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Abstract: Modern geological techniques have resulted in vast and growing databases of digital
images and video sequences of rocks, which are available for the use of researchers. The number of
database images continues to increase exponentially, creating a need for techniques that will enable
the automation of data set management. Desired techniques include query by image, a topic that has
been extensively elaborated on in the literature recently. Unfortunately, using such techniques in the
geological sciences has been very sporadic and insufficient. This paper presents the evaluation of
characteristic local features within rock images for tracking objects on images or video sequences.
It also discusses the possibilities for using selected local feature descriptors for content-based image
retrieval (CBIR) in the area of geological sciences. The evaluation was performed for the Speeded
Up Robust Features (SURF), Binary Robust Invariant Scalable Keypoints (BRISK), Harris–Stephens
Algorithm (HSA), Minimum Eigenvalue Algorithm (MEA), and Features from Accelerated Segment
Test algorithm (FAST) methods, which are widely known and appreciated in the computer vision
field. These methods were analysed for their application to microscopic images of rocks. Five
functional cases of geological grain tracking were investigated, based on a selected non-transformed
query image, as well as a computer-rotated, acquisitive-rotated, computer-magnified, and an
acquisitive-magnified query image. The results demonstrated that these methods can be successfully
used for geological applications.
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1. Introduction

Dynamic technological progress in image retrieval methods has contributed to the rapid
enlargement of both image and video sequence databases. This situation has driven the need for
techniques that will enable the automated management of sets of image data, including query by
image techniques, a topic that has recently been intensively elaborated on in the literature. Such
methods are being developed in many fields of science and technology, but are rarely applied in the
geological sciences. This need not be the case, and several selected methods are considered here to
that end. The methods would facilitate the searching of large microscopic geological image databases
using query by image or image fragment techniques [1–3].

A recent application of similar imaging methods includes the novel technology “the Fingerprint
of Things”, which is based on recording characteristic images of materials within databases
and, subsequently, identifying the particular materials by comparing new images with visual
databases [4,5]. Such innovations affect the development of methods for image and video storage
and exploration [6–10]. Geological image content is difficult to automatically standardize due to the
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irregular distribution of grains relating to colour and texture. Difficulties occur when an analysed image
dataset is very large and, as a result, defining similarity becomes too time-consuming and laborious
for a non-automated analysis. Thus, we have assessed several solutions relating to automatic analysis
and evaluated the use of local feature matching for a situation in which there is no information related
to the details of the analysed geological database. The goal of the currently described research was to
validate if selected feature descriptors can help with the typical issues that emerge during microscopic
rock observation, such as shifts, rotations, the change of enlargement, polarization change, etc.

2. Materials and Methods

A variety of image feature detection methods are discussed in the literature; however, in general,
there are two major methodologies for extracting the features of an image: global and local [11]. Global
features are the image parameters calculated on the basis of an entire image that are often based on
the statistical analysis of brightness level histograms [12] or their conversions [13,14]. They are also
sometimes calculated using frequency domain or mathematical models, e.g., multiscale autoregressive
models [15]. They are also sensitive to image enlargement or image transformations, which is a
disadvantage in the case of automatic geological image analysis. The local features of an image rely
on the fragmentary variance of an image; they define the so-called characteristic points and analyse
their surroundings, which, as a result, leads to the creation of a set of local feature images. The
methodology for defining two similar points or areas between images is a topic commonly discussed
in the literature [16]. It is an important factor and varies relative to the practical application, such
as the use of the QBIC (query by image content) system design in geology, which is utilized in this
study. QBIC systems, a type of CBIR (content-based image retrieval) methods, were proposed and
implemented in the 1990s. Currently, the systems in use can be based on various methods of similarity
checks and the use of various descriptors. The general scheme requires that, in order to search the
required images, the user sends a query to the system in a form of an image or its fragment and the
output information is a set of images that fulfil a given criterion for the search (for example, the visual
similarity). In the present research, the usefulness of applying the QBIC methodology in geology,
which is based on the use of descriptors that rely on the local environment of the key-points of the
images (Features from Accelerated Segment Test algorithm (FAST), Minimum Eigenvalue Algorithm
(MEA), Harris–Stephens algorithm (HSA), Binary Robust Invariant Scalable Keypoints (BRISK), and
Speeded Up Robust Features (SURF)), is considered. Such a technique is widely discussed in the
context of computer vision, and, rather than describing the algorithms in detail, references to relevant
research papers proposing many various feature detectors and descriptors are provided [17–20],
together with detailed comparisons of their effectiveness and subjective evaluations of particular types
of data [21–23].

Five functional grain tracking cases were considered, with a non-transformed, geometrically
rotated, manually rotated, computer-magnified, and an acquisitive-magnified query image as part of
the origin frame. Two types of rock were used: sandstone from Solec and limestone from Slowinsko.
The sandstone sample comes from the Rotliegendal layers located near Poznan (western Poland). The
Devonian limestone sample was taken in north-western Poland near Szczecin. For grain tracking
based on a non-transformed query image, a video sequence of carbonates from Slowinsko was
used (Figure 1a). It was recorded through a polarized microscope with crossed polarizers, with a
magnification of ×50 and a resolution of 1264 × 896 pixels, at a speed of 10 frames per second and a
duration of 34 s, and thus 340 frames were extracted. For grain tracking with a geometrically rotated
query image, the authors used sandstone from Solec (Figure 1b–d). It was obtained by a polarization
microscope, with variable polarization, variable magnification, and a resolution of 1264 × 896 pixels.
This rock was also used for grain tracking.
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Figure 1. Sample microscopic images used in object tracking: (a) limestone from Slowinsko, 
magnification ×50; (b) sandstone from Solec, magnification: ×100; (c) sandstone from Solec, 
magnification: ×100 and rotation 120°; (d) sandstone from Solec, magnification: ×200. 

Image rotation during the image acquisition stage, which usually takes place when the angle of 
the rotating table is changed, can cause the polarization of light, a change in the output colour of the 
image (Figure 1b,c), and, consequently, a different graphic representation of the same object. This 
was observed in the case of sandstone from Solec, with a rotation angle of 30 degrees (providing 12 
images of the same rotated area). Visual diversity also occurs when acquiring an image for a 
microscope using different magnifications. This scenario was evaluated using the sandstone from 
Solec, registered by a polarized microscope with the following magnifications: ×100, ×200, and ×400 
(Figure 1b–d). This case involved object tracking with an acquisitive-magnified query image. 

The authors also performed an analysis from the perspective of the QBIC system, using selected 
local features. An algorithm was established to match the cases under consideration with possible 
modifications that take the matching pattern thresholds for the analysed case into account. These 
steps are as follows: 

 Image database selection (DSall); 
 Query image selection (DSx); 
 Local feature (IP—interest point) detection in DSx and DSall using: cornerPoints (HSA and MEA 

algorithms), binary robust invariant scalable keypoints features, SURF features; 
 Feature vector (FV) extraction from DSx and DSall—descriptors are derived from pixels 

surrounding an interest point (IP) with specified methods: SURF descriptor or fast retina 
keypoint descriptor; 

 Selecting only those feature vectors (FV) that are considered to be the strongest matches; 
 Retrieving the number of corresponding points (MIP) for each image. 

Five methods of searching for interest points (IP) were compared: corner points with features 
from the accelerated segment test (FAST) algorithm [24], the minimum eigenvalue algorithm (MEA) 
[25,26], the Harris–Stephens algorithm (HSA) [21,27], binary robust invariant scalable key points 
(BRISK) [21], and blobs using speeded-up robust features (SURF) algorithm [17,18]. 

For the HSA method, the following set of parameters was used: a low value (1%) of the 
minimum accepted quality of corners as a fraction of the maximum corner metric value in the image, 
and a small filter size [3 × 3] used to smooth the gradient of the image. The FAST method was 
applied with a low value (1%) for the minimum accepted quality of corners as a fraction of the 
maximum corner metric value in the image, and a low value (10%) of the minimum intensity 
difference between a corner and its surrounding region. The MEA’s application parameters were a 
low value (1%) of the minimum accepted quality of corners as a fraction of the maximum corner 

Figure 1. Sample microscopic images used in object tracking: (a) limestone from Slowinsko,
magnification ×50; (b) sandstone from Solec, magnification: ×100; (c) sandstone from Solec,
magnification: ×100 and rotation 120◦; (d) sandstone from Solec, magnification: ×200.

Image rotation during the image acquisition stage, which usually takes place when the angle of
the rotating table is changed, can cause the polarization of light, a change in the output colour of the
image (Figure 1b,c), and, consequently, a different graphic representation of the same object. This was
observed in the case of sandstone from Solec, with a rotation angle of 30 degrees (providing 12 images
of the same rotated area). Visual diversity also occurs when acquiring an image for a microscope using
different magnifications. This scenario was evaluated using the sandstone from Solec, registered by a
polarized microscope with the following magnifications: ×100, ×200, and ×400 (Figure 1b–d). This
case involved object tracking with an acquisitive-magnified query image.

The authors also performed an analysis from the perspective of the QBIC system, using selected
local features. An algorithm was established to match the cases under consideration with possible
modifications that take the matching pattern thresholds for the analysed case into account. These steps
are as follows:

• Image database selection (DSall);
• Query image selection (DSx);
• Local feature (IP—interest point) detection in DSx and DSall using: cornerPoints (HSA and MEA

algorithms), binary robust invariant scalable keypoints features, SURF features;
• Feature vector (FV) extraction from DSx and DSall—descriptors are derived from pixels

surrounding an interest point (IP) with specified methods: SURF descriptor or fast retina
keypoint descriptor;

• Selecting only those feature vectors (FV) that are considered to be the strongest matches;
• Retrieving the number of corresponding points (MIP) for each image.

Five methods of searching for interest points (IP) were compared: corner points with features from
the accelerated segment test (FAST) algorithm [24], the minimum eigenvalue algorithm (MEA) [25,26],
the Harris–Stephens algorithm (HSA) [21,27], binary robust invariant scalable key points (BRISK) [21],
and blobs using speeded-up robust features (SURF) algorithm [17,18].

For the HSA method, the following set of parameters was used: a low value (1%) of the minimum
accepted quality of corners as a fraction of the maximum corner metric value in the image, and a small
filter size [3 × 3] used to smooth the gradient of the image. The FAST method was applied with a low
value (1%) for the minimum accepted quality of corners as a fraction of the maximum corner metric
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value in the image, and a low value (10%) of the minimum intensity difference between a corner and
its surrounding region. The MEA’s application parameters were a low value (1%) of the minimum
accepted quality of corners as a fraction of the maximum corner metric value in the image, and a
neighbouring mask as a region of corner detection, selected as [3 × 3]. The BRISK parameters were set
as follows: the minimum intensity difference between a corner and its surrounding region was equal
to 20%, a low value (1%) of the minimum accepted quality of corners as a fraction of the maximum
corner metric value in the image, and the scale spaces number was equal to 4 (the number of octaves
to be implemented). The graphical application of SURF is presented in the results section with a series
of filter response maps obtained by convolving the same input image with a filter of increasing size
and scale levels to compute per octave equal to 4. The following FV descriptors were used: SURF for
characteristic blob-type points and fast retina keypoint descriptors [28] for corner types.

3. Results and Discussion

The effectiveness of the search by image system for geological materials, as well as for petrographic
data, should make it possible to change the types of query image. Image-based grain tracking for
non-transformed, rotated, and scaled query images was assessed. The methods were evaluated by
comparing the characteristics of the MIP of the interest points, and then selecting the most similar
values as a possible basis for determining images’ visual similarity.

3.1. Object Tracking with a Non-Transformed Query Image

For the evaluation of grain tracking based on a selected non-transformed query image, a data set
of carbonates from Slowinsko was presented. The images shown in Figure 2 represent a sample of the
graphical results from tracking with the SURF method as IP, as well as FV, for a given query image.
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Figure 2. An example of points that meet the criteria of matching the query image and exemplary
frames of video sequences for grain tracking, for selected frames numbers (frame No.).

Satisfactory results were obtained with a non-transformed query image. Illustrative results are
shown in Table 1—the average (MIP average) value of the number of identical characteristic points,
which fell in the range of 5% (but 0.35% in the case of SURF) of the best matches for the entire analysed
frame set. The threshold is an individual matching value in general, for the analysed case in particular,
and was established empirically. As a result, the SURF algorithm returned a number of matched
interest points that was much larger. The smallest number of MIPs for a given match resulted from
the BRISK algorithm, which also proved correct, i.e., it contained no erroneous matches. All of the
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methods detected an increased number of similar points in the same set of frames of the analysed
video sequence. However, the SURF method detected significantly more points, and, for this type of
data, SURF is the most effective algorithm.

Table 1. The average values of the detected MIPs for all the frames (1–340) of the video material,
classified according to the area of a grain occurrence and absence, for various methods.

Frame No. Grain
Appears

1–55 56–214 215–285 286–340

Yes No Yes No

BRISK 1.09 0.00 0.58 0.00
FAST 3.27 0.17 0.46 0.00
HSA 10.35 0.62 2.88 0.63
MEA 17.73 1.57 5.04 2.23
SURF 43.82 1.35 14.19 1.52

3.2. Grain Tracking with a Rotated Query Image

When discussing the effectiveness of a search by image system for geological data, one should
consider the possibility of a query image rotation for two cases: when the query image was
computer-rotated in a geometric way (e.g., as a result of editing in a graphics editor) and when
the image acquisition was accomplished from a different perspective (e.g., as a result of rotating the
table of a microscope). For the computer-rotated query image, images of sandstone from Solec were
used (Figure 3).
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Figure 3. Effects of the detection of interest points between computer-rotated query (green points) and
original image (red points) obtained for the SURF method, sandstone from Solec.

Geometrical conversions do not influence the site’s polarization, and thus the colours of the
rotated image do not change. The query image was rotated by an angle selected from the range
of 0◦–330◦, with a variable step of 30◦. Satisfactory results (Table 2) were obtained by performing
a computer-rotated query using angles set to multiples of 90 degrees. For this example, at least
32 identical characteristic points were detected following the application of the SURF method to
achieve a much lower fitting threshold (the SURF matched the 0.35% threshold, while other methods
matched the 5% threshold). The MEA algorithm proved to render relatively good results for the
rotated object search. The number of correctly detected features using the FAST and HSA methods
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was acceptable for symmetric rotations around the x-axis and y-axis; however, the MIP number was at
least 50% smaller and may not be sufficient for geological grain tracking.

Table 2. The number of MIPs for the computer-aided rotation of the search key by the given rotation
angle (for the Figure 3 case).

Rotation Angle (◦) 0 30 60 90 120 150 180 210 240 270 300 330

BRISK 19 0 0 6 0 0 5 0 0 10 0 0
FAST 215 4 7 159 4 5 199 4 7 156 5 6
HSA 255 2 5 161 3 5 244 3 3 153 2 2
MEA 548 10 12 307 12 14 539 14 8 289 16 12
SURF 513 37 42 492 38 48 488 32 46 499 33 49

Less satisfactory results were obtained for objects registered at different angles of microscope
set-up (Table 3). Figure 4 shows a sample search of a rotated object, recorded with a polarized
microscope. An image of quartzite was registered with α angle equalling 0◦–330◦ and a step of 30◦.
A change in the position of a rotary table caused the change of colour (Figure 4a,d), which significantly
influenced the quality of the search, especially since the query image is not rotated, i.e., it does not
change its colour.

Table 3. The number of MIPs for the microscope rotation by a given angle (for the Figure 4 case).

Rotation Angle (◦) 0 30 60 90 120 150 180 210 240 270 300 330

BRISK 19 0 0 0 0 0 0 0 0 0 0 0
FAST 215 0 1 3 0 0 2 0 1 4 0 0
HSA 255 2 0 2 1 2 2 3 2 4 0 2
MEA 548 2 1 2 1 2 9 0 3 3 1 4
SURF 513 11 9 100 4 8 200 4 7 109 6 15
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The local feature detectors are based on the representation of the grey levels of an image, which
affects the quality of a search. The SURF method was the most effective; however, disproportions
between an image without rotation (0◦) and a rotated image were significant, with at least a two- or
five-fold drop in the number of characteristic features for rotated images (for the SURF and MEA
methods). The remaining algorithms were sensitive to the manner of data acquisition; therefore, they
appear to be insufficient for use with geological data. They require adaptation for geological purposes
and only then should research into their utility be continued.

3.3. Grain Tracking with a Scaled Query Image

Constructing search by image methodology in geology is challenging, since it is also a question of
object detection similar to a query but registered with different magnifications. Such an issue should
be considered in two ways: in the context of a geological data analysis (computer-scaled images, see
Figure 5), and in the context of images retrieved with different microscope magnifications (Figure 6).
The results of correct feature detection for a computer-scaled query image are presented in Table 4. An
image search under different enlargements, with scaling performed by computer methods, rendered
satisfactory results only for the SURF method; however, it was sensitive to significant data reduction.
SURF ensures that the points of interest are scale-invariant by transforming the image using the
multi-resolution pyramid technique, to copy the original image with a Gaussian pyramid or Laplacian
pyramid shape, in order to obtain an image with a special blurring effect on the original image, called
scale-space [29,30].
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(green points) and original image (red points) obtained for the SURF method, sandstone from Solec
(Qm—Query magnification, Im—Image magnification).

Table 4. The number of MIPs for the computer-scaled query image (the Figure 5 case).

Scaling ×1 ×4 ×9 ×16 ×25 ×36 ×49 ×64 ×81 ×100 ×400

BRISK 1 0 0 0 0 0 0 0 0 0 0
FAST 11 0 0 0 0 0 0 0 0 0 0
HSA 17 0 0 0 0 0 0 0 0 0 0
MEA 144 0 0 0 1 0 0 0 0 0 0
SURF 143 53 48 49 44 42 31 56 35 27 41

Image acquisition with different microscope magnifications is characterized by different,
resolutions of a pixel, therefore resulting in different representations of the values of the pixels
neighbouring the searched image. Query images were selected from all registered magnifications
(Figure 6). The results of an image search under different magnifications, with scaling performed
using an optical microscope, produced the poorest results for all the conducted experiments (Table 5).
The poor effect was a result of processing an image registered under various microscope magnifications,
which, from the observer’s perspective, were visually different images (i.e., displaying different
grayscale levels and different variable textures, although, geologically, it is the same rock). In this case,
the number of identical detected points (MIP) for various enlargements is scarce and not significant,
even with the application of the SURF method, i.e., the method that previously gave the most accurate
results. Of note, for magnifications exceeding ×400, the search key encompassed virtually the whole
picture, which rendered a large MIP, particularly for the MEA and SURF methods.
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Table 5. The number of MIPs for the microscope-magnified query image (the Figure 6 case), Query
M.—Query magnification, Image M.—Image magnification.

Query M. ×100 ×200 ×400
Image M. ×100 ×200 ×400 ×100 ×200 ×400 ×100 ×200 ×400

BRISK 12 0 0 0 50 0 0 0 4
FAST 101 0 0 0 445 0 0 0 40
HAS 118 0 0 0 388 0 0 0 152
MEA 334 0 0 0 1433 0 0 0 15123
SURF 330 114 25 37 1467 138 9 100 16553

Relatively good results were obtained only with the SURF method when a similar (next)
magnification level was used. For example, query magnification ×100 can search for similarities
in image magnification equalling ×200 and query magnification ×200 can search for similarities in
image magnification equalling ×100 and ×400.

3.4. Searching in Geological Image Databases

The use of descriptors that rely on the local surrounding key points of an image was based on an
example of two different rocks. This section contains a results obtained from an analysis of a greater
number of microscopic rock images.

The results presented thus far show that the proposed methods—and the SURF method in
particular—are useful for searching for images containing objects visually similar to a given search
key in databases. Additionally, the SURF method was demonstrated to be immune to minor
alterations to the image and query size, as well as to changes of angles between the two. With
this in mind, the SURF method was implemented for searching through a large geological image
database. The database was composed of 7400 microscope images of 37 various rocks. The rocks were
amphibolites, anhydrites, dolomites, granites, shales, marbles, sandstones, porphyries, and syenites,
all coming from different locations.

A fragment from an image of an amphibolite from Spitsbergen was selected as the search query.
Two search procedures were tested. The first search query was a cut-out piece of the image. The second
procedure involved using the same fragment, but rotated by 90 degrees and reduced in size by 10%
(Figure 7).
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Figure 7. Microscopic image of amphibolite from Spitsbergen with marked fragment—search query
(a). Effects of the detection of interest points using query image (green points) and original image (red
points), when using: selected fragment (b), rotated and scaled fragment (c) (magnification: ×100).

The results support the use of SURF for image searching. In the first case (image query without
rotation and size reduction), the application of SURF resulted in the identification of 1030 similar
points between the image piece and the image from which this piece had been cut. For the remaining
7399 images from the database, the number of similar points ranged from 0 to 2. In the second case
(image query rotated and reduced in size), the number of similar points between the image piece and
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the image from which it had been cut out was 254. For the remaining 7399 images from the database,
the number of similar points ranged from 0 to 3.

The result demonstrates unequivocally that the proposed method can be successfully used in the
process of searching through databases of geological images in order to find a given analysed rock.

4. Summary

This paper compares the possibility of using selected local feature detectors as a methodological
database for queries by image content in the field of geological sciences. The aim was to evaluate
several techniques that are well-known to the computer vision community in order to automate reverse
image searching in geological image databases. The processes of visual searching for similar objects
or images were carried out by means of a query image. Five techniques were evaluated in order to
determine their relative utility for searching geological images, taking into account the confound of
differing image transformations (like computer and microscopic image rotations or magnifications).
The research demonstrated that the SURF algorithm was the best characteristic feature algorithm for
all of the examples discussed. It detected the highest number of characteristic points for all instances
that were analysed. Additionally, the validation test, i.e., searching the database with the use of a
scaled and rotated fragment of an image, where the database had 7400 images of 37 different rocks,
demonstrated the usefulness of SURF for the unambiguous identification of the searched image.

The authors state that this innovative research on the use of content-based image retrieval
techniques in the field of geology confirms that the defined methods can be used for searching
microscopic rock image databases. The work was limited to searching for very similar objects; however,
the methods of matching local features can also be used for searching less similar objects, though this
will require modifying the parameters of the presented method. The purpose of the paper was to show
that such methods can be used and developed for practical applications in geology and specifically
demonstrates their utility for polarization microscopy images. However, these methods can also be
used to track elements in other research techniques, e.g., for chemical and isotopic analysis using
microbeam techniques such as electron microprobe, laser ablation inductively coupled plasma mass
spectrometry, and secondary ion mass spectrometry [31–33].

Generally, the described methods may be used for geological applications where image data are
used. They can be useful, for example, for verifying whether a given section has already been analyzed,
or to retrieve images from the database that would be similar to the currently analyzed material. It can
be applied during the collaboration of many research teams. In this scenario, searching the databases
of all coworkers in order to find the same or similar object may become significant.

The authors are not aware of any commercial programs that allow the use of the features described
in this paper for strictly geological applications. At the same time, we believe that their implementation
in existing commercial systems would not present a programming challenge. Thus, if it were made
clear that the methods discussed in this work could be useful to the geological community, these
methods may be implemented in commercial software. In sum, we conclude that these techniques
should not remain a sporadic tool in the field of geology, but are both feasible and advantageous for
mainstream applications.
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