange Capacity (CEC) of Synthesized Zeolite

3.1.1. Effect of NaOH/Fly Ash Ratio

The effects of NaOH/coal fly ash ratio on the CEC of synthesized zeolite from coal fly ash are
shown in Figure 1. It can be seen that the CEC of synthesized zeolite from coal fly ash increased with
the increase of NaOH/coal fly ash ratio from 1.0 to 1.2 g/g, and then started to decrease. A similar
result was reported by Molina et al. [12]. The presence of NaOH in the mixture reacted with quartz and
mullite in coal fly ash during fusion and contributed to the formation of soluble silicate and aluminate
salts (Equations (4) and (5)). A higher concentration of soluble silicate and aluminate salts and a
higher yield of zeolitic materials in the subsequent process could be achieved. The enhancement of
the formation of zeolitic materials resulted in the increase of the CEC of synthesized zeolite from coal
fly ash. The presence of Na+ which is known to stabilize the sub-building units of zeolite frameworks
also exerted positive effects during the zeolitization process [26]. The presence of NaOH affects not
only the degree of zeolitisation but also the type of zeolite obtained as a product. Molina et al. [12]
reported that the maximum proportion of zeolite X was achieved at a NaOH/fly ash ratio of 1.2.
With the further increase of NaOH/fly ash ratio, the extra NaOH reacted with soluble silicate and
aluminate salts which resulted in the formation of hydroxysodalite during both alkali fusion and
hydrothermal treatment processes. Because of the larger pore size and specific surface area of zeolite X
than hydroxysodalite, products rich in zeolite X have a better performance in cation exchange capacity
test [11,13].

2NaOH + SiO2
fusion→ Na2SiO3 + H2O (4)

10NaOH + 3Al2O3·2SiO2
fusion→ 2Na2SiO3 + 6NaAlO2 + 5H2O (5)
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3.1.2. Effect of Liquid/Solid Ratio

As shown in Figure 2, the maximum value of CEC corresponds to a liquid/solid ratio of 5 mL/g.
Rujiwatra et al. [27] reported that the high water content in the reaction mixtures with solid/liquid
ratio always led to the formation of unidentified phase, whereas the lower water content resulted in a
higher selective synthesis of zeolite. The lower liquid/solid ratio means a higher probability to enhance
the yield of selective products (such as zeolite X) [28]. The influence of other factors was also enhanced
when the amount of water in the reaction mixtures was kept low [27]. Further decrease of liquid/solid
ratio below 5 mL/g also has negative effects on the synthesis of zeolite. The yield of zeolitic materials
was restrained with low liquid/solid ratio, because the soluble silicate and aluminate salts could not
be completely dissolved. The low liquid/solid ratio also resulted in the high NaOH concentration in
slurry which enhanced the formation of hydrosodalite with low CEC [29]. Both the low yield of zeolitic
materials and high proportion of hydrosodalite in products resulted in the decrease of CEC value.
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Figure 2. Effect of liquid/solid ratio on the CEC of synthesized zeolite (NaOH/coal fly ash ratio
1.2 g/g, 1.5 h alkali fusion under 550 ◦C, 15 h hydrothermal treatments under 90 ◦C).

3.1.3. Effect of Alkali Fusion Conditions

The effects of alkali fusion conditions on the CEC of synthesized d zeolite are given in Figure 3.
The CEC of synthesized zeolite first increased with the increase of fusion temperature, attained a
maximum at 550 ◦C and then decreased with the further increase of fusion temperature (Figure 3a). It
was reported that the increase of the yield of zeolite was observed from temperatures above the melting
point of NaOH (318 ◦C) to a maximum crystallinity at 550 ◦C [26,28]. With the further increase of fusion
temperature, the crystallinity of the synthesized zeolite was found to decrease due to the formation
of non-crystalline sintered glass [28,30]. The crystallinity was supposed to be the most important
factor that affects the CEC of synthesized zeolite under variation of fusion temperature. The CEC of
synthesized zeolite increased quickly with fusion time until 1.5 h; after that, no significant increase
of the CEC of synthesized zeolite was observed (Figure 3b). It means that the reactions between
NaOH and the coal fly ash were almost completed during 1.5 h alkali fusion process under 550 ◦C.
The further increase of fusion time could not help the activation of coal fly ash, but increased the
energy consumption.
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temperature; (b) Alkali fusion time.

3.1.4. Effect of Hydrothermal Treatment Conditions

The variation of the CEC of synthesized zeolite as a function of hydrothermal treatment conditions
is demonstrated in Figure 4. The optimal hydrothermal treatment temperatures were 90–100 ◦C
(Figure 4a). If the hydrothermal treatment temperature is reduced, the yield of zeolitic materials will
be reduced under a certain time due to the low reaction rate resulting in the reduction of CEC. Under
hydrothermal treatment temperature above 120 ◦C, many of the high-CEC zeolites (such as zeolites X)
cannot be effectively synthesized [11]. From Figure 4b, it is clear that the CEC of the synthesized zeolite
increased gradually with the increase of hydrothermal treatment time up to 15 h and then decreased.
It is reported that there is an incubation period of 3 h during which the nucleation of zeolites takes
place following by progressively increasing in crystallinity up to a certain hydrothermal treatment
time [26]. The increase of crystallinity dominated the increase of CEC of the synthesized zeolite with
the increase of hydrothermal treatment time until 15 h. After that, the further increase of hydrothermal
treatment time resulted in the transformation of zeolite X to the more stable phillipsite phase with
low CEC.
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3.1.5. Mineralogical and Morphological Analysis

According to the zeolite synthetis experiments, the NaOH/coal fly ash ratio 1.2, liquid/solid
ratio 5, fusion temperature 550 ◦C, fusion time 1.5 h, hydrothermal treatment temperature 90 ◦C
and hydrothermal treatment time of 15 h produced the highest CEC products and were selected as
optimal conditions. The identification of mineralogical phases in and SEM results of the coal fly
ash and zeolite synthesized under the optimal conditions are illustrated in Table 2 and Figure 5,
respectively. The absences of calcite, illite, magnetire and hematite in the synthesized zeolite were due
to the acid treatment of coal fly ash before the synthesis process. The presence of zeolite X and zeolite A
indicated the formation of zeolite products from coal fly ash, which was also confirmed by SEM results.
The spherical particles reflecting the shape of the coal fly ash particle which were observed in Figure 5a
disappeared in the SEM of the synthesized zeolite (Figure 5b). The spherical particles were converted
into some distorted octahedral crystals which were determined as the crystal structure of zeolite [26].
The absence of the spherical particles in synthesized zeolite indicates the high conversion of coal fly
ash to zeolite by alkali fusion and hydrothermal treatment under optimal conditions. The crystal
structures in synthesized zeolite were identified in Figure 5c. There were abundant distributions of
octahedral crystals and small amounts of cubic crystals, which correspond to zeolite X and zeolite A,
respectively. The zeolite synthesized from coal fly ash produced by a gasification process under the
optimal conditions was used in the adsorption experiments.
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Table 2. Mineralogical phases identified in the coal fly ash and synthesized zeolite. (Y: presence of
mineral phase, N: absence of mineral phase).

Mineral Coal Fly Ash Synthesized Zeolite

Quartz Y Y
Calcite Y N
Mullite Y Y

Illite Y N
Magnetite Y N
Hematite Y N
Zeolite X N Y
Zeolite A N Y
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3.2. Adsorption of Ni2+ by Synthesized Zeolite

3.2.1. Effect of pH on Adsorption

As shown in Figure 6, the removal of Ni2+ from the aqueous solution was strongly affected by
the pH of the solution. At pH 2, the minimum removal rates and the adsorption capacity of Ni2+

were observed. With the increase of pH from 2 to 5, the removal rate and the adsorption capacity
of Ni2+ increased quickly from 19% to 91% and from 1.52 mg/g to 7.28 mg/g, respectively. At low
pH, the presence of higher concentrations of H+ competed with Ni2+ in the system and caused partial
releasing of the Ni2+ [31]. On the other hand, the solubility and ionization of nickel salt were strongly
enhanced in low pH solution [32]. It could be deduced that at lower pH, most of the activated sites
on the surface of the synthesized zeolite were occupied by H+, inhibiting the adsorption of Ni2+.
With the increase of pH, the concentration of H+ decreased, causing more and more activated sites on
the surface of the synthesized zeolite to be available for Ni2+ adsorption. At the same time, the Ni2+

became less stable in the solution with increased pH which also enhanced the adsorption of Ni2+ [32].
With further increase of pH above 5, the slight increase of removal of Ni2+ may be due to the formation
of precipitation [33,34]. To avoid precipitation, pH 5 was chosen as the optimum pH in this study.
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Figure 6. Effect of pH on the adsorption of Ni2+ by synthesized zeolite (contact time 30 min, adsorbent
dose 2.5 g/L, initial Ni2+ concentration 20 mg/L).

3.2.2. Effect of Contact Time on Adsorption

The removal and the adsorption capacity of Ni2+ as a function of contact time were demonstrated
in Figure 7. There was a rapid increase of the removal rate and adsorption capacity of Ni2+ in the first
5 min followed by a progressively slow increase with the increase of contact time. The adsorption of
Ni2+ approached equilibrium with 30 min; after that, further increase of contact time only resulted in
slight increase of the removal rate and adsorption capacity of Ni2+. A similar trend was reported by
Rao at al. [10] and Onundi et al. [32]. The high concentration gradient of Ni2+ between the solution
and the surface of synthesized zeolite with abundantly exchangeable sites is deduced to be the reason
of the rapid adsorption at the initial stage [32]. With the progress of adsorption, the concentration
gradient of Ni2+ between the solution and the surface of synthesized zeolite gradually decreased until
equilibrium adsorption was reached and the activated sites on the surface of the synthesized zeolite
were gradually occupied. These limited the transfer of Ni2+ from the solution to the surface of the
synthesized zeolite and caused progressively slow adsorption with the increase of contact time.
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2.5 g/L, initial Ni2+ concentration 20 mg/L).

3.2.3. Effect of Adsorbent Dose on Adsorption

The effect of adsorbent dose on the adsorption of Ni2+ is shown in Figure 8. It is seen that the
removal rate of Ni2+ almost linearly increased with the increase of adsorbent dose from 1 g/L to
2.5 g/L, while no obvious change was observed in the adsorption capacity of Ni2+. With the increase
of adsorbent dose, the great increase of exchangeable sites on the surface of adsorbent resulted in the
rapid increase of the removal of Ni2+ [34]. Due to the abundance of Ni2+ in solution, the exchangeable
sites on the surface of adsorbent were sufficiently used, which kept the adsorption capacity at a
relatively stable value. The further increase of adsorbent dose beyond 2.5 g/L only resulted in a
relatively slight enhancement of the removal of Ni2+, but a rapid decline in the adsorption capacity.
The reduction in the adsorption capacity may be due to the overlapping of the exchangeable sites
caused by the overcrowding of adsorbent particles [32].
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3.2.4. Effect of Initial Ni2+ Concentration on Adsorption

The effect of initial Ni2+ concentration on the adsorption by synthesized zeolite was investigated
by varying the initial concentration between 10 and 100 mg/L. As shown in Figure 9, the removal
rate and the adsorption capacity were 95% and 3.8 mg/g at the initial Ni2+ concentration 10 mg/L.
With the increase of initial Ni2+ concentration to 100 mg/L, the removal rate dropped to 37.5% while
the adsorption capacity increased to 15.0 mg/L, approaching the maximum value.
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3.2.5. Adsorption Isotherm and Kinetics

The Freundlich and Langmuir models are the most frequently used models to describe the
experimental data of adsorption isotherms [3,10,32–35].

Freundlich isotherm is shown as:

log qe = log K f +
1
n

log Ce (6)

where qe is amount of solute adsorbed per unit weight of adsorbents, mg/g; Ce is the equilibrium
concentration of the solute, mg/L; K f and n are the Freundlich constants which affected by the
adsorption process, such as adsorption capacity and intensity of adsorption, respectively.

Langmuir isotherm is shown as:

Ce

qe
=

Ce

qmax
+

1
qmaxb

(7)

where qmax is the maximum adsorption capacity, mg/g; b is the Langmuir constants related to the
energy of adsorption.

The Freundlich and Langmuir isotherm plots for the adsorption of Ni2+ are shown in Figure 10;
the constants and correlation coefficients r2 are listed in Table 3. The r2 of Freundlich and Langmuir
isotherm plots are 0.88 and 0.999, respectively. The result indicates that the Langmuir model has perfect
application for Ni2+ adsorption by zeolite synthesized by alkali fusion followed by hydrothermal
treatments from coal fly ash produced by gasification. The maximum adsorption capacity for Ni2+

by synthesized zeolite was calculated as 15.936 mg/g. There is a significant improvement in the
adsorption capacity of gasification coal fly ash by synthesis of zeolite. The adsorption capacity of the
synthesized zeolite from combustion coal fly ash for Ni2+ is varied in a wide range, from 8.69 mg/g
to 59.89 mg/g [22,23,36]. This may be due to the differences in the mineralogical properties between
the coal fly ash from gasification and combustion and the methods for synthesis. Compared with the
zeolite synthesized from combustion coal fly ash, the adsorption capacity of the synthesized zeolite in
this study is acceptable, but there is still great potential in the further improvement of the adsorption
capacity of zeolite synthesized from gasification coal fly ash.
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Figure 10. Freundlich and Langmuir isotherm plots for the adsorption of Ni2+ (a) Freundlich;
(b) Langmuir.

Table 3. The constants and correlation coefficients of Freundlich and Langmuir isotherm plots for the
adsorption of Ni2+.

Freundlich Constants Langmuir Constants

K f n r2 b qmax (mg/g) r2

5.833 3.562 0.883 0.465 15.936 0.999

4. Conclusions

In this study, the synthesis of zeolite from coal fly ash produced by a gasification process was
carried out by alkali fusion followed by hydrothermal treatments. The quartz and mullite in coal fly
ash reacted with NaOH and formatted soluble silicate and aluminate salts during alkali fusion which
converted to zeolite in hydrothermal treatments. The effects of operation conditions on the CEC of the
synthesized zeolite were systematically investigated. The synthesized zeolite with the highest CEC
was produced under the following operation conditions: NaOH/coal fly ash ratio 1.2, liquid/solid
ratio 5, fusion temperature 550 ◦C, fusion time 1.5 h, hydrothermal treatment temperature 90 ◦C and
hydrothermal treatment time 15 h. There were abundant amounts zeolite X and small amounts of
zeolite A in the synthesized zeolite produced under optimal condition.

The synthesized zeolite with the highest CEC was used in the experiments of Ni2+ removal
from water. The effects of pH, contact time, adsorbent dose and initial Ni2+ concentration on the
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adsorption of Ni2+ were tested. The adsorption of Ni2+ by synthesized zeolite could be well described
by Langmuir isotherm. More than 90% of Ni2+ could be removed by the synthesized zeolite in
proper conditions. We have shown that the coal fly ash produced by gasification has great potential to
be used as an alternative and cheap source in the production of adsorbents by alkali fusion followed
by hydrothermal treatments.
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