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Abstract: A natural ε-Fe2O3 nano-mineral (luogufengite) has been discovered in young basaltic
rocks around the world. Transmission electron microscopy (TEM) observed euhedral or subhedral
luogufengite nano-minerals with crystal sizes ranging from 10 to 120 nm in the basaltic rocks.
The magnetic property of treated scoria sample (containing 75.3(5) wt % luogufengite) showed a
saturation remanence of 11.3 emu·g−1 with a coercive field of 0.17 tesla (T) at room temperature.
Luogufengite-like nano-domains were also observed in natural permanent magnets (lodestone)
and Fe-Ti oxides (ilmenite-magnetite series) with strong remanent magnetization. The structure of
luogufengite-like domains (double hexagonal close-packing) is associated with the interfaces between
the (111) plane of cubic magnetite and the (0001) plane of rhombohedral hematite or ilmenite. Stacking
faults and twin boundaries of magnetite/maghemite can also produce the luogufengite-like domains.
The nano-domains oriented along the magnetic easy axis play an essential role in enhancing the
magnetic coercivity of lodestone and Fe-Ti oxide. We conclude that the luogufengite nano-minerals
and nano-domains provide an explanation for coercivity and strong remanent magnetization in
igneous, metamorphic rocks and even some reported Martian rocks. These nano-scaled multilayer
structures extend our knowledge of magnetism and help us to understand the diverse magnetic
anomalies occurring on Earth and other planetary bodies.
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1. Introduction

Numerous studies have reported strong remanent magnetization from igneous and metamorphic
rocks in the Earth’s crust [1–4]. The Mars Global Surveyor spacecraft also found similar unusual
remanent magnetization on the Martian crust [5,6]. The preservation of strong remanent magnetization
requires high magnetic stability and coercivity. The problem is that natural remanent magnetization
cannot be explained by the properties of individual magnetic minerals only because none of them are
high coercivity phases [1,4,7,8].

To understand the remanent magnetic anomalies of rocks, we need to identify the mechanisms
that influence their magnetic properties. Previous studies have attributed these properties to fine
exsolution microstructures related to local redox conditions and slow cooling history of rock [1,2,4].
The exsolution lamellae can enhance the remanent magnetization due to magnetic coupling at the
contact layers. This has been proven through natural rock samples, synthetic experiments and
thermodynamic calculations [1,9–12]. However, the exact role of exsolution lamellae in enhancing the
magnetic stability is still not clear.

Here, we report detailed reasons for explaining the natural remanent magnetic anomalies.
A new magnetic nano-mineral of ε-Fe2O3 (luogufengite, IMA 2016-005) was discovered in late
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Pleistocene basaltic scoria from Menan Volcanic Complex Idaho [13]. Luogufengite is a polymorph
of maghemite and hematite with a large magnetic coercive field at room temperature [13,14]. In this
paper, we found the luogufengite nano-minerals in other young basaltic rocks. In addition, the
luogufengite-like nano-domains were found in natural permanent magnets (lodestone) and Fe-Ti
oxides with high natural remanent magnetism. Our findings suggest that the unique magnetic
properties of nano-minerals and nano-domains with high coercivity could explain the unusual
remanent magnetization in igneous and metamorphic rocks. The observation can be an important
contributor to constraints on the geomagnetic field in surface rocks of the Earth and other planets.

2. Samples

Three scoria samples and one olivine basalt with oxidized surface were collected for studying
luogufengite nano-mineral: (1) Menan Volcanic Complex, Rexburg, Madison County, ID, USA [15],
(2) Red Dome Lava Products Mine, Fillmore, UT, USA [16], (3) The Laguna del Maule Volcanic Field,
San Clemente, Chile [17] and (4) Mauna Kea volcano, Hawaii County, HI, USA [18]. The scoria
samples have a vesicular texture associated with the presence of external water during the explosive
eruptions of basaltic lava (Figure 1a and Supplementary Materials Figure S1). Iron-bearing volcanic
glass was oxidized to form reddish-brown iron oxide mixtures on the vesicle surfaces (Figure 1a).
Lodestone samples (Supplementary Materials Figure S2) were collected from a magnetite deposit
near Cedar City, UT. Hematite lamellae and micro-precipitates in the magnetite host can be seen in
thin section (Figure 1b). Fe-Ti oxides (ilmenite-magnetite series) were collected from the Skaergaard
layered mafic intrusion in Eastern Greenland. The early stage of coarse ilmenite exsolution lamellae
with fine-scale secondary lamellae was observed in the magnetite host of the Fe-Ti oxides (Figure 1c
and Supplementary Materials Figure S3).
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Figure 1. (a) A thin section of a scoria sample from the Menan volcanic Complex, Idaho under reflected
light mode. The reddish Fe-oxides are coated on the vesicles’ surfaces. Groundmass contains platy
labradorites. (b) Lodestone section showing hematite (Hem) precipitates (bright) in host magnetite
(Mgt). (c) A BSE image of a Fe-Ti oxides section showing the early stage of coarse ilmenite (Ilm) lamellae
and the late stage of ilmenite exsolution lamellae with spinel (Spn) in host magnetite.

3. Experimental Methods

3.1. Enrichment of Luogufengite

The samples were carefully scratched off from the vesicles’ surfaces on the collected basaltic
scoria. These samples were placed in a 10 M NaOH solution at 80 ◦C for 2 days to remove silicate
glass, following the previous procedures of synthetic ε-Fe2O3 [13,19]. After washing the powder
with distilled water several times, the luogufengite crystals were collected by using a weak magnetic
bar, separating non-magnetic minerals (hematite and silicate minerals) from the magnetic minerals.
The luogufengite was further enriched by using an iron needle to pick up magnetized crystals with
strong remanent magnetism. The luogufengite nano-crystals are preferentially attached to the iron
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needle due to their the remanent magnetic property. These magnetic enrichment steps were repeated
5–7 times to enrich the concentration of luogufengite nano-mineral. However, the powder sample still
contains other nano-minerals (nano-sized hematite, maghemite and valleyite) (Figure 2a).

3.2. Techniques

We acquired XRD results from powdered samples placed inside Kapton tubes. XRD data
were collected on a 2-D image-plate detector (Rigaku, Tokyo, Japan) using a Rigaku Rapid II
instrument (Mo-Kα radiation) in the Geoscience Department at the University of Wisconsin-Madison.
Two-dimensional diffraction patterns were converted to conventional 2θ vs. intensity XRD powder
patterns using the Rigaku 2DP software (Rigaku, Tokyo, Japan). The quantitative ratios of mineral
phases were calculated with the Rietveld refinement method by using TOPAS 5 software (Bruker AXS,
Madison, WI, USA). A pseudo-Voigt method was used for fitting the peak profiles. Scanning electron
microscope (SEM) (Hitachi, Tokyo, Japan) analysis samples were mounted onto glass slides, polished
and coated with carbon (~200 nm). All SEM images were obtained using a Hitachi S3400N variable
pressure microscope with an X-ray energy-dispersive spectroscopy (EDS) (Thermo Fisher Scientific,
Waltham, MA, USA) system in the Geoscience Department at the University of Wisconsin-Madison.
The bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM)
images and selected-area electron diffraction (SAED) patterns were obtained using a Philips CM200-UT
microscope operated (Philips, Amsterdam, The Netherlands) at 200 kV in the Materials Science Center
at the University of Wisconsin-Madison. TEM samples were prepared both by depositing a suspension
of crushed grains on a lacy carbon-coated TEM Cu-grids. Ion milled TEM sample was prepared
by using a Fischione 1050 ion milling system. Magnetic hysteresis loops were measured by using a
superconducting quantum interference device (SQUID) MPMS3 magnetometer Design (Quantum
Design, San Diego, CA, USA) in the Chemistry Department at the University of Wisconsin-Madison.
The powder and rock samples were measured with applied magnetic fields between −2 T (Tesla) and
2 T at room temperature.

4. Results and Discussion

4.1. Luogufengite Nano-Mineral with Giant Coercive Field

Luogufengite was first discovered in a late Pleistocene basaltic scoria from the Menan Volcanic
Complex, Idaho using synchrotron powder X-ray powder diffraction and high-resolution TEM [13].
Luogufengite is a dark brown nano-mineral of the Fe2O3 polymorph [13,20]. Oxidation of Fe-bearing
volcanic glass resulted in the formation of luogufengite nano-minerals on the vesicle surfaces of
scoria associated with maghemite (γ-Fe2O3) and hematite (α-Fe2O3). Luogufengite is considered
an intermediate phase between maghemite and hematite [21,22]. The phase transformations from
maghemite to hematite via luogufengite are associated with size-dependent changes of structures from
cubic closest packing (ABC) to doubled hexagonal packing (ABAC) to hexagonal closest packing (AB)
(Supplementary Materials Figure S4) [21]. Synthetic ε-Fe2O3 nano-crystals are a promising magnetic
material for technological applications due to its large coercive field value at room temperature
that is not observed in other simple metal oxide magnets [19,22]. The large coercivity of ε-Fe2O3

is associated with the nonzero orbital momentum and large magneto-crystalline anisotropy in Fe3+

polyhedral [14,22]. Recently, synthetic ε-Fe2O3 was also identified in archeological black glazed Jian
ware from China [23] and baked clay block from Spain [8].

Rietveld refinement analysis of the treated scoria sample from Menan complex shows 75.3(5)
wt % luogufengite, 15.5(3) wt % hematite and 9.2(5) wt % valleyite (IMA 2017-026) [24] (Figure 2a).
It is difficult to obtain pure luogufengite due to coexisting hematite intergrowths that form with
luogufengite [19,21,22]. TEM images show that the size of luogufengite ranges from ~10 to 120 nm
(Figure 3). The average size of natural luogufengite particles is ~40 nm in size (Figure 3). The
luogufengite nano-mineral generally converts to the hematite polymorph once the crystal size exceeds
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a value of ~120 nm [21]. However, large ε-Fe2O3 nanocrystals, with sizes up to ~200 nm, can be stable
within a silica matrix [19,21]. In HRTEM images, the pseudo-hexagonal twin relationships and stacking
faults along the b-direction are frequently observed in the luogufengite nano-minerals, producing
complicated magnetic properties and large coercive field (Figure 3d–f and Supplementary Materials
Figure S1) [14,21,25].
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Figure 2. Powder XRD patterns of (a) a treated Fe-oxides sample of scoria from Menan complex, Idaho;
(b) a lodestone sample from magnetite deposit, Utah; (c) a Fe-Ti oxides sample with magnetite-ilmenite
series from Skaergaard layered mafic intrusion, East Greenland. Percentages of minerals were calculated
by the Rietveld method with structure models [13,24,26–30].

The magnetic hysteresis loop of the treated sample (containing 75.3(5) wt % luogufengite) showed
a saturation remanence of 11.3 emu·g−1 with a coercive field of 0.17 tesla (T) at room temperature
(Figure 4). The magnetic phase of valleyite (~9.2 wt %) also influenced the hysteresis loop [24] (Figure 4).
This coercivity of treated sample is significantly high compared to magnetic minerals in the earth
crust [1,31]. Synthetic luogufengite had a saturation remanence of 15 emu·g−1 and a coercive field
of 2.0 T at room temperature [19]. The coercivity of luogufengite is strongly dependent on particle
size, morphology, magneto-crystalline anisotropy and cation substitution [19,22,25,32]. A rod-like
morphology oriented along the a-axis (magnetic easy axis) has an enlarged coercive field [21–33].
A particle size of about 100 nm is the most suitable for a large coercivity to be present [19].
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Fillmore, Utah, Laguna del Maule volcano field, Chile and on the surface of basaltic lava from Mauna 
Kea volcano, HI (Figure 3b,c and Supplementary Materials Figure S1). This observation suggests that 
the luogufengite is a widely distributed magnetic mineral in high-temperature volcanic rocks. The 
sizes and shapes observed in these other luogufengite nano-minerals are similar to that from Menan 
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Figure 3. Hand specimens and its TEM image of iron-oxide nano-minerals (a) Luogufengite
nano-minerals of treated samples from vesicles’ surfaces on the scoria, Idaho, (b) Lugufengite (Luo)
and maghemite (Mgh) from Fillmore scoria, Utah, (c) Luogufengite nano-minerals in the matrix of
amorphous SiO2 from brown surface of a Hawaii basalt, (d–f) High resolution TEM images with the
fast Fourier transform (FFT) patterns of luogufengite grains showing the twinning (TW) boundaries
and stacking fault (SF) along the b-direction.
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Figure 4. Magnetic hysteresis curves of the treated sample of scoria from Menan complex, Idaho.

Luogufengite nano-minerals were found in other young basaltic rocks from Red Dome in Fillmore,
Utah, Laguna del Maule volcano field, Chile and on the surface of basaltic lava from Mauna Kea
volcano, HI (Figure 3b,c and Supplementary Materials Figure S1). This observation suggests that the
luogufengite is a widely distributed magnetic mineral in high-temperature volcanic rocks. The sizes
and shapes observed in these other luogufengite nano-minerals are similar to that from Menan Volcanic
Complex [13]. Luogufengite could be an important mineral for recording paleomagnetism of volcanic
rocks. Its large magnetic coercivity allows for preservation of the original magnetic field during
mineral formation and cooling.
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4.2. Luogufengite-Like Nano-Domains in Lodestone and Fe-Ti Oxides

Many studies have revealed that exsolution lamellae are an important contributor to the unusual
remanent magnetization in slow cooling igneous and metamorphic rocks [1,2,4,12]. However, the
role of exsolution lamellae for the coercivity and remanent magnetization is not well understood.
To understand these unusual magnetic properties, we examined lodestone and Fe-Ti oxide
(ilmenite-magnetite series).

The lodestone sample analyzed (Figure 1b and Supplementary Materials Figure S2) is a natural
permanent magnet. It has partially oxidized magnetite intergrown with hematite and maghemite [34,35].
Rietveld refinement analysis of a hematite-bearing lodestone shows 64.3(4) wt % of magnetite with
26.9(3) wt % of maghemite and 8.7(4) wt % of hematite (Figure 2b). Interestingly, TEM images show
aligned nanoscale exsolution lamellae of hematite and magnetite (Figure 5a). HRTEM images show
the interfaces {111}Mgt//(0001)Hem of the nano-lamellae (Figure 5b). Many previous studies reported
that this is the common interface between cubic magnetite and rhombohedral hematite, followed by
oxygen packing direction of both iron oxides [1,10]. Another interesting observation of the TEM image
is that host magnetite often shows stacking faults and twin boundaries related to {101} planes at the
[111]-zone-axis (Figure 6a,b).

Minerals 2018, 8, x FOR PEER REVIEW  6 of 12 

 

4.2. Luogufengite-Like Nano-Domains in Lodestone and Fe-Ti Oxides 

Many studies have revealed that exsolution lamellae are an important contributor to the unusual 
remanent magnetization in slow cooling igneous and metamorphic rocks [1,2,4,12]. However, the 
role of exsolution lamellae for the coercivity and remanent magnetization is not well understood. To 
understand these unusual magnetic properties, we examined lodestone and Fe-Ti oxide (ilmenite-
magnetite series). 

The lodestone sample analyzed (Figure 1b and Supplementary Materials Figure S2) is a natural 
permanent magnet. It has partially oxidized magnetite intergrown with hematite and maghemite 
[34,35]. Rietveld refinement analysis of a hematite-bearing lodestone shows 64.3(4) wt % of magnetite 
with 26.9(3) wt % of maghemite and 8.7(4) wt % of hematite (Figure 2b). Interestingly, TEM images 
show aligned nanoscale exsolution lamellae of hematite and magnetite (Figure 5a). HRTEM images 
show the interfaces {111}Mgt//(0001)Hem of the nano-lamellae (Figure 5b). Many previous studies 
reported that this is the common interface between cubic magnetite and rhombohedral hematite, 
followed by oxygen packing direction of both iron oxides [1,10]. Another interesting observation of 
the TEM image is that host magnetite often shows stacking faults and twin boundaries related to {101} 
planes at the [111]-zone-axis (Figure 6a,b). 

 
Figure 5. TEM images with the selected-area electron diffraction (SAED) patterns: (a) Bright-field 
TEM image of lodestone showing the aligned hematite (Hem) exsolution within the host magnetite 
(Mgt) with the (111)Mgt//(0001)Hem interface, (b) High-resolution image of the magnetite-hematite 
interface from Figure 5a, (c) Bright-field TEM image of Fe-Ti oxide sample showing aligned ilmenite 
(Ilm) exsolution lamellae within host magnetite with the (111)Mgt//(0001)Ilm interface. Its SAED shows 
the hexagonal twin relationship of ilmenite phases and (d) High-resolution image of the magnetite-
ilmenite interface from Figure 5c. 

Figure 5. TEM images with the selected-area electron diffraction (SAED) patterns: (a) Bright-field TEM
image of lodestone showing the aligned hematite (Hem) exsolution within the host magnetite (Mgt)
with the (111)Mgt//(0001)Hem interface, (b) High-resolution image of the magnetite-hematite interface
from Figure 5a, (c) Bright-field TEM image of Fe-Ti oxide sample showing aligned ilmenite (Ilm)
exsolution lamellae within host magnetite with the (111)Mgt//(0001)Ilm interface. Its SAED shows the
hexagonal twin relationship of ilmenite phases and (d) High-resolution image of the magnetite-ilmenite
interface from Figure 5c.
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To test the interface’s effect on the magnetism of lodestone, we prepared three lodestone samples
with different hematite concentrations (Supplementary Materials Figure S5). Magnetic hysteresis loops
from the samples clearly suggest that the magnetic coercivity is proportional to the concentration
of hematite (Figure 7). The lodestone sample containing 8.7(4) wt % hematite has a coercive field of
46.7 mT at room temperature. Pure magnetite from natural rocks produced a 17.5 mT field with a
grain size of 37 nm and 13.3 mT with a 100 nm grain size at room temperature [31]. From this, we can
see that the interface with ABAC packing sequence enhances the coercivity field of lodestone since
hematite has very weak ferromagnetic properties.
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at room temperature.

Ilmenite-magnetite series of Fe-Ti oxides (Figure 1c), the ilmenite exsolution lamellae in host
magnetite are associated with oxidative exsolution during cooling [1,10]. Rietveld refinement analysis
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of the Fe-Ti oxide sample shows 79.2(5) wt % of magnetite with the 13.3(3) wt % of ilmenite and
7.5(5) wt % of spinel (Figure 2c). Similarly, TEM images of the Fe-Ti oxide sample also show aligned
lamellae of ilmenite in host magnetite, displaying an interfacial relationship of 111Mgt//(0001)Ilm
(Figure 5c,d).

Previous studies have attributed natural remanent magnetization to the common interface
between the (0001) planes of the rhombohedral oxide and the (111) planes of the cubic oxide [1,4,7].
Interestingly, the interface between cubic and rhombohedral oxides can produce luogufengite-like
2-D crystals or domains with a doubled hexagonal structure (ABAC packing sequence) (Figure 8a).
In addition, stacking faults and twin boundaries in magnetite and maghemite can also generate
luogufengite-like layer domains with the ABAC stacking sequence locally (Figure 8b,c). We suggest
that the structure of luogufengite-like nano-domains at the interface or within a mineral could enhance
the magnetic coercive field.

The multi-layered structure of lodestone and Fe-Ti oxides plays an essential role to enhance
the coercivity and to preserve remanent magnetization (Figure 5a,c). The magnetic easy axis of
luogufengite is reported to be the a-axis [22], which corresponds to the longitudinal axis of the
multilayers of Figure 5a,c. Thus, the multi-layers are parallel to the external magnetic field that
contributes to the coercive field strength [33,36]. Studies of synthetic magnetic materials have reported
that the larger value of coercivity could be achieved at the interface between magnetically different
layers where the multilayer materials were oriented along the magnetic easy axis [33,36,37].
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Figure 8. Structure models showing the doubled hexagonal closest packing of ABAC stacking sequence:
(a) Crystal interface between cubic magnetite and rhombohedral hematite/ilmenite, (b) The (111) twin
boundary of magnetite/maghemite and (c) The stacking fault of magnetite/maghemite along the
[111] direction.

Figure 9 illustrated the nano-sized multilayer structure of lodestone and Fe-Ti oxides for
understanding the coercivity and remanent magnetism. The luogufengite-like domains can be created
from interfaces, twinning boundary and stacking faults along the [111] direction (oxygen packing
direction) (Figure 9a). The domains/interfaces play an essential role in enhancing the magnetic
coercivity of lodestone and Fe-Ti oxides (Figure 9b). The interfaces in the multi-layer texture are
also associated with the magnetic coupling combined with exchange-spring state between soft and
hard ferromagnets that lead to enhancing the coercive field [38,39], although the volume ratio of
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luogufengite-like nano-domains at the interface is minor (Figure 9c). For example, the magnetic
coercivity of the exchange-coupled isotropic FePt(hard)-Fe3Pt(soft) nanocomposites exceeds the
theoretical limit of non-exchange-coupled FePt by over 50% [40].
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The paleomagnetism requires long relaxation time that retains the magnetization over
geological time-scale. The relaxation time is generally proportional to the coercivity and saturation
magnetization [41,42]. The relaxation times and magnetic properties can be also changed as a
function of domain states and size [42]. The relaxation time of multi-domain grains increases with
decreasing grain size, while that of single-domain increases with increasing grain size [41,42]. Thus,
the nano-scaled multilayer structure of lodestone and Fe-Ti oxides can increase coercivity and help to
preserve the saturated magnetization of rocks with the long relaxation time.

NASA’s Mars Global Surveyor spacecraft observed the localized magnetic anomalies on the Mars
surface [5]. Especially, Noachian crust (3.7–4.1 Ga) of the southern hemisphere of Mars shows the
strongest remanent magnetism in some locations ~20 times greater than Earth, although Mars currently
does not possess a core dynamo [43,44]. The candidate minerals responsible for the strong remanent
magnetism on the Mars surface are magnetite, pyrrhotite, multidomain hematite, titanohematite and
hemoilmenite [45,46]. We suggest that the luogufengite could be a magnetic phase in the basaltic crust
on Mars. In addition, the interface, stacking faults and twinning boundary of magnetic minerals may
contribute to preserving the natural remanent magnetization on Mars surface.

5. Conclusions

A natural ε-Fe2O3 nano-mineral (luogufengite) with large coercivity was found in young basaltic
rocks. Our observations suggest that luogufengite is a widely distributed magnetic mineral in
high-temperature volcanic rocks. We think that this nano-mineral can be an important indicator
of paleomagnetism in volcanic systems. Luogufengite-like nano-domains were also observed at
the interfaces in lodestone and Fe-Ti oxide with strong coercivity and remanent magnetization.
The multilayer of nano-texture paralleled to the magnetic easy axis plays an important role in enhancing
the magnetic coercivity. Stacking faults and twin boundaries can also produce luogufengite-like layer
domains to help to increase the coercivity. These observations can provide an explanation for coercivity
and strong remanent magnetization in slow cooling igneous and metamorphic rocks. We believe that
this is a good example of using the nanostructure to describe distinctive mineral properties in natural
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systems. The observation of nano-minerals and nano-domains certainly helps us to better understand
anomalous magnetic properties found on Earth and other planetary systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/8/3/97/s1,
Figure S1: Images of hand specimen and the TEM images, Figure S2: Hand sample of lodestone, Figure S3: BSE
image of ilmenite-magnetite series of Fe-Ti oxides, Figure S4: A size-dependent phase map of iron (III) oxide
polymorphs of maghemite, luogufengite and hematite, Figure S5: Three powder XRD patterns of lodestone with
different hematite concentrations, Table S1: Atomic coordinates of luogufengite.
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