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Abstract: The separation of sylvite (KCl) and halite (NaCl), two main minerals in potash ores,
is difficult because of the high ion concentration, fine particles of NaCl, and aggregation of KCl and
NaCl in the saturated system. This study employed ammonium chloride (NH4Cl) as a new depressant
and dodecyl morpholine as a collector in the reverse flotation process. The depressing mechanisms
were studied by adsorption capacity experiments, infrared spectral analysis, and molecular dynamics
simulations. The flotation tests showed that NaCl recovery increased to 97% after the addition of
NH4Cl, while KCl recovery was reduced to <1%. Notably, NH4Cl not only acted as a selective KCl
depressant, but also activated NaCl flotation. The FTIR measurements showed that NH4Cl was
physically adsorbed onto the KCl and NaCl surfaces. Adsorption capacity experiments and molecular
dynamics simulations confirmed more favorable NH4Cl adsorption on the KCl surface than on the
NaCl surface. Moreover, the KCl mineral surface was more hydrophilic, while that of NaCl was more
hydrophobic. Relative concentration analysis revealed that >90% ammonium and chloride ions were
distributed 2–10 Å away from the KCl surface but were dispersed on the NaCl surface, indicating that
NH4Cl exhibited stronger intermolecular interactions with KCl than with NaCl.

Keywords: KCl; NaCl; NH4Cl; flotation; molecular dynamics simulations

1. Introduction

Potash is a significant raw material in medicine, food, and other chemical industries and is most
notably used as a fertilizer in agriculture [1,2]. Among all the mineral salt species used in sylvite
(KCl) production, halite (NaCl) separation is very difficult because of its high ion concentration,
fine particles, and its aggregation with KCl in a saturated system. Thus, globally, most potash ores
are concentrated by froth flotation [3]. In this process, direct flotation collectors comprise alkyl fatty
amines [4] and alkyl sulfonates [5], while reverse flotation collectors contain carboxylic acids [6],
amides [7], and morpholines [8].

Previous studies [9,10] have shown that in the flotation of KCl, aliphatic primary amines with
C12–C18 carbon chain lengths exhibit better flotation and the flotation effect improves as the carbon
chain length increases. Currently, over 80% of the world’s potash is produced by the selective flotation
of KCl from NaCl and other gangue minerals using long-chain (C16–C22 aliphatic chains) amine
collectors, as observed in potash mining in Saskatchewan [11]. However, the process of eliminating
the C16–C22 long-chain amines is relatively harsh and comprises melting at temperatures in the range
70–90 ◦C and neutralization with hydrochloric or acetic acids [12]. In the actual flotation process,
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the amine collector of the KCl concentrate products afforded smaller granularity, captured NaCl fine
particles to concentrate the products, and degraded the quality of the concentrate, thereby hindering
the production of highly pure KCl. Alkylmorpholine has been employed as a reverse flotation collector
of KCl. Alkylmorpholine sorption at the halite surface proceeds with high selectivity, creating the
conditions necessary for efficient and selective flotation separation of NaCl and KCl [8]. This process
does not require the addition of auxiliary agents and shows relatively good flotation index [13].
Currently, the reverse flotation method is being applied in the potash industry, including operations
in the Dead Sea (Israel and Jordan), Verkhnekamskoye (Russia), and Chaerhan Salt Lake (Qinghai
province, China). Dodecyl morpholine (DMP) was used as a collector to float NaCl from carnallite in
the Qinghai Salt Lake Group operations, whereby ~50 g/t carnallite feed was employed. The flotation
recovery of NaCl was ~90%, while the KCl grade in the final product was in the range 90–95%, with an
overall KCl recovery of 59–62% [13]. However, dodecyl morpholine continues to carry KCl during
flotation. Thus, for industries with high-quality KCl requirements, obtaining high-quality KCl products
remains a problem.

Alkyl amines, which are used as direct flotation collectors, are selectively adsorbed onto
KCl [14,15]. Thus, it follows that NH4Cl can also be effectively adsorbed onto the KCl surface because
its ammonium ion is similar to the alkyl ammonium ion. However, the alkyl amine hydrophobic
carbon chains increase the hydrophobicity of the mineral surface. Hence, the KCl surface is more
hydrophilic after the addition of NH4Cl because this depressant does not comprise a hydrophobic
carbon chain and its chloride ion is hydrophilic. Thus, NH4Cl is the ideal KCl depressor in theory.
In this study, the effect of NH4Cl as a depressor in the DMP flotation of KCl was elucidated.
Furthermore, the mechanism of NH4Cl adsorption was investigated through adsorption experiments,
infrared spectroscopy, and molecular dynamics (MD) simulations.

2. Experimental

2.1. Materials and Reagents

Analytically pure KCl and NaCl samples were used as pure minerals. Both samples were dry
ground and sieved. The fractions of pure KCl and NaCl with the particle sizes 165–200 µm and
<200 µm, respectively, were obtained as flotation samples and used as single minerals. The X-ray
powder diffraction spectra revealed that the purities of the KCl and NaCl samples were 98% and 99%,
respectively. Both minerals were ground in a ceramic ball mill and the fractions in the size range
38–74 µm were used in the flotation tests. Deionized water with a resistivity >18 MΩ·cm was used in
all the experiments. The reagents used in the study are listed in Table 1.

Table 1. Reagents used in experiments.

Chemical Concentration Supplier Role

KCl 98% Sinopharm Chemical Reagent
Co., Ltd., Beijing, China Pure minerals

NaCl 99% Sinopharm Chemical Reagent
Co., Ltd., Beijing, China Pure minerals

MgCl2·6H2O 99% Sinopharm Chemical Reagent
Co., Ltd., Beijing, China

Preparation of
saturated brine

CaSO4·2H2O 99% Sinopharm Chemical Reagent
Co., Ltd., Beijing, China

Preparation of
saturated brine

NH4Cl 99% Sinopharm Chemical Reagent
Co., Ltd., Beijing, China Regulator

DMP - In-house Collector

The saturated brines were prepared by dissolving a sufficient amount of salt (Table 2) in Millipore
water with stirring for 2 h. The saturated solutions were then stored at room temperature for 24 h
and filtered before use. The DMP solution (0.01 g/L, 99% purity) was prepared in the laboratory with
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saturated brine as the solvent. Flotation tests were conducted using DMP as the collector and NH4Cl
as the regulator. All the reagents used in the tests were of analytical grade.

Table 2. Ingredients of salt brine.

Composition MgCl2 NaCl KCl CaSO4 H2O

Content (%) 33.60 0.55 0.37 0.14 65.34

2.2. Flotation Tests

The single-mineral flotation KCl and NaCl tests were conducted on an XFG flotation machine
(Exploring Machinery Plant, Changchun, China) with a volume of 50 mL and an impeller speed
of 1850 rpm (Figure 1). A well-configured and filtered saturated brine solution was used as the
flotation medium. In each test, 10 g mineral sample and 40 mL saturated brine solution were added
in the cell and conditioned for 3 min. The flotation experiment was divided into two parts: first,
the suspension was dosed with 900–1500 g/t DMP as the collector. Subsequently, to test the effect of
NH4Cl, the prepared NH4Cl was applied before adding the optimal DMP dosage. The depressant
(if needed) and collector were added sequentially and conditioned for 5 and 10 min, respectively.
After 10 min of flotation, the products were collected, dried, and weighed and the recovery was then
calculated. The flotation flowsheet is displayed in Figure 2. Each flotation test was conducted in
triplicate and the average was reported as the final value. The standard deviation, which is presented
as an error bar, was obtained from the mean of the three measurements per experimental condition.
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Figure 2. Flowsheet of the single-mineral flotation tests.

2.3. Adsorption Measurements

The adsorption measurements were completed using a total organic carbon analyzer (TOC-L
CPH/CPN, Shimadzu Corporation, Kyoto, Japan). Different dosages were used as the dosing
conditions, while a saturated salt brine solution with no added minerals was set as the reference
group. A total of 10 g mineral was added to the experimental group, while no minerals were added to
the reference group. The volume of the entire slurry was maintained at 40 mL after the addition of
the mineral (in different dosages). All the pulp was placed in a clean beaker and stirred in a magnetic
stirrer for 15 min, after which the supernatant was withdrawn. The sample was diluted four-fold in a
50 mL PET tube and centrifuged for 15 min at a speed of 18,000 rpm to determine the total amount
of organic carbon. The experiments were repeated at least in triplicate and the average data were
plotted. The standard deviation, presented as an error bar, was obtained using the mean of the three
measurements per experimental condition. The adsorption of the reagent on the mineral surface was
calculated as follows [16,17]:

Γ =
m1 − m2

m
, (1)

where Γ is the adsorption amount, µg/g mineral; m1 is the weight of total reagent in the solution
measured in the reference group, µg; m2 is the weight of total reagent in the solution measured in the
experimental group, µg; and m is the weight of the mineral, g.

2.4. Infrared Spectral Analysis

Fourier-transform infrared spectroscopy (FTIR, Bio-Rad FTS-6000, Cambridge, MA, USA) was
performed at room temperature in the range 4000–400 cm−1. After the pure minerals were conditioned
with the reagents in the solution, the samples were filtered naturally, dried thoroughly in a vacuum
oven at 40 ◦C, and ground to <2 µm in an agate mortar. The spectra of the solids were recorded using
KBr pellets.

2.5. MD Simulations

The adsorption behavior of the ammonium ions on the NaCl (100) and KCl (001) surfaces
was explored by MD simulation. The initial adsorption models were built using the software
package, Materials Studio 6.0 (Dassault Systèmes BIOVIA, San Diego, CA, USA). The condensed-phase
optimized molecular potentials for atomic simulation studies (COMPASS) force-field was used to
calculate the inter- and intra-atomic interactions. Additionally, density functional theory calculations
for the ammonium ion, NaCl (100) surface, and KCl (001) surface were implemented to assign the
charges in the CASTEP module. The Perdew-Burke-Ernzerhof functional with a generalized gradient
approximation was used throughout the study.

Based on the natural cleavage plane reported in previous studies [18,19], the NaCl and KCl
mineral surfaces were built to construct the adsorption models. After the mineral surface models were
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built, the amorphous cell, a packing module, was used for the construction of the reagent matrix on
the surfaces. The chloride ions were added to maintain the system neutral. A strict reagent addition
sequence (Figure 1) was adopted. The built vacuum slab (thickness ca. 80 Å) eliminated the influence
of the period boundary conditions. During the simulation, the ammonium and chloride ions in the
solution moved freely, while the NaCl and KCl sheets were fixed.

Molecular optimization was carried out using a Smart Minimizer to eliminate the possible overlap
of molecules during the process of building the configuration. The simple point-charge model was used
to simulate liquid water. The temperature was controlled by an Andersen thermostat. The canonical
(NVT) ensemble was applied at the temperature 298 K for each system using a Nosé-Hoover thermostat,
while the integration step was set at 1 fs. Finally, each system was simulated for 4 ns to reach the
equilibrium state and the last 1 ns of each trajectory was used for the analysis.

3. Results and Discussion

3.1. NH4Cl as a Depressant for KCl and NaCl

Figure 3a illustrates the effect of the DMP dosage on the flotation of KCl and NaCl in the absence
of NH4Cl. In this flotation system, the NaCl exhibited good flotability, while KCl presented a very
poor flotation ability in the presence of the DMP collector. Further, with an increase in the collector
dosage, in the range 900–1400 g/t, the flotation recovery increased monotonically and a maximum
value of 93.13% NaCl recovery was achieved at 1400 g/t DMP. In the test dosage range 900–1500 g/t,
the flotation recoveries of NaCl and KCl were >70% and <4.5%, respectively. Comparatively, typical
recoveries achieved in some of the flotation plants in Saskatchewan, which used long-chain amines as
collectors, were in the range 85–88% [11]. Qinghai Avic Resources Co., Ltd., in Mahai also employed
traditional KCl flotation from NaCl with an amine as the collector to produce the final KCl product in
the grade range 86–92% [13]. In this experiment, the loss of KCl was >10% when long-chain amines
were used as collectors, exceeding the maximum value (4.5%) of KCl loss rate. This indicates that DMP
exhibits a good selective collecting ability for NaCl and can be utilized to separate NaCl from KCl.
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Figure 3. (a) Effect of the DMP dosage on the recovery of KCl and NaCl and (b) effect of NH4Cl dosage
on the recovery of KCl and NaCl in the presence of DMP.

The flotation response was significantly different when NH4Cl was employed as the depressant.
Figure 3b illustrates the effect of NH4Cl dosage on the flotation of KCl and NaCl in the presence of
DMP. The DMP dosage was fixed at 1300 g/t, the optimal dosage in the DMP flotation system. The KCl
and NaCl recoveries were 4.23% and 89.88%, respectively, in the absence of NH4Cl. After the addition
of NH4Cl, the flotation of KCl was inhibited, while the recovery was <1% in the test dosage range
500–2500 g/t. Interestingly, NH4Cl did not depress the flotation of NaCl but showed an activation
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effect on NaCl. The recovery of NaCl increased with an increase in the NH4Cl dosage and reached
a maximum value of 97.55% at an NH4Cl dosage of 2000 g/t, indicating that NH4Cl promoted the
flotation separation of NaCl and KCl with DMP as a collector.

3.2. Adsorption Capacity Experiments

Figure 4a presents the adsorption capacity of DMP on the NaCl and KCl surfaces. DMP adsorption
was significantly higher onto the NaCl surface than on the KCl surface. The adsorption of DMP onto
KCl and NaCl gradually increased and reached maximum values at dosages of 1300 and 1400 g/t,
respectively. These values agree with the flotation experiment results. Figure 4b illustrates that in
the dosage range tested (500–2500 g/t), the adsorption capacity of NH4Cl onto the KCl surface was
significantly higher than onto the NaCl surface. The adsorption amount of NH4Cl onto the KCl surface
was about 50 µg/g higher than that on the NaCl surface and increased with an increase in the NH4Cl
dosage. The difference between the adsorption amounts of the two minerals reached a maximum of
71.9 µg/g at the NH4Cl dosage 2500 g/t.
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Figure 4. Absorption capacity of (a) DMP and (b) NH4Cl on the KCl and NaCl surfaces.

3.3. FTIR Spectroscopy Analysis

FTIR is commonly used to characterize the mechanism of the reaction between a mineral and a
reagent. The FTIR spectra of NH4Cl, KCl, and KCl reacted with NH4Cl are presented in Figure 5. In the
NH4Cl spectrum, the characteristic sharp band near 3137 cm−1 corresponds to the stretching N–H
vibration, while the band near 1402 cm−1 was assigned to the flexural vibration of the ammonium
ion [20]. After the reaction between KCl and NH4Cl (Figure 5c), characteristic sharp bands near 1404
and 3137 cm−1 on the KCl surface, corresponding to the flexural vibration of the ammonium ion and
the N–H stretching vibration, respectively, were observed. After treatment with NH4Cl (Figure 5e),
peaks from ammonium ion flexural and N–H stretching vibrations were also observed, suggesting
that NH4Cl adsorbed onto the NaCl surface. The spectra of NH4Cl-treated KCl (Figure 5c) and NaCl
(Figure 5e) exhibited absorption peaks characteristic of NH4Cl. However, no band shift was observed,
indicating that the adsorption of NH4Cl on KCl and NaCl is dominated by physical adsorption.
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The DMP FTIR spectra are presented in Figure 6a. The bands at 2922 and 2852 cm−1 were assigned
to the C–H stretching vibration [21,22]. Moreover, weak characteristic peaks of DMP at 3026 and
2802 cm−1 were detected on the KCl surface under the precondition that NH4Cl reacted with KCl,
suggesting that small amounts of DMP adsorbed onto the KCl surface. The characteristic peaks of
DMP at 3029 and 2802 cm−1 were still significant in the NaCl+NH4Cl spectrum (Figure 6e), indicating
that DMP was effectively adsorbed onto the NaCl surface in the presence of NH4Cl. Based on these
results, it can be concluded that significantly strong physical adsorption of DMP occurs on the NaCl
surface after treatment with NH4Cl. On the other hand, DMP hardly adsorbs on the NH4Cl-treated
KCl surface. These FTIR results support the flotation results.
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3.4. Computation Results by MD Simulations

3.4.1. NH4Cl Adsorption States on the NaCl and KCl Crystal Surfaces in Vacuum

MD simulation was used to investigate the solid-liquid interface properties and determine the
micro-adsorption structure on a molecular scale [23–26]. Studies have reported that NH4Cl adsorbs
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on KCl through the chloride ions, which act with the surface potassium atoms. Figure 7 presents the
models of the mineral–reagent complex after NH4Cl adsorption in vacuum. Almost all the chloride
ions absorbed onto the KCl surface and interacted strongly with the potassium atoms. Moreover,
the ammonium ions were also close to the KCl surface, probably because of their interaction with the
surface chloride ions and the chlorine atoms in the KCl crystal. On the other hand, in the NaCl system
(Figure 7b), the ammonium and chloride ions were alienated from the surface and did not collect at
the NaCl surface.
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3.4.2. NH4Cl Adsorption States on the NaCl and KCl Crystal Surfaces in the Presence of
Water Molecules

Retaining the original vacuum condition, 200 water molecules were added to the system to
investigate the effects of the ammonium and chloride ions on the KCl and NaCl surfaces in the
presence of water as well as the hydrophilicity and hydrophobicity of the two minerals. Figure 8a
illustrates that the ammonium and chloride ions interacted strongly with KCl and were effectively
adsorbed onto the mineral surface. On the other hand, in the KCl system, the water molecules were
close to the mineral surface because KCl is hydrophilic. The data in Figure 8b revealed that in the
presence of water molecules, the ammonium and chloride ions were further away from the NaCl
surface because of the hydrophobicity of NaCl. The above conditions were consistent with those
observed under vacuum conditions and validated the conclusion reached on flotation.
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Figure 8. MD simulation snapshot of ammonium and chloride ions near the (a) KCl and (b) NaCl
surfaces with 200 water molecules each. The color scheme is as follows: red, oxygen atoms; white,
hydrogen atoms; blue, nitrogen atoms; purple, potassium atoms; yellow, sodium atoms; and green,
chlorine atoms.

The analysis of the relative concentrations of the reagents as a function of distance from the
mineral surface provided a quantitative basis for the adsorption ability [27]. The NH4Cl distribution
on different minerals could therefore be quantified by calculating the relative concentrations of the
ammonium and chloride ions [28]. The concentration profiles along the z-axis were calculated with the
normal z-axis on the mineral surface set as the zero point (Figure 9). After the interaction of NH4Cl
with KCl, the ammonium and chloride ions were both distributed at distances in the range 2–13 Å from
the KCl surface and 2–19 Å from the NaCl surface. The relative concentrations of the ammonium ions
in the range 3–8 Å away from the KCl surface are all >10%, while the maximum relative concentration
of ammonium ions 9.46 Å away from the NaCl surface is <10%. Moreover, >90% ammonium ions and
chloride ions were distributed 2–10 Å away from the KCl surface. However, these ions were dispersed
on the NaCl surface, indicating that NH4Cl exhibited a stronger intermolecular interaction with KCl
than with NaCl. The relative concentration distribution of the chloride ions on the KCl and NaCl
surfaces was similar to that of the ammonium ions. In the aqueous solution system, analysis of the
relative concentration results revealed that the ammonium and chloride ions were close to the KCl
surface, indicating that the strong interaction between NH4Cl and KCl led to the strong adsorption of
the former mineral onto the mineral surface. Conversely, the ammonium and chloride ions were far
from the NaCl surface, indicating that NH4Cl exhibited a weaker intermolecular interaction with NaCl
than with KCl. The results of the MD simulations verified the flotation results.
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The simulation results in this study were consistent with the surface charge theory [29], where the
governing mechanism for soluble salt flotation comprised the electrostatic interaction between the salt
surface and the collector species [30]. In the surface charge theory, KCl and NaCl carry opposite charges,
KCl being negatively charged and NaCl being positively charged in their saturated brines. These
speculations were later confirmed by the nonequilibrium electrophoretic mobility measurements [31].
Therefore, the flotation separation of KCl from NaCl was achieved because of the adsorption of cationic
surfactants such as C12–C18 amine ions or positively charged collector colloids on the negatively
charged KCl surface but not on the positively charged NaCl surface [31,32]. MD simulation results
revealed that the adsorption of chloride ions onto the KCl surface resulted in a negatively charged
KCl surface. The results verified the above theory that the KCl surface was negatively charged; thus,
ammonium ions were adsorbed onto the negatively charged KCl surface by electrostatic attraction and
alienated the positively charged NaCl surface because of electrostatic repulsion.

4. Conclusions

Dodecyl morpholine is a selective collector for the flotation of NaCl and KCl. Reverse flotation is
being applied in the industry and is more effective than traditional flotation, which employs long-chain
ammonium compounds as collectors [13,33]. The addition of NH4Cl promoted the separation of KCl
and NaCl. The flotation tests revealed that NH4Cl exerts a considerable inhibitory effect on KCl so
that the recovery was reduced to <1%. It also exhibited a significant activation effect on NaCl so that
the maximum recovery value was 97.55%.

The adsorption experiments and FTIR measurements indicated that DMP adsorption was
significantly higher on the NaCl surface than on the KCl surface. However, the adsorption of NH4Cl
onto the KCl surface was stronger than that on the NaCl surface and the difference increased with an
increase in the NH4Cl dosage. The characteristic DMP peaks at ~3029 cm−1 and ~2802 cm−1 were
still significant on the NaCl surface. On the other hand, the characteristic peaks detected on the KCl
surface in the presence of NH4Cl were weak. Notably, NH4Cl and DMP were physically adsorbed
onto the surfaces of both minerals.

MD simulations demonstrated that the adsorption of NH4Cl onto the KCl surface was very strong
because of the presence of electrostatic forces. However, NH4Cl displayed weak interactions with
NaCl and could not be adsorbed onto the NaCl surface. In an aqueous solution system, the KCl surface
was hydrophilic, while the NaCl surface was hydrophobic. The relative concentration measurements
indicated that the ammonium and chloride ions were close to the KCl surface but far away from that
of NaCl, indicating that NH4Cl exhibited stronger interactions with KCl than with NaCl; this led to its
stronger adsorption onto the KCl surface. The results in this study therefore confirmed that NH4Cl
promotes the flotation separation of NaCl and KCl with DMP as the collector.
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