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Abstract: Two types of halloysite collected from the upper (UPS) and lower (LOS) zones
of a weathered pegmatite profile in the Thach Khoan area, Phu Tho were defined by X-ray
diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM),
Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG and DTG), and N2

adsorption-desorption isotherms. XRD analysis showed that halloysite and kaolinite coexist in
samples of size fractions <2 µm. Semi-quantitative analysis by XRD after formamide (FA) treatment
indicated that the halloysite contents are approximately 81% and 93% in UPS and LOS samples,
respectively. The results of SEM and TEM analyses showed that while short halloysite type is
mainly distributed in the upper zone, long halloysite type occurs primarily in the lower zone of
the weathered pegmatite profile. The length of short halloysite ranging from 250 to 750 nm is
most popular, accounting for 47.2% of halloysites in the UPS sample. Meanwhile, long halloysites
which have the length of 750–1250 nm are dominant in the LOS sample with 69.9%. In addition,
short halloysites with outer diameter of >100 nm constitute 79.1% of halloysites in the UPS sample
while long halloysites with outer diameter of 50–100 nm make up 74.2% of halloysites in LOS
sample. Specific surface areas are 15.7434 and 22.0211 m2/g and average pore sizes are 18.9837
and 17.0281 nm for the UPS and LOS samples, respectively. The analysis implies that although
forming under same natural geographical and climatic conditions, halloysites at different depths in
the weathered pegmatite profile may have different morphological and other properties.

Keywords: halloysite; kaolinite; nanotube; pegmatite; Phu Tho

1. Introduction

Halloysite was originally depicted as a 1:1 layered aluminosilicate mineral of the kaolin group by
Berthier [1]. The chemical composition structure of halloysite is similar to that of minerals of the kaolin
group (kaolinite, nacrite and dickite minerals) but the unit layers of halloysite are isolated by a monolayer
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of water molecules [2–4]. Halloysite appears mainly in two different polymorphs: a chemical formula
Al2Si2O5 (OH)4·2H2O when fully hydrated and Al2Si2O5 (OH)4 when dehydrated [5].

Halloysite can been found in a variety of particle morphologies, such as short-tubular,
large-tubular and spheroidal, and platy shapes [6]. However, nanotubular morphology is the most
common shape of halloysite. The tubular shape can be considered as rolled kaolin sheets with an inner
diameter of 1/30 nm, an outer diameter of 30/50 nm and a length of 100–2000 nm [7,8]. The interior
surface of halloysite is composed of siloxane (Si–O–Si) groups, while the external is a gibbsite-like
array of aluminol (Al–OH) groups [9,10].

Halloysite deposits have been discovered and exploited in different countries such as New
Zealand, United States, Australia, China, Brazil, and Turkey [11]. This mineral can be formed both
by weathering of igneous rocks and their hydrothermal alteration [12–19]. For instance, the Matauri
Bay (New Zealand) halloysite deposit was formed by hydrothermal alteration at low temperature of
rhyolite and dacite volcanic rocks [20]. The large mass of halloysite at the Dragon Mine (UT, USA)
was formed by irregular replacement of Early Paleozoic dolomite rock in contact with hydrothermal
fluids channeled along the Dragon Fissure Zone [21]. Halloysite at TePuke is a weathering product of
volcanic rocks of rhyolite and andesite in the Bay of Plenty, New Zealand [22]. The above literature
and others have shown that halloysites from different areas also have different morphological and
physicochemical properties [7,23–25].

In the recent years, due to its superior properties such as tubular structure, non-toxicity, large
surface area, high mechanical strength, lower cost compared to nanotubular carbon, halloysite has
attracted considerable attention of scientists and many new possibilities of application [8,26–34].
However, in many cases, differences in morphology, size, as well as other properties of halloysites may
have certain impacts on their applicability in practice. For instance, Makaremi et al. [35] used two
different types of halloysite nanotubes to improve the properties of apple pectin bionanocomposites
as potential films for food packaging applications. Results indicated that the short halloysites with
50–3000 nm length and 50–200 nm outer diameter had better ability for the encapsulation of salicylic
acid into their lumen, while the long halloysites with 200–30,000 nm length and 40–55 nm outer
diameter made the encapsulation process more difficult. Zheng and Ni [36] prepared an efficient
flame-resistant composite using the pentaerythritol-loaded halloysites for the UV-curable epoxy resin.
In this study, halloysites have length 300–1000 nm, outer diameter 50–70 nm and BET surface area
36.40 m2/g. The obtained composite showed a low moisture absorption and a good stability of the
mechanical properties. Pasbakhsh et al. [37] have studies the properties of some halloysites in the
world, and have given orientations for their applications. For example, the long-tubular halloysite
with 200–5000 nm length and 40–55 nm outer diameter are very suitable for use both an additive and a
carrier. The halloysite tubes showing a wide variation in size may be well suited as microfiber filler.
Thus, it can be seen that studying the properties of halloysites from different deposits or even in a
deposit is necessary before using them for different applications.

This study aims to study the distribution and characteristics two types of halloysite nanotubes from
a weathered pegmatite profile in the Thach Khoan area, Phu Tho Province. Different characteristics of
these halloysites were determined using X-ray diffraction (XRD), scanning electron microscopy–energy
dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), fourier transform
infrared spectroscopy (FT-IR), thermal analysis (TG and DTG), and N2 adsorption-desorption
isotherms. The results showed that halloysites from different depths of the weathered pegmatite in the
study area have different morphological properties. This information is useful for the understanding
of distribution and characteristics of halloysites in the deposit and helping for exploitation and use
these nanotubular minerals effectively.
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2. Materials and Methods

2.1. General Geological Setting of Study Area

The study area has many pegmatite bodies with different sizes related to the Late Paleozoic Tan
Phuong granite Complex [38]. The surrounding rocks of pegmatite bodies are the metamorphic Thach
Khoan formation of Proterozoic age (Figure 1). The composition of this formation consists mainly of
mica quartz schist, mica schist, staurolite-bearing quartz, disten, sillimanite, and garnet.
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Figure 1. Vietnam map and the site of the study area (A); geological legend (B) and geological map of
the study area (C).

The pegmatite bodies have the strike of 60◦ N–80◦ W, dipping to the southwest with a slope
of 50◦–80◦. They vary from several hundred up to thousands of meters in length and from tens to
hundreds of meters wide. All pegmatite bodies have a similar weathering profile with an upper brown
yellow zone (15–20 m), a middle pink zone (5–10 m) and a lower white, light orange zone (5–15 m).

2.2. Samples

A typical outcrop about 40 m high that has the GPS position of 21◦11′31′′ N and 105◦15′07′′ E,
was prepared for sampling. For comparison purposes, two samples were collected separately. The first
sample, called UPS sample, was taken in upper zone, and the second one, LOS sample, was from
the lower zone of the weathered pegmatite profile. The samples were taken from the top down,
perpendicular to the weathering layers. Separated samples were mixed homogeneously before using
for further steps.

The bulk samples were first dissolved in deionized water by repeated ultrasonic vibration.
A portion of the <2 µm clay sample fraction was obtained using the decantation method. The clay
fractions were then freeze dried and examined by different analyses.



Minerals 2018, 8, 290 4 of 13

2.3. Characterization

X-ray diffraction (XRD) patterns of the samples were collected by using a D8-Advance Bruker
diffraction (Bruker Corporation, Billerica, MA, USA) with radiation of CuKα (λ = 1.5406 nm) generated
at 40 kV and 40 mA. The data were archived in the Bragg angle (2θ) range of 3◦–70◦ with scanning
speed of 2◦ min−1. Minerals were defined by using the software of Evaluation 10.0 with database
(PDF-2 2004) provided by the International Centre for Diffraction Data. Formamide (FA) treatment
was used to estimate the content of halloysite and kaolinite in the samples [22].

The Fourier transform infrared (FT-IR) spectra for each sample were achieved in transmission
mode on pellets containing a pressed mixture of approximately 1.0 mg of the sample and 100 mg of
KBr. The IR spectra were recorded in the range from 4000 to 400 cm−1 with a resolution of 2 cm−1

(Shimadzu IR Prestige-21 spectro-meter instrument, Kyoto, Japan).
Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS)

(Quanta 450, FEI Company, Hillsboro, OR, USA) were initially used to analyze the morphology of
minerals and elements present in the samples. Transmission electron microscopy (TEM) images were
obtained by a JEM 1010 operated at an accelerating voltage of 200 kV. The samples were suspended
by using a drop-wise of ethanol and evaporated on 200 mesh copper grids covered with amorphous
Formvar carbon.

Thermmogravimetric analyses (TG) were carried out on a SETERAM Instrument (Caluire-et-Cuire,
France). Approximately 2–3 mg of the samples were heated from 50 to 1050 ◦C in a platinum crucible
with a heating rate of 10 ◦C min−1, under an atmosphere of high purity N2.

The specific surface area of the samples was measured from N2 gas adsorption at 77 K by using a
TriStar 3000 (Micromeritics Corp., Norcross, GA, USA). Surface areas were calculated from the linear
part of the (Brunauer-Emmett-Teller) BET plot. The N2 isotherms and the Barret-Joyner-Halenda (BJH)
method were used to calculate pore size distributions of halloysites.

3. Results and Discussion

3.1. XRD Analysis

XRD patterns of the UPS and LOS samples with size fractions <2 µm in natural condition are
presented in Figure 2. The results indicated that minerals of kaolin group coexisted in the samples.
The basal reflections of 10 Å halloysite were recorded at peaks of 10.0◦, 4.44◦, 3.36◦ and 2.56◦

(Al2Si2O5 (OH)4·2H2O, hexagonal structure, PDF No. 00-29-1489). The peaks at 7.38◦ and 3.60◦

refer to kaolinite (Al2Si2O5 (OH)4, with a triclinic structure, PDF No. 01-089-6538).
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For the measurement of the content of halloysite and kaolinite, the formamide (FA) treatment
was applied to the samples following Churchman et al. [22]. The percentage of halloysite a in a sample
was defined by the equation:

a =
I10

(I7 + I10)
·100%, (1)

where I7 and I10 denote the height of the peaks near 7 and 10 Å of XRD patterns, respectively. Figure 3
shows the XRD results of UPS and LOS samples with size fractions <2 µm after formamide treatment.
It can be seen that the intensities of the 10 Å peak were significantly higher those of the 7 Å peak in
both the UPS and LOS samples. The estimated percentages of halloysite in the samples from Figure 3
were approximately 81% and 93% for UPS and LOS samples, respectively.
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One of the models concerning the transformation from halloysite to kaolinite during weathering
of crystalline rocks was based on the dissolution and recrystallization mechanism [39,40]. According to
this model, the thermodynamics of halloysite is less stable than that of kaolinite under the prevailing
weathering conditions. Thus, halloysite is formed early in the weathering profile, then, dissolved and
kaolinite is eventually crystallized under suitable weathering conditions such as time, the activity of
water table in each weathering zones. In this study, that the percentage content of halloysites in the
lower zone (93%) is higher than that in the upper zone (81%) of the weathered pegmatite profile is
consistent with the previously reported results of Inoue et al. [41].

3.2. FT-IR Analysis

Figure 4 shows the FT-IR spectra of the two samples (UPS and LOS). It can be seen that the
IR spectra of the samples were quite similar and all present the existence of kaolin minerals [42].
The absorptions bands at 3696 and 3620 cm−1 in the FTIR spectra are assigned to the stretching
vibration due to the inner-surface of O–H groups. The absorption at 1640 cm−1 is assigned to the
interlayer water [43]. The intensity of this absorption band increases as the interlayer water content
increases. It may come from the significant content of halloysite in the LOS sample.
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The Si–O stretching region comprises three absorption bands at 1112, 1031, and 1007 cm−1.
The 1031 cm−1 peak of LOS disappears. The reason for the disappearance is due to a decrease of
kaolinite content and increase of halloysite content in those samples. The band at 910 cm−1 is assigned
to the bending vibration of Al–OH. The bands observed at 796, 754 cm−1 of all samples are assigned
to the stretching mode of Al–O–OH. The low stretching band Si–O defined at 691 cm−1 confirms the
existence of halloysite in the sample LOS. The bands at 539 and 471 cm−1 are due to the vibration of
Al–O–Si and Si–O–Si, respectively [44].

3.3. Electron Microscopy Analysis

The scanning electron micrograph (SEM) images and EDS data of the samples with the size
fraction <2 µm are shown in Figure 5. The rod-shaped minerals were interwoven and overlapped each
other as matrices. From these images, it can be seen that there may be two types of halloysite available
in the samples: short halloysites in the upper zone (UPS sample) and long halloysites in the lower
zone (LOS sample) of the weathered pegmatite profile in the study area. EDS spectra shows the main
elements of Al, Si, and O, which are relative to halloysite chemical formula (Al2Si2O5 (OH)4·2H2O).
The transmission electron micrographs in Figure 6 also display tubular morphology of these minerals
clearly. Under the same magnification, the lengths of halloysite in the UPS sample are generally shorter
than the lengths of halloysite in the LOS sample (Figure 6A,B). Closed view of these minerals are
presented in Figure 6A1,B1. The distributions of the lengths and outer diameters of these halloysites
using TEM images are presented in Figures 7 and 8, respectively. Results showed that short halloysites
in UPS sample are distributed mainly in the length range from 250 to 750 nm, accounting for 47.2% of
halloysites in the sample. Meanwhile, long halloysites are dominant in the LOS sample with 69.9% of
a length range from 750 to 1250 nm (Figure 7). In addition, short halloysites with an outer diameter
of >100 nm constitute 79.1% of halloysites in the UPS sample, while long halloysites with an outer
diameter of 50–100 nm make up 74.2% of halloysites in the LOS sample (Figure 8). This difference in
size of halloysites between weathering zones may be due to the structure of early formed halloysites
in the upper zone partially replaced by new small kaolinites crystals [41].
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Figure 8. The distributions of the outer diameters of halloysite from TEM for the UPS and LOS samples.
Unit is nanometer (nm).

3.4. Thermal Analysis

Figure 9 presents the weight loss traces, thermogravimetry (TG) and derivative thermogravimetry
(DTG) curves of the UPS and LOS samples. As can be seen, two main mass loss steps were determined
in the TG curves. At first, the endothermic peaks at 91.4 ◦C with a mass loss of 0.6% and at 87.5 ◦C
with a mass loss of 9.5% are ascribed to the removal of physisorbed water in the UPS and LOS
samples, respectively. In the second endothermic peak at 510.4 ◦C (mass loss of 12.2%) for UPS and
at 516.0 ◦C (mass loss of 13.0%) for LOS are due to the dehydroxylation of the structural aluminol
groups in halloysite. The TG (DTG) curves of these thermal analysis were in agreement with previous
literature [45–47]. The difference of halloysite percentages in samples (81% and 93% halloysites for
UPS and LOS samples, respectively) may be one of the reasons for differences in temperature of the
endothermic peaks and their lost weights [19].
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3.5. Surface Area and Pore Size

The nitrogen adsorption-desorption isotherms of the UPS and LOS samples are displayed in
Figure 10. These isotherms exhibit type II with an H3 hysteresis loop in the relative pressure (P/P0) and
this type of isotherm is a typical characteristic of mesoporous structures [48]. The values for specific
surface areas (SBET), the cumulative specific surfaces obtained from isotherms for both adsorption
(Sads) and desorption (Sdes) of nitrogen on each sample are summarized in Table 1. The surface areas
were determined for the UPS and LOS samples with SBET of 15.7434 and 22.0211 m2/g, respectively.
Halloysites in the LOS sample have higher value of SBET than that of the halloysites in the UPS
sample because halloysites in the LOS sample have longer and thinner cylindrical structure [37,49].
Average pore sizes of for the UPS and LOS samples are 18.9837 and 17.0281 nm, respectively.

Table 1. Surface area and pore size data of the UPS and LOS samples.

Sample SBET
(m2/g)

Sads of Pores
(1.70–300.0 nm

Diameter)
(m2/g)

Sdes of Pores
(1.70–300.0 nm

Diameter)
(m2/g)

Vads of Pores
(1.70–300.0 nm

Diameter)
(cm3/g)

Average Pore
Size (nm)

SBET − Sads
(m2/g)

Sdes − SBET
(m2/g)

UPS 15.7434 15.361 19.2166 0.072904 18.9837 0.3824 3.4732
LOS 22.0211 22.350 27.9054 0.095144 17.0281 −0.3289 5.8843
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Figure 10. Nitrogen gas adsorption-desorption isotherms of the UPS and LOS samples.

The low discrepancy between Sads and SBET indicates that these samples likely contain
mainly cylindrical pores of varying radius and slit-shaped pores are the dominant shape in both
samples [39,48,49].

The pore size distributions using the Barrett-Joyner-Halenda (BHJ) theory for the UPS and LOS
samples are presented in Figure 11. From Figure 11, the narrow peaks centered at 4.3 nm are signed
to internal/surface pores, including spaces between the overlaps of folded halloysite sheets in the
samples [39]. The stronger intensity of this peak in the LOS sample indicates that halloysite formed a
more concentrated and uniform pore size distribution. The peaks at 9.2, 10.7, and 13.4 nm are identified
as the lumens of halloysites in the samples and are agreeable with measurements on TEM images.
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4. Conclusions

In conclusion, two main types of halloysite were formed in the weathered pegmatite profile in
the Thach Khoan area, Phu Tho, northern part of Vietnam. Analysis methods of XRD, SEM-EDS,
TEM, FT-IR, TG and N2 adsorption-desorption isotherms were used to characterize these halloysites.
The results showed that the short halloysite type is mainly distributed in the upper zone and long
halloysite type can be found in the lower zone of the weathered pegmatite profile. The short halloysites
have the length ranging mainly from 250 to 750 nm, the outer diameter of >100 nm (79.1%), the specific
surface areas of 15.7434 m2/g and the average pore sizes of 18.9837 nm. Meanwhile, the length ranging
mainly from 750 to 1250 nm (69.9%), the outer diameter of 50–100 nm (74.2%), the specific surface areas
of 22.0211 m2/g, and the average pore sizes of 17.0281 nm are properties of the long halloysites. XRD
after formamide (FA) treatment indicated that the halloysite contents are approximately 81% and 93%
for the upper zone and the lower zone of the weathered pegmatite profile, respectively. The results
provided useful information for the understanding of distribution and characteristics of different
halloysites in the deposit and for exploiting and using these nanotubular minerals effectively.
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