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Abstract: Silicates are among the most abundant and important inorganic materials, not only in the
Earth’s crust, but also in the interstellar medium in the form of micro/nanoparticles or embedded in
the matrices of comets, meteorites, and other asteroidal bodies. Although the crystalline phases of
silicates are indeed present in nature, amorphous forms are also highly abundant. Here, we report a
theoretical investigation of the structural, dielectric, and vibrational properties of the amorphous bulk
for forsterite (Mg2SiO4) as a silicate test case by a combined approach of classical molecular dynamics
(MD) simulations for structure evolution and periodic quantum mechanical Density Functional
Theory (DFT) calculations for electronic structure analysis. Using classical MD based on an empirical
partial charge rigid ionic model within a melt-quenching scheme at different temperatures performed
with the GULP 4.0 code, amorphous bulk structures for Mg2SiO4 were generated using the crystalline
phase as the initial guess. This has been done for bulk structures with three different unit cell sizes,
adopting a super-cell approach; that is, 1 × 1 × 2, 2 × 1 × 2, and 2 × 2 × 2. The radial distribution
functions indicated a good degree of amorphization of the structures. Periodic B3LYP-geometry
optimizations performed with the CRYSTAL14 code on the generated amorphous systems were
used to analyze their structure; to calculate their high-frequency dielectric constants (ε∞); and to
simulate their IR, Raman, and reflectance spectra, which were compared with the experimental and
theoretical crystalline Mg2SiO4. The most significant changes of the physicochemical properties of
the amorphous systems compared to the crystalline ones are presented and discussed (e.g., larger
deviations in the bond distances and angles, broadening of the IR bands, etc.), which are consistent
with their disordered nature. It is also shown that by increasing the unit cell size, the bulk structures
present a larger degree of amorphization.

Keywords: DFT; periodic simulations; amorphous minerals; physicochemical properties; super-cell

1. Introduction

Amorphous materials are disordered solid-state systems that present a lack of long-range order, and
from a thermodynamic standpoint, they are less stable than the corresponding crystalline structures. As a
consequence of this long-range structural disorganization, amorphous materials usually exhibit different
properties with respect to their crystalline counterparts. This is the case, for instance, for silica [1].
Whereas crystalline silica presents cytotoxicity when in contact with cellular systems [2–5], amorphous
silica particles show high levels of biocompatibility [6], thus allowing them to be used in bioglass-based
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implants [7] and as drug delivery systems [8]. In other cases, because of the different physicochemical
properties between the crystalline and the amorphous partners, the amorphous phases are preferable to
be used in semiconductor devices, such as the case of HfO2 and ZrO2 and their alloys [9–11].

The understanding and the prediction of the physicochemical properties of noncrystalline solids
rely on the proper description of their structure at the atomic level. Experimental techniques with
this purpose are X-ray and neutron diffraction, which are directly sensitive to the structure, and also
vibrational-related spectroscopies such as infrared (IR) and Raman, in which detailed structural
information can be achieved. However, an atomic-level understanding of amorphous materials
derived from these experimental methods has so far remained elusive, in part because of the limited
capabilities of the instrumentation for direct characterization. For instance, crystalline silicates
exhibit a wealth of narrow IR bands [12,13], whereas for amorphous silicates, these bands result in a
significant broadening and blending due to the wide range of bond lengths and angles characteristic
of the amorphous nature [14–16]. Thus, deriving detailed structural information by means of these
experimental techniques is a daunting task. A complimentary tool with which to obtain atomistic
details of the structure of amorphous systems and their relationships with their physicochemical
features such as spectral signatures is the theoretical modeling approach. However, in contrast to
crystalline systems, theoretical studies of the structure of amorphous materials are quite limited,
probably because of the difficulty in generating realistic and reliable structural models with the
available theoretical methods [17,18]. Among the different strategies to generate bulk amorphous
structures, the melt-and-quench scheme has successfully been used to simulate different amorphous
oxides [10,18–26]. This scheme consists of performing molecular dynamics (MD) simulations, taking
the crystalline bulks as the initial guess and submitting them to a series of heating/cooling cycles. The
heating at high temperatures followed by rapid cooling allows the sampling of the large configurational
spaces and ensures a good degree of amorphization of the initial crystalline systems. However,
the simulation of amorphous structures typically requires systems with more than 100 atoms per unit
cell. Accordingly, despite the enormous growth in computational power, generating highly disordered
materials adopting the melt-and-quench scheme approach by means of first-principles MD simulations
are often prohibitively expensive, so the simulation timescales are limited to several picoseconds,
which are relatively short in terms of the time frame for evolution into the amorphous structures. As
an alternative, classical force field MD simulations are computationally less expensive, thus allowing
larger timescales of up to several hundred picoseconds. By contrast, these classical MD simulations
require accurate and reliable interatomic potentials, since the results are biased by the employed force
fields. Proceeding this way, first-principles calculations onto the generated structural models are
subsequently mandatory if the electronic structure and spectroscopic properties are desired.

Silicate-based materials constitute ca. 95 percent of the rocks of the Earth’s crust [27]. Silicates are
inorganic materials whose main feature is the orthosilicate [SiO4]4− building block. The negative net
electrical charge is compensated by metal cations. The ways how the different tetrahedral [SiO4]4−

units are linked (i.e., sharing corners, edges, and faces) and the nature of the countercations give rise
to the wide class of silicate structures. The wide presence of silicates is not only limited to the Earth’s
crust; they are also major components of the solid matter present in the universe, comprising a part
of interstellar, circumstellar, and interplanetary dust particles; comets; and meteorites [28–30]. The
most astrophysically important silicate groups are olivines and pyroxenes, with the preponderance
of Mg2+ and Fe2+ as countercations, since they appear with the highest cosmic abundance. Olivines
are characterized to have the [SiO4]4− tetrahedra linked by Mg2+ and Fe2+ and the general formula
Mg2xFe(2−2x)SiO4 (x = 0–1), with the two end members named forsterite (Mg2SiO4) and fayalite
(Fe2SiO4); whereas pyroxenes are formed by single chains of [SiO4]4− intercalated by the divalent
cations and have the general formula MgxFe(1−x)SiO3 (x = 0–1), with the two end members named
enstatite (MgSiO3) and ferrosilite (FeSiO3). In contrast to the terrestrial silicates, cosmic silicates
are mainly found in an amorphous state [28,31], probably due to their exposure with various
processes during their life cycle such as incident cosmic rays and UV radiation, thermal shocks,
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or sputtering/shattering effects. Cosmic silicates play a significant role in the chemical evolution
occurring in space as they provide the surfaces where important chemical reactions can take place,
such as the formation of H2 [32] and H2O [33,34]. On the other hand, both crystalline and amorphous
silicates can be synthesized, with special efforts regarding forsterite. Synthetic crystalline forsterite was
achieved for the first time by Shankland and coworkers [35] using the Verneuil flame fusion method
for the solid-state reaction between powders of MgO and SiO2. However, the crystals contained
inclusions of unreacted MgO. Accordingly, this procedure has been improved (e.g., [36,37]) or modified
(e.g., by mixing bauxite with MgCO3 [38]), and alternative methods with enhanced qualities of the
synthesized crystals have appeared, such as various sol–gel methods [39–41] and the application
of modified Czochralski-pulling procedures; the latter providing large high-quality forsterite single
nanocrystals [42–44]. Amorphous phases of forsterite can be synthesized by a variety of techniques:
standard melt-and-quench methods [45–47], sol–gel reactions [48], sputtering techniques [49], and via
energetic processing of the starting materials such as shocks [50] or collisions [51,52]. To produce
amorphous silicate interstellar dust analogues, the processing of crystalline forsterite is usually
performed [53–55]. The synthesized materials are characterized by standard solid-state techniques.
X-ray diffraction (XRD) is useful to assess the degree of crystallinity and to analyze the phase
pureness in crystalline samples [56–58]. X-ray absorption spectroscopy (XAS), including extended
X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES), is an
analytical technique to determine short- and medium-range order in partially amorphous forsterite
samples. This technique has been useful to determine that bond lengths and angles within the SiO4

tetrahedra are not affected by the structural state [48]. Infrared-based spectroscopy is also useful to
characterize the structural state, since crystalline forsterite presents a group of sharp bands in the
200–1000 cm−1 range [59,60], while amorphous phases present essentially two broad bands centered
at about 1000 and 500 cm−1 [61]. Scanning electronic microscopy (SEM) is used to analyze the surface
morphology of forsterite powders, which can be diverse (e.g., spherical, chain-like, porous, dendritic,
etc.) depending on the experimental preparation [56,62], while transmission electron microscopy
(TEM) provides direct imaging of parts of the forsterite nanoparticle samples, thus allowing the
measuring of their composition, shape, size, and the atomic arrangement [63–65]. Synthesized
forsterite nanoparticles have potential applications in enhanced weathering, namely sequestering
CO2 by mineral reactions [66–70], and as a biomaterial for implants [71–75]. Moreover, doping the
forsterite nanomaterials with Eu3+, Tb3+, or Er3+ induces enhancement of their photoluminescence
properties [76–78], rendering them to have applications in optoelectronic devices.

The present work focuses on the theoretical modelling and electronic structure study of
amorphous Mg2SiO4. Here, we combine classical MD simulations adopting the melt-and-quench
scheme, for structural model generation, and DFT-based quantum mechanical (QM) calculations, for
electronic structure analysis, to theoretically characterize the structural, dielectric, and spectroscopic
properties of different amorphous silicate systems. Detailed analysis of the amorphous structures is
carried out, including the coordination number and the radial distribution function of the systems.
Geometry relaxations followed by calculation of the vibrational modes of the amorphous structural
models serve to simulate the corresponding IR, Raman, and reflectance spectra at the B3LYP density
functional level of theory by means of the periodic CRYSTAL14 ab initio code [79], which in turn
are compared with the corresponding crystalline systems and the available experimental data. The
presented results will be of great significance in the field of silicate chemistry. First, by matching
the ab initio results with the experimental data, relationships between silicate spectral signatures
and their atomistic structural details can be elucidated, which will be particularly useful for current
and future astronomical archives (i.e., ALMA and the James Webb Space Telescope) and for the
analysis of forthcoming results. Results will also be of importance for those studies devoted to the
characterization of the spectroscopic properties of doped and/or modified forsterite nanomaterials,
since we provide the reference spectroscopic properties of pure forsterite in both the crystalline and
amorphous structural state. Finally, the work can also have repercussions from a computational point
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of view. Generating the bulk structure of forsterite in an amorphous state is the first step towards
obtaining the surface slab models for the same material. Having reliable slab models is of great
importance since it is the basis upon which to subsequently carry out surface chemical studies, such as
adsorption phenomena and heterogeneous catalytic reactivity. Finally, our results will be very useful
to improve the force field parameters devoted to simulating the structure of silicates in an amorphous
state. Only reliable parameters for crystalline silicates are available hitherto, so the present results can
be used as a benchmark for the parametrization and to assess the accuracy of the force field, both in
the simulation of the structure as well as in the prediction of the solid-state properties.

2. Computational Methods

2.1. Classical Molecular Dynamics (MD) Simulations

The procedure to generate the amorphous silicate models is inspired by that done for simulated
bioglasses [18,19,21]. All models were generated by means of classical molecular dynamics simulations
using the atomistic Born model of solids [80] implemented in the General Utility Lattice program
(GULP) [81]. This model represents all ions as point charges interacting through Coulomb forces.
Pairwise Buckingham potentials were used to represent Pauli repulsion and dispersion interactions, and
the polarization of oxygen was represented by the shell model. All the interatomic potential parameters
used in this work are shown in Table 1, which were derived from these references [82–84]. Moreover, the
bulk structure of the crystalline Mg2SiO4 system calculated with GULP using these parameters is in very
good agreement with the experimental one (see Figure S1 and Table S1, Supplementary Materials). The
classical molecular dynamics (MD) simulations were carried out within the (N,V,T) canonical ensemble.
The leapfrog Verlet algorithm was adopted using an integration time-step of 1 fs. The velocity rescaling
scheme was used to control the temperature. Although the pressure was not directly equilibrated, we
controlled the pressure of the system along all the simulations and we did not detect any dramatic
change in the pressure that could cause a warning alert or stop the execution of the simulations.

(1) Nose–Hoover thermostat. A total of 17 different final temperatures were considered, between
400 K and 2000 K, separated by 100 K each. It is worth mentioning that higher temperatures
than the melting point of Mg2SiO4 (at about 1800 K) would have been desirable to accelerate the
dynamics of the melting. However, we found that with MD simulations at these temperatures
(e.g., 2500 K), the system was unstable because the interatomic potential parameters fail. After
the heating process, classical MD simulations at the (N,V,T) ensemble at the given temperature
were performed, which consisted of a 100 ps equilibration phase and a 200 ps production phase.

(2) Cooling phase: After the production phase of the previous step, the resulting systems were
subjected to MD simulations where the temperature was decreased by 0.005 K every time-step to
reach the temperature of 300 K. At this temperature, the systems were equilibrated for 50 ps.

(3) Second thermal/production phase: The structures obtained after the cooling simulations were
then heated again to the temperature chosen in the first step. Then, MD simulations with an
equilibration phase of 100 ps and a production phase of 200 ps production were performed.
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Table 1. Classical potential parameters used in this study. Sub-index c and s have been used to refer to
the core and shell of the atoms.

Charges

Ions Core Shell Core–shell interactions (eV Å−2)
Mg +2.00000
Si +4.00000
O +0.84819 −2.84819 74.92

Buckingham Potential A (eV) ρ (Å) C (eV Å6)

Mgc–Os 1428.500 0.31813 0.00000
Sic–Os 1283.907 0.32052 10.66158
Oc–Os 22,764.300 0.14900 27.88000

Three-Body Potential k (eV rad−2) Θ0 (degree)

Os–Sic–Os 2.097240 109.47000

2.2. Quantum Mechanical (QM) Calculations

The resulting amorphous structures generated by the classical MD simulations were then
optimized by means of periodic quantum mechanical calculations. To this end, simulations carried
out with the CRYSTAL14 code [79] were performed, in which the crystalline orbitals representing the
multielectron wave function are expressed by localized Gaussian-type orbitals (GTO). The following
GTO basis set contractions were used: oxygen, (8s)–(411sp)–(1d); magnesium, (8s)–(511sp)–(1d);
and silicon, (8s)–(6311sp)–(1d).

Self-Consistent Field (SCF) calculations and geometry optimizations were carried out using
the hybrid B3LYP [85,86] DFT-based method. No symmetry was imposed during the geometry
optimizations (i.e., P1 group symmetry), to enforce the maximum degrees of freedom in the
optimization process. Both internal coordinates and lattice constants were optimized, using the
Broyden−Fletcher−Goldfarb−Shanno (BFGS) algorithm [87]. All these technical details have already
been used for the simulation of crystalline forsterite [88–90] and fayalite [91] bulk properties.
Additional calculations have been done at B3LYP-D2, adopting the scheme proposed by Grimme [92]
to include dispersion interactions and to check if they are of significance in the geometry optimization.
Results (shown in Tables S1 and S2, Supplementary Materials) indicate that the inclusion of dispersion
is, in practice, negligible; it systematically slightly reduces the internal bond lengths and the lattice
distances compared to the pure B3LYP values, which in some cases (e.g., Mg–O distances), are shorter
than the experimental values.

For the tolerances controlling the Coulomb and exchange series, the default values have been
adopted; namely, (6 6) and (6 6 16), respectively. Accordingly, when the overlap between two atomic
orbitals is smaller than 10−6 (for Coulomb) and 10−16 (for exchange), the integral is disregarded. The
Brillouin zone is sampled by diagonalizing the Hamiltonian matrix in 63 reciprocal lattice points
(k points), which corresponds to a shrinking factor of 5 [93]. The unrestricted formalism was adopted
for the open-shell calculations.

Vibrational frequencies of the systems under study have been obtained as the eigenvalues
of the diagonalized mass-weighted Hessian matrix considering the Γ point (i.e., the central zone,
point k = 0 in the first Brillouin zone). The mass-weighted Hessian matrix was calculated via
numerical differentiation of the analytical first energy derivatives, in which each 3N equilibrium
nuclear coordinate was displaced by 0.003 Å. More details of the computational conditions and other
numerical aspects concerning the calculation of the vibrational frequencies can be found in [94].
The infrared intensities were computed with the variation of the dipole moment along each normal
mode, using, in this case, localized Wannier functions [95–97], whereas Raman intensities were
calculated analytically through the coupled-perturbed Hartree-Fock (CPHF) scheme implemented
in CRYSTAL [98,99] and successfully performed for different crystalline minerals [100–108]. The
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reflectance spectra (R(ν)) were simulated by first calculating different properties: (i) the vibrational
frequencies, the corresponding intensities, and separation of the longitudinal and transverse optical
modes [94,109]; (ii) the high-frequency dielectric tensor (ε∞) [101,103,105,108], which contributes to
the frequency-dependent complex dielectric function (ε(ν)) [98,99,110,111]; and (iii) the mass-weighted
effective mode Born charges [112–114]. By combining all these ingredients, the reflectance spectra of
several crystalline mineral systems have successfully been simulated [88,89,91,115–117].

3. Results and Discussion

This section is organized as follows. The first part addresses the generation of an amorphous
bulk structure of forsterite (Mg2SiO4) by means of classical MD simulations and subsequent
optimization at a quantum chemical level. A structural analysis of the optimized structure is presented,
and investigations on its dielectric and vibrational properties by calculating the high-frequency
dielectric constants and simulating the infrared, Raman, and reflectance spectra are shown, which
in turn are compared with the experimental and theoretical crystalline Mg2SiO4 data. The second
part is focused on the influence of the unit cell size of the amorphous Mg2SiO4 bulk on the structural,
dielectric, and vibrational properties.

3.1. The Amorphous 1 × 1 × 2 Super-Cell Mg2SiO4 System

As mentioned in Computational Methods, the initial guess used to generate the amorphous
Mg2SiO4 bulk structure (hereafter referred to as Fo) was the Mg2SiO4 crystalline system. The bulk
crystal structure of Mg2SiO4 consists of distorted SiO4 and MgO6 units that share their vertices (see
Figure 1). Two symmetry-independent Mg atoms (referred to as Mg1 and Mg2 in Figure 1) are
present in the crystal system. The Mg1-centered octahedra share edges, forming rods parallel to the
crystallographic c axis, while the Mg2-centered octahedra link these rods through their edges (see
Figure 1).

Figure 1. View (along the c crystallographic axis) of the crystal structure of forsterite. The two
symmetry-independent Mg atoms are indicated according to the octahedral units [Mg(1)O6] and
[Mg(2)O6] (in brown). The tetrahedral [SiO4] unit blocks (in blue) are also indicated. O atoms are
shown in red.

Classical MD simulations at different temperatures adopting the procedure described in
Computational Methods were executed to amorphize the structure of crystalline Mg2SiO4. As the
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primitive unit cell is small (Pbnm space symmetry with lattice parameters of a = 4.79 Å, b = 10.19 Å,
and c = 5.85 Å), in this part, a larger unit cell has been adopted by doubling the c lattice parameter to
favor an easier amorphization of the structure (hereafter referred to as 1 × 1 × 2). In the next section,
a detailed analysis of the effect of the unit cell size on the physicochemical properties of the amorphous
structures is presented. Figure 2 shows the resulting structures at the end of the simulations run
at the different temperatures. As one can see, the initial crystallinity becomes lost when increasing
the temperatures. Figure 3 shows the pair correlation functions, g(r), for the Mg atoms with either
the neighboring Mg atoms (a, Mg–Mg) or the O atoms (b, Mg–O), derived from the simulations at
T = 300, 700, 900, 1200, 1500, and 1800 K. It is worth mentioning that the g(r) curves should tend to 1 at
long ranges. However, due to the relatively small size of the unit cell, if we account for the periodic
boundary conditions (PBC), g(r) curves are limited to ca. 3.5 Å, hampering us in providing significant
information. These g(r) curves are shown in Figure S2 (Supplementary Materials). Therefore, in order
to extend the g(r) curves beyond the limits of the unit cell, we did not consider the PBC and hence,
the g(r) curves are not forced to tend to 1. In our particular case, they tend to 0 as a consequence of
the absence of replica images (i.e., equivalent atomic positions) when the pair correlation functions
were calculated. At 300 K, the g(r) functions first present a sharp peak, followed by a subset of lower
well-defined peaks, in agreement with the crystalline nature of Fo at this temperature. The first peak
is representative of the Mg–Mg and Mg–O lengths of the first shell, while the others represent the
distribution of the Mg–Mg and Mg–O distances of the outer shells. An increase of the temperature
produces a broader profile of g(r), in which the first peak significantly loses intensity, while the others
overlap each other up to a point where at high temperatures, only two broad peaks are appreciable.
These changes clearly indicate that a progressive loss of crystallinity occurs upon temperature increase.

Figure 2. Structures obtained by classical molecular dynamics (MD) simulations. For all simulations,
the initial guess structure was the crystal system. It was initially heated up to the given temperature
and then submitted to the MD simulations at the (N,V,T) ensemble. Unit cells are shown in black. Mg
atoms in green, Si atoms in yellow and O atoms in red.
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Figure 3. Mg–Mg (a) and Mg–O (b) pair correlation functions, g(r), derived from the MD simulations
at the different temperatures.

As the structure generated at T = 1800 K is the most disordered one, this was chosen for study
of the structural and vibrational properties at the DFT level. Figure 4 shows the initial (crystalline)
and the final (amorphous) structures optimized at the B3LYP theory level. It is also worth mentioning
that those structures generated between 400 and 1600 K collapsed onto the crystal system upon
optimization, whereas those between 1700 and 2000 K remained as amorphous structures. Table 2
shows the B3LYP-optimized lattice parameters and the range of the calculated Mg–O and Si–O bond
lengths of amorphous Fo, as well as the volume and the density. For comparison, Table 2 also presents
the same parameters for Fo crystal (experimental and calculated). In addition to the systematic larger
values obtained by the calculated values for the crystal system, results indicate that the range of values
of the amorphous system is larger than the crystal ones. This is indicative that the B3LYP-optimized
amorphous Fo presents a larger distribution of bond lengths characteristic of the amorphous materials.
It is worth mentioning that due to the disorganization of the internal atomic positions in the amorphous
Fo, classifying the Mg atoms as Mg1 and Mg2 is not possible. The cell parameters of the amorphous
Fo experiencing more variation compared to the crystalline values are a and b; that is, a is about 0.2 Å
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larger, while b is 0.8 Å shorter. Calculated lattice angles are also somewhat different, and essentially
deviate from the ideal 90 degrees. Because of the significant shortening of the b cell parameter, the
volume of the amorphous Fo is smaller than the crystal volumes. The fact that the density of the
crystalline systems is lower than the amorphous one is also indicative of the amorphization of the
system. Bearing in mind that amorphous materials are characterized by a random structure and poor
order, giving rise to the presence of porosity.

Figure 4. B3LYP-optimized structures of Mg2SiO4 bulk structure in the crystal form (left) and in an
amorphous form (right) generated by classical MD simulations at T = 1800 K. Unit cells are shown
in black.

Table 2. Bond distance ranges and cell parameters of the Mg2SiO4 bulk structures: experimental values
of the crystal system as well as B3LYP-optimized values of the crystal and amorphous systems. The
calculated volume and densities derived from the B3LYP-optimized geometries are also shown.

Experimental Crystal Amorphous

Si–O (Å) 1.616–1.649 1.628–1.673 1.618–1.693
Mg1–O (Å) 2.069–2.126 2.073–2.131 1.929–2.226
Mg2–O (Å) 2.040–2.166 2.062–2.222

a (Å) 4.746 4.789 4.93
b (Å) 10.18 10.25 9.37
c (Å) 5.976 6.009 5.97 (11.94) 1

α (degrees) 90.0 90.0 87.4
β (degrees) 90.0 90.0 90.6
γ (degrees) 90.0 90.0 88.6

Volume (Å3) 288.73 295.10 275.78 (551.00) 1

Density (g·cm−3) 3.22 3.34 3.37
1 Because of the enlargement of the unit cell along the c axis (see text), for a proper comparison, bare values were
derived from the actual calculated values (values in parenthesis).

In order to understand the nature of the amorphization of the silicate material, the deviation of
the internal O–Si–O and O–Mg–O angles of the optimized system with respect to the ideal values
is examined (reported in Table 3). These values reveal that the O–Mg–O angle presents the largest
deviation (≈15.3%), and therefore, the distortion of these angles contributes significantly to the
amorphous nature. However, the deviation of the O–Si–O angle is not insubstantial (≈6.5%), although
the distortion of these angles also contributes by some amount to the internal atomic disorder.

The high-frequency dielectric constants (ε∞) were also calculated using the CPKS scheme
implemented in the CRYSTAL code. Results are shown in Table 4, in which the ε∞ values along
the x, y, and z directions of the amorphous Fo are compared with the experimental and calculated ones
for Fo crystal. For the crystal systems, ε∞ is notably symmetrical, the values slightly differing as a
function of the direction; that is, both the experimental [118] and calculated values give ε∞,x as the
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largest value, yet ε∞,y as the smallest, with a difference of 0.12–0.15 units. In contrast, for amorphous
Fo, the difference between the largest and the smallest ε∞ values, which now correspond to ε∞,x and
ε∞,z, respectively, is a meager 0.07 units. This is consistent with the disordered nature of amorphous
Fo, since the direction dependency of ε∞ typical of crystalline systems is partially lost.

Table 3. Mean values and the corresponding average deviations (with respect to the ideal value) of
the O–Si–O and O–Mg–O angles of the optimized amorphous 1 × 1 × 2, 2 × 1 × 2, and 2 × 2 × 2
Mg2SiO4 systems.

Angle
(Degrees) Ideal Value

Mean Value ± Standard Deviation
(Average Deviation)

1 × 1 × 2 2 × 1 × 2 2 × 2 × 2

O–Si–O 110.0 109.5 ± 7.2(6.53%) 108.9 ± 12.4(11.3%) 104.9 ± 12.8(11.6%)

O–Mg–O 90.0 94.7 ± 13.8(15.3%) 100.9 ± 22.1(24.6%) 104.1 ± 16.5(18.3%)

Table 4. High-frequency dielectric constants (ε∞) for the Mg2SiO4 bulk structures along the x, y, and z
directions: experimental values of the crystal system and B3LYP-optimized values of the crystal and
amorphous systems.

Experimental 1 Crystal Amorphous

ε∞,x 2.789 2.571 2.284
ε∞,y 2.673 2.424 2.247
ε∞,z 2.726 2.475 2.218

1 From reference [118].

Crystalline Fo has an orthorhombic structure. It presents 28 atoms in the unit cell (six
symmetry-independent atoms), which give rise to four formula units per cell. Its symmetry
decomposition corresponds to Гtotal = 11Ag + 11B1g + 7B2g + 7B3g + 10Au + 10B1u + 14B2u + 14B3u,
in which the three B1u, B2u, and B3u correspond to rigid transitions and the remaining modes are
the vibrational and rotational modes that can be classified as: 35 IR-active modes (9B1u + 13B2u +
13B3u), 36 Raman-active modes (11Ag + 11B1g + 7B2g + 7B3g), and 10Au inactive modes. In previous
works, mode classification and band assignments of crystalline Fo have exhaustively been discussed
by means of infrared, Raman, and reflectance spectroscopic measurements [12,59,60,119–124]. In this
part, we focus our attention on the most important changes due to the amorphization of the crystal
system. Figure 5 shows the B3LYP-simulated IR spectrum of amorphous Fo, where for comparison,
the B3LYP-simulated and the experimental IR spectra for the crystal systems are also shown. The
simulated spectra were broadened by Lorentzian functions with a typical width of δν = 20 cm−1, which
is comparable with the bandwidth of experimental IR spectrum. For crystal Fo, the experimental
and theoretical vibrational IR and Raman spectra compare fairly well. In the IR case, both spectra
present a wealth of narrow bands in agreement with their crystalline nature. As already described
by some of us and by other colleagues, B3LYP frequencies reproduce the experimental IR values
very well (for more details, see [90,125]). Figure 6 shows the B3LYP-simulated Raman spectrum of
amorphous and crystal Fo, and Table 5 reports the calculated Raman-active frequencies (classified
by their symmetries) with the corresponding intensity of the crystalline system, which are compared
with those measured experimentally (including frequency deviations). In the Raman case, B3LYP
reproduces the experimental Raman data quite well, with a mean average deviation of 24.9–34.6 cm−1

and a largest deviation of 81–82 cm−1. Remarkably, for the calculated two most intense Raman peaks
(i.e., at 848 and 883 cm−1), the deviations compared to the corresponding experimental values are 27
and 22–24 cm−1, respectively.
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Figure 5. B3LYP-simulated IR spectra of the amorphous (a) and crystalline forsterite (b). The
experimental spectrum of the crystalline forsterite is also included (c).

Figure 6. B3LYP-simulated Raman spectra of the amorphous (a) and crystalline forsterite (b).
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Table 5. Active Raman frequencies (ν, in cm−1) calculated in this work and their comparison with
the experimental data. The shifts between the calculated and the experimental values (∆ν) are
also provided.

N
This Work [121] [119] [60] [59]

ν I (%) ν ∆ν ν ∆ν ν ∆ν ν ∆ν

Ag

1 212 0.05 184 28 183 29 183 29 183 29
2 261 0.08 227 34 226 35 227 34 227 34
3 351 0.11 304 47 304 47 305 46 305 46
4 367 1.20 329 38 329 38 329 38 329 38
5 391 0.78 339 52 332 59 340 51 340 51
6 474 0.62 421 53 422 52 424 50 424 50
7 608 12.4 544 64 545 63 546 62 545 63
8 675 22.2 608 67 608 67 609 66 609 66
9 848 81.1 824 24 824 24 826 22 826 22

10 883 100 856 27 856 27 856 27 856 27
11 999 20.6 966 33 965 34 966 33 966 33

B1g

12 253 0.00 - - 220 33 224 29 197 56
13 294 0.06 - - 274 20 260 34 265 29
14 361 1.05 316 45 318 43 318 43 317 44
15 417 1.68 - - 351 66 - - - -
16 420 0.38 - - 383 37 418 2 418 2
17 489 2.21 434 55 434 55 434 55 434 55
18 658 1.39 588 70 582 76 585 73 583 75
19 713 0.43 - - 632 81 632 81 632 81
20 869 1.28 838 31 838 31 839 30 839 30
21 897 3.37 866 31 866 31 866 31 866 31
22 1012 0.37 - - 975 37 976 36 976 36

B2g

23 - - - 175 - 142 - - -
24 229 0.01 243 −14 242 −13 244 −15 244 −15
25 343 0.17 - - 323 20 324 19 324 19
26 365 0.08 - - 365 0 368 −3 365 0
27 431 2.93 - - - - - - 407 24
28 463 0.69 434 29 439 24 441 22 438 25
29 665 14.3 588 77 586 79 588 77 585 80
30 956 6.98 882 74 881 75 884 72 881 75

B3g

31 203 0.00 243 −40 - - 226 −23 - -
32 296 0.00 - - 286 10 272 24 - -
33 - 316 - 315 - 318 - 314 -
34 369 0.31 373 −4 374 −5 376 −7 374 −5
35 413 1.35 409 4 410 3 412 1 406 7
36 - - - 435 - - - 466 -
37 514 3.34 - - - - - - 484 30
38 670 2.82 588 82 592 78 595 75 591 79
39 908 5.14 920 −12 920 −12 922 −14 920 −12

More interesting are the differences between the B3LYP-simulated crystalline and amorphous IR
and Raman spectra. Crystal Fo presents a set of well-defined bands, in which the total active vibrations
are not fully visualized in the form of bands because some are either overlapped with contiguous
bands or present at very low intensities. The spectra of amorphous Fo are clearly different; that is,
they are based on single broad bands. In particular, the IR and Raman spectra of amorphous Fo
present three and two well-defined zones, respectively: for IR, one band between 1000–800 cm−1,
a peak at about 600 cm−1, and another band between 500–300 cm−1; for Raman, bands between
1000–800 cm−1 and between 700–400 cm−1. These regions correspond essentially to the Si–O stretching
and O–Si–O bending vibrations, respectively. However, vibrations associated with rotations of the
SiO4 tetrahedra and translations of Mg2+ also contribute in the low region of the lower bands. The
significant broadening and blending of the IR bands presented by amorphous Fo compared to the
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crystal systems is due to the wider and more diverse distribution of bond lengths and angles given in
the former system, which is typical in amorphous materials. In fact, the hyperfine structure of the IR
spectra of amorphous Fo (built by bands consisting of single lines) presents a great number of active
vibrational bands that, upon imposing band width, overlap each other, rendering squat-shaped bands.
The presence of more active vibrational bands compared to the crystal system is mainly due to the
lack of symmetry in amorphous Fo. This means that some vibrations that are inactive in the crystal
system, according to selection rules, are active in the amorphous one. Moreover, the cell enlargement
means that equivalent vibrations by the translational symmetry in the minimal unit cell are different in
the super-cell, giving rise to the apparition of new vibrational bands. Astronomical IR and Raman
measurements of cosmic silicates revealed that they are mainly in an amorphous state. The recorded
spectra generally present two single broad bands at about 1000 cm−1 and 550 cm−1, associated with the
Si–O stretching and O–Si–O bending vibrations, respectively [28]. Our simulated vibrational results of
the amorphous Fo are thus in line with the astronomical IR and Raman spectral features.

As anticipated in Computational Methods, the reflectance spectrum of a given 3D-periodic system
can be simulated with the CRYSTAL code. An important ingredient for the construction of the
reflectance curves is ε∞, whose values are discussed above. The B3LYP-simulated reflectance spectra
of Fo, both crystalline and amorphous, are shown in Figure 7. The reflectivity is separated according
to the three crystallographic axes (a, b, and c), which for the crystal system, are coincident with the
vibration symmetry (B3u, B2u, and B1u, respectively). The topology of the simulated reflection curves
of crystalline Fo perfectly matches with the experimental ones. A detailed analysis of the effect of
different fitting procedures to properly reproduce the experimental reflectance spectra is provided
in [88]. The B3LYP-simulated reflectance spectra of amorphous Fo is significantly different. The broad
reflectance curves of the crystalline system are sharper and present more bands. This is, in line to what
is mentioned above, due to the higher number of active vibrational modes in the amorphous systems.

Figure 7. B3LYP-simulated reflectance spectra of the crystalline and amorphous forsterite along the a,
b, and c directions.
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3.2. Unit Cell Size Effects in the Amorphisation of the Mg2SiO4 System

In the previous section, a comprehensive comparison of the bulk physicochemical properties
between crystalline and amorphous Mg2SiO4 is presented for a given unit cell. In this section, we aim
to explore if the degree of amorphization is affected by the unit cell size. Our initial hypothesis is: the
larger the unit cell, the more internal structural parameters to be randomly disordered, and accordingly,
the larger the degree of amorphization. To demonstrate the validity (or not) of our hypothesis, different
unit cell sizes have been considered, they have been amorphized, and an analysis of their structural,
dielectric, and vibrational properties has been carried out by comparing these physicochemical
properties between them. It is worth mentioning that the possible differences are associated with
the different degree of amorphization, since, rigorously speaking, these physicochemical properties
are not strictly size-dependent. However, we anticipate that the degree of amorphization is, in our
systems, linked to the size of the unit cell and accordingly, these physicochemical properties are indeed
ultimately related to the size of the unit cells.

To carry out these investigations, the following different super-cell sizes have been adopted:
1 × 1 × 2, 2 × 1 × 2, and 2 × 2 × 2. The procedure to amorphize the corresponding crystalline systems
was the same as that presented in the previous section; that is, classical MD simulations at 1800 K
followed by B3LYP optimization of the resulting geometry to carry out the theoretical analysis. For all
super-cell systems, the Mg–Mg and Mg–O g(r) pair correlation functions are similar, showing several
broad but distinguishable bands representing the different Mg–Mg and Mg–O shells (see Figure S3,
Supplementary Materials). The similarity between the band widths of the different super-cell systems
indicates that for all cases, the amorphization was definitely achieved.

The B3LYP-optimized structures of the different super-cell systems are shown in Figure 8, both
in their atomistic and polyhedral forms. Table 6 presents the B3LYP-calculated lattice parameters,
the range of the calculated Mg–O and Si–O bond lengths, and the volume and the density of the
bulk materials. In Table 3, the mean values and the associated deviations of the internal O–Si–O and
O–Mg–O angles compared to the ideal values are also reported for the 2 × 1 × 2 and 2 × 2 × 2 systems.
By visual inspection of the images of Figure 8, one can identify that the larger the super-cell size, the
more distorted the tetrahedral SiO4 and octahedral MgO6 building blocks. This larger distortion is
also reflected by the mean values and the average deviations of the internal angles. In the 2 × 1 ×
2 and 2 × 2 × 2 super-cell systems, they are larger than in the 1 × 1 × 2 one. In addition to this,
from a careful visual inspection of the atomistic structure of the amorphous systems, we realized
that some unusual structural motifs are present in the 2 × 1 × 2 and 2 × 2 × 2 systems, which are
absent in the 1 × 1 × 2 one; in particular: (i) pentacoordinated Si atoms (SiO5 adopting a trigonal
pyramid-like geometry), (ii) pentacoordinated Mg atoms (MgO5 adopting either square-pyramid-like
or trigonal pyramid-like geometries), and (iii) tetracoordinated Mg atoms (MgO4 adopting highly
distorted tetrahedral geometries). The presence of these structural motifs is indicative of the high
degree of amorphization of these systems. In addition to this visual inspection, we also calculated
the area under the g(r) curves to measure the coordination numbers. For Si–O, they are 4.06, 4.12
(2 × 1 × 2), and 4.23 for the 1 × 1 × 2, 2 × 1 × 2, and 2 × 2 × 2 systems, respectively, clearly
indicating an increase of the Si–O coordination number for larger unit cells, due to the presence of
these highly-coordinated motifs. It is worth mentioning that Si atoms with coordination numbers
larger than 4 have been reported in a couple of synthesized minerals; namely, a high-pressure phase
of MgSi(OH)6 [126] and a dense phase (so-called phase D) of MgSi(OH)2O4 [127,128], predicted by
means of theoretical calculations to occur in thaumasite [129], a naturally-occurring mineral present
in the Earth’s crust. For Mg–O, the coordination numbers are kept at 5.82 for all unit cell systems,
probably due to compensation effects in the different Mg coordination spheres.
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Table 6. B3LYP-optimized bond distance ranges and cell parameters of the 1 × 1 × 2, 2 × 1 × 2,
and 2 × 2 × 2 Mg2SiO4 bulk structures. Volumes and densities are also shown.

1 × 1 × 2 2 × 1 × 2 2 × 2 × 2

Si–O (Å) 1.618–1.693 1.592–1.906 1.579–1.983
Mg–O (Å) 1.929–2.226 1.860–2.211 1.800–2.209

a (Å) 4.93 10.168 9.589
b (Å) 9.37 10.177 20.574
c (Å) 11.9 11.329 11.937

α (degrees) 87.4 89.6 85.7
β (degrees) 90.6 83.6 93.4
γ (degrees) 88.6 97.1 91.7

Volume (Å3) 551.00 1156.77 2343.91
Density (g·cm−3) 3.373 3.214 3.172

The calculated densities are reported in Table 7 and indicate that they decrease when the sizes
of the super-cell increase; that is, 3.373 g·cm−3 (1 × 1 × 2) > 3.214 g·cm−3 (2 × 1 × 2) > 3.172 g·cm−3

(2 × 2 × 2). This is consistent with the fact that the larger the super-cell size, the larger the amorphous
nature of the system. Indeed, by increasing the size of the super-cell, the structures can sport more
defects and porosity, and consequently, the density is lower. The calculated ε∞ constants along the x, y,
and z directions (reported in Table 7) show the same pattern. An incremental increase of the super-cell
size leads to a reduced dependency along the direction of the ε∞ values as a consequence of the larger
degree of disorder, which is equal along the three directions.

Table 7. Calculated high-frequency dielectric constants (ε∞) for the B3LYP-optimized 1 × 1 × 2, 2 × 1
× 2, and 2 × 2 × 2 Mg2SiO4 bulk structures along the x, y, and z directions.

1 × 1 × 2 2 × 1 × 2 2 × 2 × 2

ε∞,x 2.284 2.153 2.148
ε∞,y 2.247 2.161 2.135
ε∞,z 2.218 2.168 2.132

In relation to the vibrational properties, Figure 9 shows the simulated IR, Raman, and reflectance
spectra. As mentioned above, the 1 × 1 × 2 system presents three and two well-defined broad IR and
Raman bands, respectively. In contrast, the IR spectrum of the 2 × 2 × 2 system presents two largely
broad bands; that is, the two bands in the low-frequency region of the 1 × 1 × 2 system overlap in
the 2 × 2 × 2 system. Similar changes occur in the Raman spectrum: the two regions present in the
1 × 1 × 2 system become fused in the 2 × 2 × 2 system. The IR and Raman spectra of the 2 × 1 × 2
system present intermediate profiles between those of the 1 × 1 × 2 and the 2 × 2 × 2 systems; that
is, the different frequency regions clearly identified in the 1 × 1 × 2 system are still identifiable, but
are more diffuse. A similar transition in the topology of the reflectance spectra can be observed from
the 1 × 1 × 2 and 2 × 1 × 2 to the 2 × 2 × 2 systems. In this case, an increase of the unit cell size
leads to spectra that present sharper and more bands due to the major number of independent active
bands. All these changes in the topology of the vibrational-related spectra clearly indicate that there is
a progressive increase of the amorphous nature from the 1 × 1 × 2 to the 2 × 2 × 2 super-cell systems.
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Figure 8. B3LYP-optimized structures of the bulk Mg2SiO4 adopting the 1 × 1 × 2 (a), 2 × 1 × 2 (b),
and 2 × 2 × 2 (c) super-cell configurations generated by classical MD simulations at T = 1800 K, both
in the atomistic views (left) and in the polyhedral forms (right).
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Figure 9. B3LYP-simulated infrared (A), Raman (B), and reflectance spectra along the a, b, and c
directions (C) of the Mg2SiO4 bulk structures adopting the 1 × 1 × 2, 2 × 1 × 2, and 2 × 2 × 2
super-cell configurations.
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4. Conclusions

By combining classical MD simulations with periodic DFT calculations, a detailed theoretical
study on the structural, dielectric, and vibrational properties of Mg2SiO4 as a silicate test case has been
presented. The amorphous structures for Mg2SiO4 have been generated using classical MD simulations
at different temperatures within a melt-and-quench scheme, taking the crystalline phase as the initial
guess structure. Periodic B3LYP calculations have been carried out to optimize the geometries of the
generated structure and calculate their high-frequency dielectric constants and simulate the IR, Raman,
and reflectance spectra. The most interesting points emerging from this work are:

• The combined approach of classical MD for structure evolution and quantum chemical DFT for
electronic structure analysis is a reliable technique to investigate the physicochemical properties
of silicates.

• The Mg–Mg and Mg–O pair correlation functions, g(r), derived from the classical MD simulations
indicate that an increase of the temperature produces broader profiles of g(r), indicating a
progressive loss of crystallinity with temperature.

• B3LYP-optimized geometries of the amorphous bulk systems present larger distributions of
bond lengths and angles than the crystal analogues (for instance, the Si–O distance ranges,
1.618–1.693 Å vs 1.628–1.673 Å) due to the significant disorganization of the internal atomic
positions. Consequently, the tetrahedral SiO4 and octahedral MgO6 motifs become largely
distorted, which is characteristic of amorphous materials. Calculated densities of the amorphous
bulks are lower than the crystalline ones; that is, 3.373 (1 × 1 × 2), 3.214 (2 × 1 × 2), 3.172
(2 × 2 × 2) versus 3.34 (crystalline), due to the presence of internal cavities produced during the
amorphization process.

• Related to the high-frequency dielectric constants along the x, y, and z directions (ε∞,x, ε∞,y,
and ε∞,z), while in the crystalline Mg2SiO4 they are clearly different (2.571, 2.424, and 2.475,
respectively), in agreement with the direction dependency caused by the inherently crystallinity
of the system, in the amorphous phases, they are more similar (e.g., for the 2 × 2 × 2 system,
2.148, 2.135, and 2.132, respectively), showing a convergence between the calculated ε∞,x, ε∞,y,
and ε∞,z values. Accordingly, ε∞ values do not depend on a particular direction because the
system is likewise disordered in all the directions.

• While the IR and Raman spectra of the crystalline phase present well-defined narrow bands
covering the 1000–200 cm−1 region, the spectra of the amorphous analogues, due to the wider
and more diverse distribution of lengths and angles, are dominated by broader bands caused
by multiple bands overlapping; namely, for IR, three broad bands are observed (between
1000–800 cm−1, a peak at 600 cm−1, and between 500–300 cm−1), while for Raman, two broad
bands are observed (between 1000–800 cm−1 and between 700–400 cm−1). The simulated spectra
agree fairly well with those recorded for Mg2SiO4 in astrophysical environments, with the IR
broad bands being centered at 1000 cm−1 and 500 cm−1. In the case of reflectance spectra,
the broad reflectance curves of the crystalline system change with bands increasing in sharpness
and number for the amorphous systems, due to the presence of more active modes.

• Regarding the unit cell size effects, results clearly provide evidence that an increase of the unit
cell size infers a larger degree of amorphization due to the presence of more internal degrees of
freedom to be disordered.

The presented results can be useful in several aspects. From a computational point of view,
from these amorphous bulk systems, one can generate slab surface models in the same amorphous
state to carry out surface chemical studies (for instance, to study a given heterogeneous catalytic
process). Additionally, results can be used as a benchmark for the development of force fields devoted
to simulating amorphous/glassy silicates. The characterized spectroscopic properties can be stored
in current astronomical databases and archives devoted to measuring spectroscopic properties of
astrophysical silicate-based dust particles, to be compared with forthcoming results. Finally, they
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can stimulate future experimental work in the synthesis and physicochemical characterization of
amorphous forsterite under highly controllable conditions, whose results can be compared with the
present ones.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/8/8/353/s1,
Figure S1: GULP-optimized structure for the bulk of the crystal Mg2SiO4. View of the unit cell (left), view of the
extended periodic system (right), Figure S2: Mg–Mg (a) and Mg–O (b) pair correlation functions derived from the
MD simulations at the different temperatures accounting for periodic boundary conditions, Figure S3: Mg–Mg
(a) and Mg–O (b) pair correlation functions derived from the classical MD simulations for the 1 × 1 × 2, 2 ×
1 × 2 and 2 × 2 × 2 systems, Table S1: Bond distance ranges (in Å) of the crystalline 1 × 1 × 1 Mg2SiO4 bulk
structures: experimental, GULP-optimized, and B3LYP and B3LYP-D2 optimized values, Table S2: Bond distance
ranges (in Å) and lattice parameters (distances in Å, angles in degrees) of the amorphous 1 × 1 × 2 Mg2SiO4 bulk
structure optimized at B3LYP and B3LYP-D2 theory level, Scheme S1: Cell parameters and fractionary coordinates
of the optimized systems.
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