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Abstract: Quantitative 3D spatial association of geological factors and geophysical fields with
orebodies is critical for ore prediction. The Anqing orefield, a principal Cu–Fe orefield in China,
is closely associated with the Yueshan intrusion. By compiling the data from drilling and tunnelling
exploration, Controlled Source Audiofrequency Magnetotelluric (CSAMT) surveying and the
computational modelling of magmatic intrusion’s cooling process, we constructed models of the
Yueshan intrusion, ore-favourable carbonate formation, orebodies, resistivity field and volume
strain field. These models are used as evidential factors to analyse their spatial association with
mineralization by the weights-of-evidence (WofE) method. The location of orebodies is closely related
to the shape of the contact zone of the Yueshan intrusion. The spaces with the distance ≤200 m to
the concaves that were selected by minimum principal curvature (|Kmin| ≥ 0.0025) from contact
zones, are very favourable for localization of orebodies. Most orebodies are not located in the spaces
of the lowest resistivity, suggesting that the lowest resistivity cannot be used as an indicator for
mineralization. The spaces with higher positive volumetric strain have higher positive weights with
orebodies, implying that the mineralization is positively related to the positive volumetric strain.
The spaces of all evidential factors that had positive correlation with mineralization were integrated
to create a 3D prospectivity map by calculating posterior probability. Five areas with higher posterior
probability, indicating higher prospectivity potential, are selected as targets for future exploration.

Keywords: spatial association; 3D geological modelling; ore prediction; weights-of-evidence;
Anqing orefield

1. Introduction

Prediction of ore body location is critical for mineral exploration [1–4], which is generally
achieved by analysing the associations of geological factors, geophysical and geochemical fields
with mineralization. Such associations are commonly represented as 2D maps, and quantitatively
analysed in the platform of 2D Geographic Information System (GIS), which have definitely facilitated
the understanding of mineralization systems and predictive exploration of mineral resources [5–7].
However, such 2D studies are insufficient to present and analyse complicated mineralization systems.
Unfortunately, most ore deposits, especially of hydrothermal metallic ore deposits, are complexly
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formed and distributed in 3D space. Therefore, the 3D models and 3D GIS have become more and
more important for researching complex geological systems and ore deposits [8–11].

The 3D geological modelling, which is a class of computer techniques for geological
characterization [12,13], has been developed as a robust and useful tool with the advancement
in computer technologies, geomathematics and computational 3D graphics. It is widely used for
presenting complex geological systems and managing geological information. Generally, these various
classes of information have played important roles in understanding geological systems and exploring
mineral resources [14–21]. The techniques for 3D geological modelling mainly include two groups,
surface-based and volume-based modelling. The surface-based modelling is the common method
for representing the surface of the complex geological factors in 3D. Several algorithms have
been developed for interpolation, surface construction and rendering in order that the models
can approximate the shape of real geological factors as closely as possible by using limited
sampling data [22]. These commonly used algorithms include Delaunay triangulation for constructing
Triangulated Irregular Network (TIN) model [23–25], Discrete Smooth Interpolation (DSI) for surface
smoothing [26,27] and Marching Cubes for isosurface extraction [28]. The specialized commercial
geological modelling software have been developed by adopting the above algorithms. Benefiting
from these software tools, it has become convenient to model the complex and irregular geological
factors in 3D virtual space. Voxel-based modelling is commonly used to represent the geological
objects with continuous attribute values, such as geophysical and geochemical fields. Inverse Distance
Weighted (IDW) [29,30] and Kriging [31,32] have been approved methods in interpolation which is
important for constructing field models. Voxelization is a key approach to convert the surface model
into a block model with some methods, such as Flood-fill and Octree-based Divisive Algorithm [8,9].

Spatial analysis that is used for inquiring spatial information and revealing the characteristic of
geological objects, is widely applied in evaluating and predicting mineral resources by combining
with 3D GIS. Nowadays more and more quantitative mathematical methods have been developed
to appraise the association of geological factors, geochemistry field and geophysics field with
mineralization, and carry out 3D prospectivity mapping [33–40]. These methods are divided into two
classes, knowledge-driven methods and data-driven methods [41,42]. The common knowledge-driven
methods include Fuzzy logic [43], Analytical hierarchy process [6], Index Overlay [44] and Inference
Networks and Decision tress in expert systems [45]. The common data-driven methods include
Weights of Evidence (WofE) [46,47], Logic Regression [48] and Neural Networks [49]. The WofE is
a statistical method based on Bayes theorem of conditional probability, and it has been extensively
and successfully applied in prediction of mineral potential in 2D by integrating relevant and reliable
information that are usually from geological, geophysical and geochemical surveys [47,50–54]. It has
been successfully applied in 3D quantitative spatial analysis and prospectivity mapping in recent
years [35,39,40].

The Anqing orefield is so attractive because it hosts the Anqing Cu–Fe skarn deposit that is
the largest Cu–Fe deposit in the Yangtze River metallogenic belt. The skarn ore deposits are an
important type of metallic deposits. The direct contact zone of the intermediate-acid intrusion with
the carbonate rocks is definitely the key factor for controlling skarn orebodies [55–57]. Since the first
drill intersected the high-grade Cu–Fe skarn in 1960 in this ore field, it has been explored intensively,
resulting in the Cu–Fe deposits discovered extensively and irregularly in the field. These deposits and
their related felsic intrusion, the Yueshan intrusion, have been studied by many researchers [58–67].
Most of these studies focus on the geological and geochemical characteristics, genesis and dating of
ore-formation and magmatism for understanding mineralization processes. Only a few studies focus on
the architecture and dynamics of the mineralization system for directly facilitating ore prediction and
exploration. Most of orebodies in this ore field are located in the contact zones of the Yueshan intrusion
which is complicated in shape and highly various in occurrence. These ore-favourable zones were
formed when the crust was subjected to dilation deformation, which is a direct result of the coupled
mechano–thermo–hydrological processes during syn-tectonic cooling of the intrusion [3,22,68,69].
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However, the credible prediction of orebodies at depth is the toughest challenge for mineral exploration
in this field. For increasing ore reserves through deep exploration, the Tongling Nonferrous Metals
Group Co., Ltd. had conducted a Controlled Source Audiofrequency Magnetotelluric (CSAMT) survey
of 26.6 km2 on a grid spacing of 200 m × 40 m and a high precision magnetic survey of 34.2 km2 on
grid spacing of 100 m × 40 m. Targeting at the anomalies from these geophysical surveying, 12 drills
with total accumulative depth of 16,725.39 m have been completed. Unfortunately, no orebody has
been discovered by these works. It suggests that the CSAMT and high precise magnetic surveys are not
effective enough to discover orebodies at depth by traditional study, although the Anqing deposit was
initially discovered by checking magnetic anomalies. Nowadays it is necessary to comprehensively
appraise such a puzzling situation for facilitating predictive discovery of orebodies at depth. In this
paper, we apply the methods of 3D modelling and spatial statistics to analyse the spatial association
of the Yueshan intrusion, resistivity field and volume strain field with orebodies in 3D and, finally,
to achieve an innovative prediction of orebodies at depth.

2. Geological Setting and Ore Deposits

2.1. Geological Setting

The Anqing orefield, located in the famous Tongling-Anqing Cu skarn district in eastern China, is
a principal Cu–Fe ore field in the central segment of the Yangtze River metallogenic belt [3,22,46,61].
There are five groups of major structures in this orefield (Figure 1), including NW-, approximately
N–S- and NE-trending folds and faults, and approximately E–W-, NNW- and NNE-trending faults.
The NW- and NS-trending folds might have been formed immediately after the early Triassic, while the
NE-trending folds might have been formed immediately after the middle Jurassic. The approximately
E–W-trending faults consist mainly of normal faults and cut through the NE-trending folds and the
Yueshan intrusion; the NNW- and NNE-trending faults are certainly the latest, because they cut
through all other structures and orebodies. The approximately E–W-trending normal fault is parallel
to and immediately nearby the orebodies [3,22].

Figure 1. Geological map of the Anqing orefield, modified after Liu et al. [22].
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The key ore-controlling factor in this ore field is the Yueshan intrusion (shown in Figure 1),
the largest copper mineralized intrusion with an outcropped area of about 11 km2 in the district.
It is composed mostly of diorite with minor quartz diorite. The U–Pb zircon isotopic age of the
Yueshan intrusion is 138.7 Ma, or Mid Early Cretaceous, when the crust in this region was turned from
compression into extension and tectonic regime [59,62,64].

The sedimentary rocks of Paleozoic through to Mesozoic are distributed around the Yueshan
intrusion in the ore field. On the surface, the direct walls of the intrusion are of the Tertiary. The most
favourable wall rocks for hosting Cu- and Cu–Fe-skarn deposits, are littoral to neritic carbonates
interbedded with bathyal facies beds that alternated with marine-continental clastic rocks, especially
where they occur in contact with the diorite intrusion (Figure 1). These carbonate rocks are distributed
in the Yueshan Formation of Middle Triassic (T2y, dolomite and limestone breccia) and the Nanlinghu
Formation of Lower Triassic (T1n, limestone) [22].

2.2. Ore Deposits

There are hundreds of orebodies discovered in the Anqing orefield. These orebodies are mainly
of Cu and Cu–Fe skarns, minor of Fe skarns. Their total reserves are more than 48.8 Mt copper ores at
average grade of 1.3% Cu and 100 Mt iron ores at average grade of 48% Fe. Most of these orebodies
occur in the contact zone between the Yueshan intrusion and its wall rocks (Figure 1), marble and
dolomite marble of the Low to Mid Triassic. Only minor orebodies are within the intrusion, but close to
the contact zone and related to the carbonate xenoliths in the diorite intrusion. The orebodies around
the Yueshan intrusion are locally distributed. More than 99% of total Cu and Fe reserves proven
in the ore field are distributed in two major deposits, the Anqing Cu–Fe deposit and the Zhuchong
Fe–Cu deposit.

The Anqing Cu–Fe deposit with copper-iron ore reserves of 41 Mt Cu @ 1.3% and Fe @ 45% is
located in the south contact zone between the diorite of the Yueshan intrusion and the marble of the
T1n and dolomite marble of T2y. The orebodies are mainly composed of Cu sulfide-bearing massive
magnetite and unmineralized skarns, with minor disseminated-copper sulphides in diorite. The lines
C–C′, D–D′ and E–E′ in Figure 2 show that the orebodies are irregularly shaped, E–W-trending
and steeply dipping toward the south. The south contact zones are not completely mineralized,
which is related to its topographic variation. From east to west, the “step-shaped” contact zone
becomes a “tongue shaped” contact zone. In the former, the contact zone of the intrusion with the
carbonate hanging wall changes from a steep-dip into a gentle-dip; while in the latter, the marble is
surrounded by the diorite. The orebodies are only located in the steep segments of the “step-shaped”
contact zone and the tips of the “tongue-shaped” contact zone [3,22].

The Zhuchong Fe-Cu deposit, with iron ores of 51.62 Mt Fe @ 50.1% and copper ores of 4.4 Mt
Cu @ 1.15%, is located in the north contact zone between the diorite of the Yueshan intrusion and the
dolomite marble of the Yueshan formation. The major orebodies composed of Cu sulphide-bearing
massive magnetite occur as irregular lenses scattered in concaves of the intrusion’s contact zone (shown
in Line A–A′ and B-B′ of Figure 2). Minor orebodies composed of disseminated-copper sulphides
in diorite and skarn are distributed as irregular veins within the intrusion close to the contact zone.
The orebodies are E–W-trending and gently northward dipping.
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Figure 2. Serious cross sections, showing the correction of orebodies with intrusion and strata.
Line A–A′ and B–B′ for the Zhuchong ore deposit, Line C–C′, D–D′, and E–E′ for the Anqing ore deposit.

3. Methods and Algorithms

3.1. TIN and DSI Methods for Modeling Geological Factors

The surface-based geometric modelling is the most commonly used for representing the shape
of geological factors, such as topography, geological formations, intrusions, alteration zones, faults
and orebodies [70–72]. Due to its efficiency in data storage and ability to accommodate irregularly
spaced boundary points, the TIN method is increasingly popular for surface-based modelling.
TIN modelling is a representation of a continuous surface that consisted entirely of triangular facets.
The non-overlapping irregular triangular meshes are created from the scattered data set without
repeating points according to certain rules. The Delaunay triangulation is the most common tessellation
algorithm [25,73]. The empty circumcircle and Max–Min Angle criterion is the basic rule of the
Delaunay algorithm. A TIN surface is defined as a set of triangles, which are continuous and not
overlapped. It maximizes the minimum angle of all the angles of the triangles in the triangulation,
and they tend to avoid sliver triangles and hold uniqueness of triangular mesh [73,74].

For optimizing the TIN surface models, Mallet [26,27] developed the DSI algorithm. Through node
interpolation, the optimized triangular meshes are continuous, non-overlapping, irregular, and have
acute triangles and approximate sides. The DSI optimization is dependent on the topotaxy of grid
nodes, not limited by space dimensions. If a set of known grid nodes satisfied a certain constraint
conditions, mutual contact nets can be constructed between discrete data points, meanwhile the value
of an unknown node will be obtained by solving a linear equation.

3.2. Interpolation Algorithms for 3D Block Modeling

The 3D block modelling has been widely applied for presenting field models, such as temperature,
resistivity and strain. In a 3D block model, every block corresponds to the actual position and



Minerals 2018, 8, 300 6 of 23

attribute information, which can be easily queried. The data sets for block modelling are generated by
interpolation from the discrete data. The 3D interpolation methods, such as Kriging and IDW, are the
mathematic core for 3D block modelling.

The Kriging algorithm is a geostatistical interpolation technique that considers both the distance
and the degree of variation between known data points when estimating values in unknown areas [31].
A kriged estimate is a weighted linear combination of the known sample values around the point to be
estimated. The cornerstone of the Kriging algorithm is the semivariogram function, or the variogram
as it is generally referred to by geostatisticians. In the interpolation process, the weights not only
depend on the distance between sampling and unknown points, but also on whole distribution of all
the sampling points.

The IDW is to estimate the assigned values of unknown points by a weighted average of the
values available at the known points and it resorts to the inverse of the distance to each known point
when assigning weights [29]. Assuming that in the neighbourhood of the point, P(x, y, z), which
needs an interpolated value A, there are discrete datasets Qi (xi, yi, zi), i = 1, 2, . . . , n. The value Ap

is obtained by interpolation of a weighted average for Qi. The weight is related with the distance
between interpolated point P and interpolating point Qi. Generally, Ap is defined as:

AP =


∑n

i=1
Qi
dk

i
∑n

i=1
1

dk
i

if (x, y, z) 6= (xi, yi, zi) for all i

Qi if (x, y, z) = (xi, yi, zi) for all i

(1)

where di =
√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2, k, power exponent for estimation, is a positive
real number.

3.3. The WofE Method for 3D Spatial Analysis

The WofE which is based on a loglinear form of Bayesian rule is a discrete multivariate
geostatistical method. It is widely used in prediction and evaluation of mineral resources by associating
the mineral occurrence with a series of geological data [46,47]. In the WofE model, the mineralization
occurrences (orebodies) are used for training, and the geological (or exploration) data are served as
evidential factors by calculating the weights and contrasts of all the evidential factors, which are
used as binary maps with mineralization occurrences, the appropriate exploration criterion that are
used as binary predictive maps, are combined to calculate the posterior probability (Ppost). For each
binary map, “1” means the evidence is present, “0” for absent, and “null” for unknown or missing.
These weights and contrasts are helpful to express the spatial association of evidential factors with
mineralization occurrences, and the Ppost is useful for plotting predictive maps and locating orebodies.

In the process of 3D association analysis using WofE, the study area which contains the
mineralization occurrences (orebodies) and all evidential factors is subdivided into N(T) identical
blocks in 3D space. The occurrences and evidential factors are used in voxel form. The training blocks
that contain occurrences are generated from the surface-based 3D models of orebodies by voxelization.
The voxelization is the approach that generating volume datasets by discretizing continuous objects on
a regular grid of voxels in 3D Euclidean space. It is usually realized through the method of Flood-fill
Algorithm, Octree-based Divisive Algorithm and distance transformation [5,9,74–77]. If there are
D training blocks, the number of blocks that don’t contain occurrences are N

(
D
)
= N(T)−N(D).

The prior probability that any given block will contain training blocks is P{D} = N(D)/N(T),
and expressed as odds by:

O{D} = P{D}
1− P{D} =

N(D)

N(T)−N(D)
(2)

For the evidential factor (binary map) Bj, the number of blocks where the evidence occurred
is N(Bj), and the number of blocks where the evidence did not occur is N

(
Bj
)
= N(T) −N

(
Bj
)
.
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According to Bayesian rule, the conditional probability of choosing a block with mineralization
occurring, where the evidence Bj occurred is:

P
{

D
∣∣Bj
}
=

P
{

D ∩ Bj
}

P
{

Bj
} =

N(D) ∩N
(

Bj
)

N
(

Bj
) (3)

The weights for the evidential factor Bj can be defined as:

W+
j = ln

P{Bj|D}
P{Bj|D} for evidence of Bj present

W−j = ln
P{Bj|D}
P{Bj|D} for evidence of Bj absent

(4)

where W+
j is the positive weight and W−j is the negative weight, and they have opposite meanings

in terms of identification of spatial association. It indicates a positive spatial association between
the evidence Bj and mineralization when W+

j > 0 or W−j < 0, conversely it indicates a negative

association when W+
j < 0 or W−j > 0.

More details on the derivation of these formulae are given in Bonham-Carter [46].
The contrast, Cj, is used to express the strength of the spatial association between evidential

factors and mineralization. It is defined as:

Cj = W+
j −W−j (5)

In this equation, when Cj > 0, the spatial association is positive; and Cj < 0 for the negative
spatial association. In the special case of Cj = 0, it means a lacking relationship. The higher Cj values
indicate more significant spatial association between the mineralization and the given evidential factor
Bj.

The Ppost is calculated by combining n binary predictive maps which are conditionally independent
with respect to the mineralization occurrences [46]. The Ppost is expressed by log likelihood ratio:

ln O
{

D
∣∣∣(Bk

1 ∩ Bk
2 ∩ . . .∩ Bk

n

)}
= ln O{D}+

n

∑
1

Wk
j (6)

where k is the status of evidence factor Bj in given block, and

Wk
j =


W+

j for evidence of Bjpresent
W−j for evidence of Bj absent

0 for evidence of Bj missing

(7)

Supposing that

f = ln O{D}+
n

∑
1

Wk
j (8)

the Ppost can be calculated by using

Ppost = P
{

D
∣∣∣(Bk

1 ∩ Bk
2 ∩ . . .∩ Bk

n

)}
=

e f

1+ e f (9)

The threshold values obtained from capture-efficiency curves [78], are used to effectively separate
potential areas. The Ppost map, which created by the combination of binary predictive maps and
Ppost value, is used to demarcate the exploration targets. The higher Ppost values indicate the high
probability that the ore body is distributed.
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4. Spatial Association of Intrusion, Resistivity and Volume Strain Fields with Orebodies

4.1. 3D Spatial Association of the Yueshan Intrusion with Orebodies

Liu et al. [22] had constructed 3D models of the Yueshan intrusion and its related orebodies.
Since then, 263 drill holes with a total length of 176,058 m and about 5000 m of underground tunnels
have been finished. These works have provided abundant information of the underground geology and
led to the discovery of many orebodies. By integrating all the newly-acquired information from these
works on the Micromine 11.0 platform (MICROMINE Head Office, Perth, Australia), we reconstructed
the surface-based models of the Yueshan intrusion, ore-favourable carbonate formations, T1n and T2y,
as well as all orebodies (Figure 3a).

Figure 3. (a) 3D models of the Yueshan intrusion, the strata of T1n and T2y, and orebodies; (b) the view
from east.

Compared to the previous models of Liu et al. [22], these new 3D models reveal the geometric
features and spatial association of the intrusion and orebodies:

(1) The 3D Yueshan intrusion exhibits extreme variation in attitude and topography of its contact
zone, and such variations have strong constraints on uneven localization of orebodies around the
intrusion. Both the south contact zone and north contact zone host more than 99% ores in the
ore field. Their common feature that is nearly E–W-trending is completely different from both
the west and the east contact zone that are nearly S–N-trending (Figure 3a). It suggests that the
E–W-trending contact zone is favourable for skarn mineralization.

(2) The south contact zone hosts much more Cu reserves than the north one. It also displays
distinct differences from the north one in occurrence and topography. The south contact zone
has an extremely irregular surface with a wide range of dips, from northward (inward) 40◦–60◦

to southward (outward) 20◦–45◦, while the north one has gentle waved surface with a stable
northward (outward) tip about 25◦–40◦ (Figure 3b). These suggest that the rapid change of
occurrence might have made a difference for Cu mineralization in contact zone of the Yueshan
intrusion. Particularly, the south contact zoon is more favourable for formation of orebodies that
the north.
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(3) Almost all of orebodies are covered by the strata, T1n and T2y. No orebody is distributed in the
east branch of the Yueshan intrusion, where no carbonate rock is present. It illustrates that the
mineralization is controlled by the presence of carbonate rocks in direct contact with diorite rocks.

(4) The orebodies are unevenly localized in the vicinity of the intrusion’s contact zone, especially
around the concaves (Figure 4a,b). Remarkably, such uneven localization of orebodies is related
to the curvatures [79] of the contact surface. By using the minimum principal curvature (Kmin)
to describe the topography of the intrusion’s contact zone (Figure 5a), it is evident that most
orebodies are localized around the contact zone with |Kmin| > 0.0025 (Figure 5b).

Figure 4. Spatial association of the Yueshan intrusion with orebodies, (a) for the Anqing deposit;
and (b) for the Zhuchong deposit.

The study area for Yueshan intrusion and its surrounding areas are divided into a total of
278,0526 blocks by using a 40 m × 40 m × 40 m grid size, and the surface model of orebodies is
voxelized into 3186 blocks with the same dimensions in the study area. We selected the concaves
as abnormal zones (Figure 5b) from the contact zone of the Yueshan intrusion with |Kmin| > 0.0025.
The 3D buffers that used to identify the influence range and degree of some point, line and surface
geological objects [80–82], are constructed around these zones by calculating Euclidean distances
between individual blocks in the study area. To analyze the spatial association of the Yueshan intrusion
with orebodies, a series of WofE calculations were processed for different buffers with block dimensions.
The calculation results (Table 1, Figure 6a) show that, all the training blocks are located in the buffers
within the distance of 600 m which occupies 22.23% of the total blocks. From 40 m to 600 m, the positive
weights decline approximately to −3.095 from 4.833, and the contrasts decline to −3.108 from 5.572.
For the buffers within 200 m from the contact zone, they occupy 5.69% of the total blocks, but include
93.57% of training blocks; their positive contrasts suggest that the concaves zone we selected from the
Yueshan intrusion contact must have positive constraints on the localization of orebodies (Figure 7).
This indicates that the enrichment of the orebody is closely related to distance from contact zone of the
Yueshan intrusion, much closer to the intrusion’s contact, and contributing more to mineralization.
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Figure 5. (a) Minimum principal curvature analysis results of the intrusion surface; (b) the chosen
abnormal zones (|Kmin| >0.0025) and their spatial association with orebodies.

Figure 6. Cont.
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Figure 6. Contrast curves against the proportion of training blocks and evidential factors blocks at
different intervals, (a) for buffer around chosen abnormal zones; (b) for resistivity field; (c) for volume
strain field.
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Figure 7. Spatial association of orebodies with distance to intrusion contact zone, showing the buffer
within 200 m from the chosen abnormal zones, and it almost contains all the orebodies.

Table 1. Weights for 3D buffers around the chosen abnormal zones of Yueshan intrusion contact.

Buffer Distance (m) Training Blocks 3D Buffers Blocks Positive Weight Negative Weight Contrast

0–40 1670 13,257 4.833 −0.739 5.572
40–80 635 21,356 3.285 −0.215 3.5

80–120 419 39,987 2.223 −0.127 2.349
120–160 142 35,011 1.267 −0.033 1.3
160–200 115 48,498 0.729 −0.019 0.748
200–240 53 52,795 −0.132 0.002 −0.135
240–280 24 42,926 −0.718 0.008 −0.726
280–320 23 50,185 −0.917 0.011 −0.928
320–360 22 53,040 −1.017 0.012 −1.029
360–400 23 47,611 −0.864 0.01 −0.874
400–440 23 48,613 −0.885 0.01 −0.896
440–480 17 45,318 −1.117 0.011 −1.128
480–520 16 46,371 −1.201 0.012 −1.213
520–560 2 38,500 −3.095 0.013 −3.108
560–600 2 34,698 −2.991 0.012 −3.003

4.2. 3D Resistivity Field and Its Association with Orebodies

Geophysical prospecting had played an important role in the discovery of the Anqing deposit.
Although the CSAMT surveying have been carried out in an area of 26.4 km2, few orebodies have
been discovered by this surveying because of a lack of quantitative analysis between the resistivity
and mineralization in 3D space. Through using the IDW method to interpolate the resistivity data
(ρ) from the CSAMT surveying, we constructed the 3D resistivity field with the block dimensions of
40 m × 40 m × 40 m (Figure 8a), and the space in the study area without surveying data were excluded
from the spatial analysis. The Cu–Fe skarn orebodies that are especially composed of Cu-sulphide bearing
massive magnetite ores, are generally recognized as the low resistivity geological factors. However, the 3D
modelling results show that almost no orebodies occur in the space of ρ <500 Ω·m (Figure 8b). There are
few orebodies in the space of ρ >7000 Ω·m (Figure 8c). A majority of orebodies are localized in the spaces
with ρ between 500 and 2500 Ω·m (Figure 8d), where they are much larger than the training blocks
within them.
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Figure 8. (a) 3D resistivity field and its location in study area, showing the spatial association of
orebodies with different resistivity space; (b) ρ is less than 500 Ω·m; (c) ρ is greater than 7000 Ω·m;
and (d) ρ is between 500 Ω·m and 2500 Ω·m.

We use the WofE method to analyse spatial association between the space of different resistivity
and orebodies. The calculation results (Table 2) shows that, for the spaces of ρ <500 Ω·m, there are
only seven training blocks, and the positive weight and contrast are all negative, indicating that it is
unlikely to host orebodies there. In the spaces of 1000 Ω·m ≤ ρ ≤ 2000 Ω·m, the contrasts are positive
and much greater than other spaces (Table 2, Figure 6b), the blocks occupy 20.93% of the resistivity
field and contain 50.20% of training blocks. It indicates that these spaces are more closely associated
with mineralization in the Anqing orefield than other spaces, however, no tendency can be discovered
easily in such spatial association. These WofE study results demonstrate that the orebodies cannot be
detected as lowest resistivity geological factors by the CSAMT surveying and the spatial association
between orebodies and the resistivity field is weak, which accounts for the reason why the targets
delineated mainly by the CSAMT have no-identified orebodies.
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Table 2. Weights for different spaces of resistivity field at 500 Ω·m intervals.

Resistivity (Ω·m) Training Blocks Resistivity Field
Blocks Positive Weight Negative Weight Contrast

0–500 7 108,326 −3.757 0.160 −3.917
500–1000 261 131,683 −0.332 0.061 −0.393

1000–1500 569 88,472 0.850 −0.207 1.056
1500–2000 428 62,106 0.919 −0.153 1.072
2000–2500 114 46,792 −0.125 0.008 −0.133
2500–3000 96 37,656 −0.080 0.004 −0.084
3000–3500 102 31,350 0.165 −0.008 0.173
3500–4000 84 26,459 0.140 −0.006 0.146
4000–4500 72 24,442 0.065 −0.002 0.068
4500–5000 59 20,238 0.055 −0.002 0.056
5000–5500 56 16,482 0.208 −0.005 0.214
5500–6000 31 13,868 −0.212 0.004 −0.215
6000–6500 32 12,117 −0.044 0.001 −0.045
6500–7000 19 10,945 −0.465 0.006 −0.471
7000–7500 14 10,260 −0.706 0.007 −0.713
7500–8000 8 9005 −1.136 0.009 −1.144

greater than 8000 34 69,258 −1.729 0.084 −1.813

4.3. 3D Volume Strain Field and Its Association with Orebodies

By using computation geodynamics modelling, Liu et al. [22] studied the coupled
mechano–thermo–hydrological dynamics during the Yueshan intrusion’s cooling process-modelling.
The computational modelling results show that the deposition of ores or formation of ore-hosting
space is related to the volumetric strain increment (vsi) of which positive value present with dilation
deformation [22]. In order to analyse qualitatively the spatial association of volumetric strain with
mineralization, we constructed a 3D volume strain field (Figure 9) by using vsi and calculate weights
of spaces for different interval vsi with training blocks.

Figure 9. 3D block models of the volume strain field.

The calculation results (Table 3, Figure 6c) show that when vsi < 0, the positive weight is less than
zero and the negative weight is greater than zero. The blocks in this space occupy almost the entire
study area, but only a small part of orebodies is located there. When vsi > 0, the positive weight is
greater than zero and the negative weight is less than zero. The contrasts show a tendency to rise along
with the increase of vsi. These illustrate quantitatively that the mineralization is closely related to the
dilation zones, and the spaces with higher vsi facilitate the formation of orebodies. When vsi ≥ 0.6%,
the strain field blocks occupy 3.65% of total blocks containing 19.74% of training blocks, and the
contrasts are both greater than 1, indicating that there is a better correlation between volume strain and
mineralization in these intervals. By comparing the blocks of vsi ≥ 0.6% with the Yueshan intrusion,
we find that the shapes of higher dilation zones are generally consistent with the contact zone of the
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intrusion, whereas the spatial association of the volume strain field with orebodies is not as strong as
the contact of intrusion.

Table 3. Weights for different spaces of volume strain field at 0.2% intervals.

Vsi (%) Training Blocks Volume Strain Field
Blocks Positive Weight Negative Weight Contrast

less than 0 1027 1,764,862 −0.678 0.618 −1.296
0–0.2 619 490,349 0.097 −0.022 0.119

0.2–0.4 540 267,098 0.569 −0.085 0.654
0.4–0.6 435 156,733 0.886 −0.089 0.975
0.6–0.8 279 58,388 1.432 −0.071 1.502

greater than 0.8 286 43,096 1.762 −0.078 1.838

5. Quantitative Integration of Ore-Related Information and Ore Prediction

5.1. Binary Predictive Maps of Exploration Criteria

Based on the analysis above, we found that these evidential factors have positive correlation
with mineralization: (1) the 3D buffers around the chosen areas that the distance within 200 m to the
Yueshan intrusion; (2) the carbonate rocks that are distributed in the strata, T1n and T2y; (3) resistivity
field with resistivity between 1000 and 2000 Ω·m; and (4) volume strain field of which vsi is greater
than 0.6%. Although the correlation of carbonate rocks, resistivity and volumetric strain with orebodies
is not as strong as the contact of the Yueshan intrusion, the exploration criteria from the evidential
factors, B, C, V and R (Table 4, Figure 10), are very necessary for calculating posterior probability and
selecting exploration targets in this ore field. The assumption of conditional independence is very
important for every possible pair of the binary predictive maps [45], it can be examined by applying
all the binary maps in mineral occurrence through chi-square testing [81]. Generally, the conditional
independence assumption for 3D weights-of-evidence modelling is violated [35,82]. These exploration
criteria are converted into binary predictive maps, for which the presence and absence (or missing) of
an evidence feature are respectively denoted by B+, B−, C+, C−, V+, V−, R+, R− and R0. The maximum
of conditional probability for co-occurrences of mineral occurrence and every evidential factor is
1.884%, and the prior probability, P{D}, is 0.115%.

Table 4. Exploration criteria determined for prospectivity mapping from evidential factors.

Evidential Factors Exploration Criterion Favourable
Range for BPM 1

Conditional
Probability (%)

Positive
Weight

Negative
Weight Contrast

Contact zone of the
Yueshan intrusion

B: 3D buffers (around
chosen contact zones) 0–200 (m) 1.884 2.818 −2.676 5.494

Stratigraphy C: carbonate T1n and T2y 0.896 2.064 −0.567 2.631

3D volume strain field V: volumetric strain
increment greater than 0.6% 0.655 1.584 −0.158 1.742

3D resistivity field R: resistivity 1000–2000 (Ω·m) 0.556 0.869 −0.453 1.322
1 BPM: binary predictive map.
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Figure 10. Binary predictive maps for exploration criteria, their present evidences are: (a) B, contact
buffers (0–200 m) around chosen abnormal areas; (b) C, carbonate rocks in T1n and T2y; (c) V, volume
strain field (vsi is more than 0.6%) and (d) R, resistivity field (ρ is between 1000–2000 Ω·m).

5.2. Prospectivity Mapping and Ore Prediction

The binary predictive maps mentioned above are combined to calculate Ppost by the Formulae
(6)–(9) and create the prediction map, the calculation results are shown in Table 5. We plot
capture-efficiency curves by using the cumulative proportion of total blocks against its corresponding
training blocks from high to low posterior probability (Figure 11a), as well as posterior probability
curves against cumulative proportion of total blocks (Figure 11b). Two thresholds are defined through
comparing these two curves. The threshold 1 corresponds with the Ppost of 2.190%, which is greater
than the maximum of conditional probability, 1.884%, and the threshold 2 yields a Ppost of 0.582%,
which is greater than the minimum of conditional probability, 0.556%. In addition, they are all greater
than the prior probability, 0.115%, suggest that the study area can be demarcated into three classes of
potential blocks for ore prospecting according to the Ppost values, (1) for high potential, Ppost ≥2.190%;
(2) for medial potential, 2.190% > Ppost ≥0.582%; and (3) for low potential, Ppost <0.582% (Table 5).

Table 5. Combination of binary predictive maps with different posterior probability.

CofBPMs 1 Posterior Probability (%) Training Blocks Total Blocks

B+C+V+R+ 64.003 60 355
B+C+V+R0 42.476 71 3604
B+C+V+R− 31.720 190 4925
B+C+V−R+ 23.722 180 2215
B+C+V−R0 11.438 350 18,077
B+C−V+R+ 11.346 41 296
B+C+V−R− 7.515 626 11,334
B+C−V+R0 5.047 125 10,568
B+C−V+R− 3.236 72 5034
B+C−V−R+ 2.190 210 8168
B+C−V−R0 0.921 511 65,414
B−C+V+R+ 0.726 0 2456
B+C−V−R− 0.581 543 28,119
B−C+V+R0 0.303 6 7490
B−C+V+R− 0.191 0 5551
B−C+V−R+ 0.128 0 9270
B−C+V−R0 0.053 3 70,145
B−C−V+R+ 0.053 0 7794
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Table 5. Cont.

CofBPMs 1 Posterior Probability (%) Training Blocks Total Blocks

B−C+V−R− 0.033 0 30,461
B−C−V+R0 0.022 0 27,843
B−C−V+R− 0.014 0 25,708
B−C−V−R+ 0.009 0 120,053
B−C−V−R0 0.004 134 1,857,926
B−C−V−R− 0.002 64 457,720

1 CofBPMs: combination of binary predictive maps.

Figure 11. Curves for analysis of posterior probability, (a) capture-efficiency curve, showing the
cumulative percentage for training blocks and total blocks, (b) posterior probability plotted against
cumulative proportion of total blocks.

The Figure 12 shows the spatial association of the Yueshan intrusion and orebodies with
combination of binary predictive maps for high and medial potential blocks. The high potential blocks,
B+C+V+R+, B+C+V+R0, B+C+V+R−, B+C+V−R+, B+C+V−R0, B+C−V+R+, B+C+V−R−, B+C−V+R0,
B+C−V+R− and B+C−V−R+, occupy 2.32% of total blocks and contain 60.42% of known orebodies
(Figure 12a), and for medial potential blocks, B+C−V−R0, B−C+V+R+ and B+C−V−R−, occupy 3.45%
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of total blocks and contain 33.08% of the training blocks (Figure 12b). The Ppost maps (Figure 13a)
and its east, north and vertical direction sections (Figure 13b–d) obviously show that the spaces with
high Ppost are well consistent with the contact of the Yueshan intrusion, demonstrating that the contact
of the Yueshan intrusion has strong constraints on localization of orebodies in the Anqing orefield,
especially where concaves occur.

Figure 12. 3D combination of binary predictive maps with different posterior probability, showing (a)
the high potential blocks, and (b) the medial potential blocks.

Figure 13. (a) 3D posterior probability map, partly showing the cross-section view, (b) Pxy, view from
top, (c) Pxz, view from south; (d) Pyz, view from west.

We can select exploration targets with different priority for future mineral exploration by Ppost

values. The favourable targets can be identified in high and medial potential blocks where no orebody
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was discovered and had never been drilled. Figure 14 shows five (A–E) targets selected from high
potential blocks. The accurate location of any target blocks can be easily queried in the 3D block model.

Figure 14. The spatial association of high potential blocks with the Yueshan intrusion and drillholes.
Showing the exploration targets, A, B, C, D and E that based on the high potential blocks, (a) the view
from south and (b) the view from north.

6. Conclusions

This paper analysed the spatial association of the Yueshan intrusion, carbonate rocks, resistivity
and volume strain field with orebodies by using 3D WofE modelling. The Yueshan intrusion and its
shape of contact zone, as well as the carbonate rocks in T1n and T2y, are closely related to mineralization.
The spaces with the distance ≤200 m to the contact surface, where |Kmin| is greater than 0.0025, have
strong positive constraints on localization of orebodies. The orebodies cannot be detected as lowest
resistivity geological factors as generally recognized in this ore field. There is no good correlation
between resistivity and mineralization, and it is hard to target orebodies individually by resistivity
with a certain interval from CSAMT surveying. For the volume strain field, a high value of volume
strain indicates the stronger dilation deformation, and the spaces with high positive vsi are favourable
for the localization of orebodies.

The prospectivity map was plotted by integrating the binary predictive maps that were created
from the contact zone of the Yueshan intrusion, strata in T1n and T2y, resistivity and volume strain
field. The study area was demarcated into high, medial and low potential blocks by Ppost value. Five
targets have been preferentially determined from high potential blocks for future mineral exploration
in the Anqing orefield.
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