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Abstract: Marine hydrogenetic Fe–Mn crusts on seamounts are known as potential mineral resources
of rare earth elements plus yttrium (REY). In recent years, increasing numbers of deposits of Fe–Mn
crusts and nodules were discovered in the South China Sea (SCS), yet the enrichment mechanism
of REY is yet to be sufficiently addressed. In this study, hydrogenetic Fe–Mn crusts from the South
China Sea (SCS) and the Western Pacific Ocean (WPO) were comparatively studied with mineralogy
and geochemistry. In addition, we used an in situ REY distribution mapping method, implementing
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a sequential leaching
procedure to investigate the partitioning behavior of REY in the Fe–Mn crusts. The typical Fe–Mn
crusts from SCS were mainly composed of quartz, calcite, vernadite (δ-MnO2), and amorphous Fe
oxides/hydroxides (FeOOH). The Fe–Mn crusts from the Central SCS Basin and the WPO contained
quartz, δ-MnO2, FeOOH, todorokite, and phillipsite. Furthermore, geochemical analysis indicated
that the typical SCS crusts had a higher growth rate and lower REY concentrations. The LA-ICP-MS
mapping results showed that the δ-MnO2 and FeOOH dominated the occurrence phases of REY in
the SCS crusts. Four mineral phases (i.e., easily exchangeable and carbonate, Mn-oxide, amorphous
FeOOH, and residual aluminosilicates) in these Fe–Mn crusts were separated by a sequential leaching
procedure. In the SCS and WPO crusts, the majority of total REY (ΣREY) was distributed in the
Mn-oxide and amorphous FeOOH phases. The post-Archean Australian shale-normalized REY
patterns showed that light REY (LREY) and heavy REY (HREY) were preferentially adsorbed onto
δ-MnO2 and FeOOH, respectively. It is noteworthy that ~27% of ΣREY was associated with the
residual aluminosilicates phase of the WPO crusts. The La/Al ratios in the aluminosilicates phase
of the typical SCS crusts were the values of the upper crust. We conclude that large amounts of
terrigenous materials dilute the abundance of REY in the SCS crusts. In addition, the growth rates of
Fe–Mn crusts have a negative correlation with the FeOOH-bound and aluminosilicate-bound REY.
As a result of the fast growth rates, the SCS crusts contain relatively low concentrations of REY.
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1. Introduction

Marine ferromanganese (Fe–Mn) crusts are Fe–Mn oxides/hydroxides that precipitate on
seamounts, ridges, and plateaus devoid of sediments from seawater [1–3]. Fe–Mn crusts are
classified into three main categories of origin: hydrogenetic, diagenetic, and hydrothermal [4,5].
The hydrogenetic Fe–Mn crusts are widespread in the open ocean and are important potential marine
mineral resources containing a number of critical elements, such as Co, Cu, Ni, rare earth elements plus
yttrium (REY), and other critical elements like V, Nb, Te, or Pt [1,2,6–9]. The Pacific holds significant
reserves of Fe–Mn crust deposits, and there is a famous prime crust zone (PCZ) in the north-equatorial
Pacific Ocean [1,7,10]. In addition, a number of mining areas with the potential for exploitation were
also found in the Atlantic Ocean [8,11], Indian Ocean [12,13], and Arctic Ocean [14]. In addition to the
open oceans, some Fe–Mn crust deposits were also discovered near the continental margin, such as the
Baltic Sea [15], the California continental margin [2,16,17], and the South China Sea (SCS) [18–21].

The South China Sea (SCS), one of the largest marginal seas, is strongly subject to large terrestrial
inputs and has very fast rates of sediment accumulation. Generally, the fast sediment accumulation
rate is unfavorable for marine Fe–Mn precipitate mineralization. Yet, increasing numbers of deposits of
Fe–Mn crusts and nodules were discovered in SCS in recent years and hotly studied [19,20,22]. Some
mineral and geochemical data of the SCS Fe–Mn crusts were reported, showing that these SCS Fe–Mn
crusts are hydrogenetic in origin [19,20]. Compared to the Fe–Mn crusts in the Pacific Ocean, the SCS
ones have much higher contents of Li, Al, Si, Fe, Pb, and Th, but lower contents of Co, Ni, Cu, Zn, REY,
and other heavy metals [19,20,23]. However, the interelement correlations and phase associations in
the SCS crusts are yet to be sufficiently addressed. Previous studies were mostly concerned with the
bulk composition of the deposits, which is not enough to understand how REY is scavenged from
seawater in the continental marginal environment.

In this contribution, the Fe–Mn crusts from the SCS and WPO were comparatively studied with
mineralogy and geochemistry. The samples were examined using in situ laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) mapping in order to observe the occurrence phase of
REY in the layer structure. Furthermore, major mineral phases (i.e., easily exchangeable and carbonate,
Mn-oxide, amorphous FeOOH, and residual aluminosilicates phases) of these Fe–Mn crusts were
separated using a sequential leaching experiment which was proven to be an effective method for
understanding the incorporation of elements in mineral phases of Fe–Mn crusts [8,14,24–27]. These
results are expected to provide better information on the process of REY incorporation into Fe–Mn
crusts in a marginal sea.

2. Materials and Methods

2.1. Geological Setting and Samples

The submarine topography of the SCS appears as a ladder-like form from the edge to the
center (Figure 1) [28]. Located near the focus of the convergence among three plates (i.e., Eurasian,
Pacific–Philippine Sea, and Indo-Australian) with two superconvergent zones (the circum-Pacific and
Tethyan zones) [29], the SCS has a very complex developmental process and basement rocks from
multiple periods. The basement of the SCS mainly consists of Cenozoic metamorphic rock in the
center and Paleozoic–Mesozoic basement on the edge. The edge of the SCS is a continental slope with
elevated seafloor features, while the center of the SCS is a deep-sea basin with many seamounts and sea
hills. On the seafloor of the SCS, terrigenous sediment, hemipelagic clay, and siliceous ooze distribute
from the continental slope to the Central SCS Basin [30]. The Western Pacific Ocean (WPO) has a
deep basin with a depth of over 6000 m, where there are a large number of islands and chain-shaped
seamounts (such as Magellan seamounts and Marcus-Wake seamounts).

Fe–Mn crusts from the SCS and WPO were studied (coordinates as shown in Table 1). The SCS
crusts were collected by trawling on the research vessel “Haiyangsihao” of the Guangzhou Marine
Geological Survey (GMGS) in 2011 and 2012, and the sampling depths ranged from 1150 m to 1160 m.
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The WPO crusts were collected by shallow core drilling on the research vessel “Haiyangsihao” of
the GMGS during the 27th cruise in 2012. Sample ST1 involves the northern continental slope of the
SCS; ZSQD42A involves the north-western (NW) continental slope of the SCS; ZSQD253A grows
on the seamount in the eastern SCS; HYD66-2 involves the seamount in the Central SCS Basin; and
NASD44-1 and MP4SD24-1 involve Magellan seamounts and Marcus-Wake seamounts, respectively.
The substrates of these Fe–Mn crusts were limestone, altered basalt, and breccia (Table 1). The detail
petrographic study was reported in Reference [19].
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Figure 1. Locations of the Fe–Mn crust samples in the South China Sea (SCS) and West Pacific Ocean (WPO).

Table 1. Sample descriptions and bulk mineralogy of Fe–Mn crusts in the South China Sea (SCS) and
West Pacific Ocean (WPO). XRD—X-ray diffraction; E—east; N—north.

Sample Location Depth (m) Substrate XRD Mineral
Compositions

SCS

ST1 117◦54.6′ E,
20◦28.4′ N 1600 Altered basalt covered

by carbonate
δ-MnO2, quartz,

anorthite, and calcite

ZSQD253A 118◦36.4′ E,
16◦46′ N 1150 Bioclastic limestone δ-MnO2, quartz,

anorthite, and calcite

ZSQD42A 114◦49′ E,
16◦51′ N 1230 Reef limestone δ-MnO2, quartz,

anorthite, and calcite

HYD66-2 115◦16.4′ E,
13◦40.7′ N 1378 Altered basalt Todorokite, δ-MnO2,

quartz, and anorthite

WPO
NASD44-1 115◦35.4′ E,

19◦54.2′ N 1747 Breccia δ-MnO2, quartz,
and phillipsite

MP4SD24A-1 162◦18.8′ E,
19◦36′ N 1191 Breccia Todorokite, δ-MnO2,

quartz, and phillipsite

2.2. Analytical Techniques

2.2.1. Mineralogical Analysis of Bulk Samples

Each sample was washed with ultra pure water (Millipore, MA, USA), dried in a blower oven at
30 ◦C for 24 h, and then ground into 200-mesh powders in an agate grinder. Then, 200 mg of each of
the powders was analyzed by X-ray diffraction (XRD). XRD data were collected on a two-dimensional
(2D) image-plate detector using a Rigaku D/MAX Rapid II instrument (Rigaku, Tokyo, Japan) taken
with a 0.1-mm collimator using Mo-Kα radiation at Guangdong Provincial Key Laboratory of Marine
Resources and Coastal Engineering (GPKLMRCE), Sun Yat-sen University (SYSU, Guangzhou, China).
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All samples were analyzed twice under the same conditions; then, the signals were merged in order to
improve the signal-to-noise ratio. Identification of major minerals was completed via PDXL2 software
(Rigaku, Tokyo, Japan).

2.2.2. Qualitative Element Mapping by LA-ICP-MS

In situ element mapping was conducted at GPKLMRCE following the analysis procedure
described by References [31,32] The basic principle involves the laser running along several parallel,
adjoining, and equally long lines to generate an element map. In this study, laser sampling was
performed using an ArF excimer laser ablation system (GeoLasPro, Coherent Inc., Dieburg, Germany)
and the ion-signal intensities were acquired using an Agilent 7700× inductively coupled plasma mass
spectrometer (ICP-MS) (Santa Clara, CA, USA). A beam size of 24 µm was employed with an energy
density of 5 J/cm2 and a repetition rate of 5 Hz. A six-pulse ablation was done for each spot, and the
next spot was 20 µm away, which eventually ablated a small overlap to avoid gaps. Once a line of
spots was completed, the laser was immediately moved to the beginning of the next parallel line with
a line spacing of 20 µm, and the protocol was repeated. After the data acquisition, data reduction was
performed using the ioGAS software [31] and, eventually, a series of qualitative mapping images of
the elements was produced.

2.2.3. Geochemical Analysis of Bulk Samples

For each sample, 50 mg of 200-mesh powder was treated with a 20-mL acid mixture
(HF:HNO3:HClO4 = 7:3:1) in Teflon beakers for 2 h, and then evaporated to dryness on a hot plate
at 200 ◦C. The dryness was dissolved in 10 mL of 50% HNO3 and diluted to different concentrations
with 5% HNO3 before the measurement. The concentrations of major elements were measured
using a PerkinElmer (Waltham, MA, USA) Optima 8300 inductively coupled plasma atomic emission
spectrometer (ICP-AES) at Instrument Analysis and Research Center (IARC, SYSU) using an incident
power of 1300 W, plasma gas flow of 12 L/min, and atomized gas flow of 0.55 L/min. The trace
elements were determined using an Agilent 7700× ICP-MS at GPKLMRCE. Cerium anomaly (Ce/Ce*),
europium anomaly (Eu/Eu*), yttrium anomaly (Yn/Hon*), and light and heavy REY (LREY/HREY)
enrichment (Lan/Ybn) were calculated using the following equations:

Ce/Ce∗ =
2×CeSample/CePAAS

LaSample/LaPAAS + PrSample/PrPAAS
(1)

Eu/Eu∗ =
2× EuSample/EuPAAS

SmSample/SmPAAS + GdSample/GdPAAS
(2)

Yn/Hon =
YSample/YPAAS

HoSample/HoPAAS
(3)

Lan/Ybn =
LaSample/LaPAAS

YbSample/YbPAAS
(4)

where the PAAS data referred to Reference [33].

2.2.4. Sequential Leaching Experiment

The four major mineral phases of all crust samples were chemically separated following a
sequential leaching procedure [27]; the flow chart of the procedure is shown in Figure 2. In brief, 0.5 g
of the powdered samples was put in a 100-mL plastic centrifuge tube, mixed with the leaching reagent,
and shaken at room temperature. The leaching solution was filtered through 0.45-µm Millipore filter
paper, and the filtrate was stored for analysis. The residues on the filter paper were washed twice with
Milli-Q water to clear the remaining dissolved fraction of the previous step and then immediately
transferred to the next leaching step. The following four mineral phases were separated:
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Leach 1 (L1): easily exchangeable and carbonate phase leachable with 15 g of 1.0 M acetic
acid/Na-acetate buffer (pH = 5.0) solution;

Leach 2 (L2): Mn-oxide phase easily reducible with 87.5 g of 0.1 M hydroxylamine/hydrochloride
solution (pH = 2.0);

Leach 3 (L3): amorphous Fe (hydr)oxide (FeOOH) phase moderately reducible with 87.5 g of 0.2
M ammonium oxalate buffer (pH = 3.5) solution;

Leach 4 (L4): residual aluminosilicates phase dissolved in 11 mL of acid mixture (HF:HNO3:HClO4

= 7:3:1) in perfluoroalkoxy alkane (PFA) vials with closures at 200 ◦C.
The leaching experiments were carried out in a Class-100,000 clean room at GPKLMRCE.

Concentrations of major and trace elements in four leaches were determined in the same way as
the bulk geochemical analysis. The concentrations of each element in the four leachates were summed
up and compared with the corresponding bulk data to check the recovery (within the range of 80–120%;
see Table S1, Supplementary Materials).
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3. Results

3.1. Mineralogy of the Fe–Mn Crusts

Sharp diffraction peaks at 4.26 Å (100)Qz, 3.34 Å (011)Qz, 2.45 Å (110)Qz, and 1.37 Å (203)Qz

indicated the presence of crystalline quartz (Figure 3). Generally, there was also X-ray amorphous Fe
oxyhydroxide (FeOOH) with no obvious peak or broad humps. All crusts showed two broad humps in
the background, centered at ~2.6 and ~1.5 Å, indicating the presence of two-line ferrihydrite. Mn oxides
were weakly crystallized Fe-vernadite (δ-MnO2), as indicated by the broadness of the diffraction peaks
at ~2.4 and ~1.4 Å. Todorokite was found in sample HYD66-2 and the WPO samples, and it was
characterized by broad peaks at 9.56 Å (100)Tod and 4.78 Å (overlapped (200)Tod and (002)Tod).

In the SCS crusts, the identified carbonate mineral phase was magnesian calcite, indicated by
3.84 Å (104)Cal, 3.02 Å (113)Cal, 2.08 Å (202)Cal, 1.90 Å (018)Cal, and 1.86 Å (116)Cal (Table 1 and
Figure 3). The magnesian calcite was from the biological debris in the encrusts. Anorthite was
identified in the SCS crusts. In sample HYD66-2 and the WPO samples, nanosized crystallites of
phillipsite were indicated.
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3.2. Distribution of REY in Fe–Mn Crusts

The photographs of samples ST1, HYD66-2, and NASD44-1 and their corresponding images
of elemental distributions determined by LA-ICP-MS are shown in Figure 4. In the images of
elemental distributions, the concentration of each element is qualitatively represented by the counts
pe second (CPS).

As shown in the photograph of ST1 (Figure 4), calcite and quartz were common in the Fe–Mn
crusts. In the elemental images, distributions of Ca and Si matched well with calcite and quartz,
respectively. Furthermore, the distribution of Mn was almost the same as the Fe distribution, indicating
that the Mn minerals were intergrown with the amorphous FeOOH. The distributions of REY (e.g., La,
Ce, Gd, and Y) were similar to each other. Sample ST1 showed a clear positive correlation between Fe,
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Mn, and REY, probably linked to the precipitation of Fe-vernadite or intergrowth of vernadite and
Fe-oxyhydroxides instead of calcite and quartz. Nevertheless, the samples HYD66-2 and NASD44-1
showed an inverse correlation between Fe and Mn. In HYD66-2, Mn was clearly linked with Ca,
probably indicating the todorokite phase. Fe was associated with REY and Si, indicating (1) the presence
of aluminosilicates and Fe-oxyhydroxides and (2) that the REY mainly occurred in the aluminosilicates
and/or Fe-oxyhydroxides. It is noticeable that the Ce distribution relatively differed from the other
REY, showing Ce decoupling. In NASD44-1, REY showed some correlation with Mn, Fe, and Si.
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(LA-ICP-MS). The size of each image is 500 µm × 500 µm. In images of elemental distributions, red
and blue colors represent the maximum and minimum determined values, respectively.
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3.3. Geochemistry of Bulk Fe–Mn Crusts

Table 2 shows the concentrations of major and trace elements of Fe–Mn crusts from the SCS and
WPO. All samples had low P concentrations (0.22−0.41 wt.%) with low Mn to Fe ratios (0.61−1.56),
which are characteristics of hydrogenetic non-phosphatized Fe–Mn crusts. The SCS crusts (including
ST1, ZSQD42A, and ZSQD235A) had higher average concentrations of Fe (13.34 wt.%), Si (12.85 wt.%),
Al (1.93 wt.%), and Ca (2.68 wt.%), whereas the WPO crusts contained a higher abundance of Mn
(18.77 wt.%), Co (4228 ppm), Cu (1081 ppm), Zn (797.4 ppm), Mo (561.2 ppm), and ΣREY (1621 ppm).
Sample HYD66-2 contained low concentrations of Si (6.11 wt.%), Al (0.99 wt.%), and Ca (1.90 wt.%),
and a high content of Mn (19.21 wt.%), Fe (16.41 wt.%), Co (3256 ppm), Zn (645 ppm), Mo (544.9 ppm),
Ce (1552 ppm), and ΣREY (2324 ppm), which was similar to the WPO samples. The results are close to
the data measured by Reference [19].

Table 2. Bulk geochemical compositions and relative growth rates of the Fe–Mn crusts in the South China
Sea and West Pacific Ocean. Major elements are in wt.% and trace elements are in parts per million (ppm).

Elements
South China Sea Western Pacific Ocean

ST1 ZSQD253A ZSQD42A HYD66-2 NASD44-1 MP4SD24A-1

Mn (%) 8.98 8.78 14.84 19.21 21.71 15.83
Fe 14.67 10.98 14.39 16.41 13.93 10.71

Mn/Fe 0.61 0.80 1.03 1.17 1.56 1.48
Si a 18.66 12.69 7.20 6.11 2.09 1.90
Al 2.88 2.02 0.88 0.99 0.88 0.44
Ca 1.85 2.87 3.34 1.90 2.14 2.06
Mg 0.96 1.16 1.23 1.07 1.04 0.99
Ti 0.31 0.42 0.35 0.35 0.92 0.35
P 0.28 0.22 0.32 0.37 0.31 0.41

As (ppm) 173 105 207 258 204 172
Ba 721 551 715 1527 1398 3035
Co 873 1101 2320 3256 5788 2667
Cu 424 418 366 571 1346 816
Mo 200 125 303 545 498 625
Ni 1540 2835 4016 3243 5762 3448
Pb 1709 1034 2179 2797 1612 1205
Zn 432 516 590 645 731 864
La 125.0 101.5 228.5 222.9 237.4 181.8
Ce 598.3 744.2 959.0 1552 924.7 883.1
Pr 29.53 20.64 39.80 49.33 45.01 30.37
Nd 126.3 90.0 168.8 200.6 187.0 130.4
Sm 27.74 21.02 38.29 45.12 38.27 25.34
Eu 6.94 5.49 9.46 10.91 9.95 7.21
Gd 32.63 28.34 46.11 54.07 49.78 33.75
Tb 6.26 3.85 6.34 7.10 6.95 3.51
Dy 32.99 21.60 33.85 36.48 40.35 23.53
Y 105.3 87.5 148.3 98.0 146.5 123.0

Ho 6.13 4.38 8.42 6.82 8.36 6.19
Er 17.24 12.93 23.83 19.14 24.76 20.13
Tm 2.37 1.83 3.27 2.67 3.61 2.86
Yb 15.20 11.97 20.63 16.89 23.40 18.89
Lu 2.35 1.90 3.14 2.54 3.65 3.22

ΣREY 1134 1157 1738 2324 1750 1493
Ce/Ce* 2.25 3.72 2.28 3.39 2.04 2.68
Eu/Eu* 2.25 1.01 1.03 1.01 1.03 1.11
Yn/Hon 0.63 0.73 0.65 0.53 0.64 0.73
Lan/Ybn 0.61 0.62 0.82 0.97 0.75 0.71

Growth rate (mm/Myr) ** 11.43 5.75 3.18 2.51 0.96 2.15
a Data were determined using X-ray fluorescence spectrometer by Reference [19]; Ce/Ce* = 2Cen/(Prn − Ndn);
Eu/Eu* = 2Eu/(Smn + Gdn); Lan, Cen, Prn, Ndn, Smn, Gdn, Yn, Hon, Ybn to shale-normalized data. ** The growth
rate was estimated following the empirical equation [34]: growth rate = 0.68/(wCo

n)1.67, where wCo
n indicates

cobalt concentration normalized to Fe and Mn contents.
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3.4. REY in Major Mineral Phases

The abundance of REY in the four leaching steps (from L1 to L4, in %) are shown in Figure 5.
The proportions of total REY (ΣREY) in L1 of all samples were extremely low (<0.01%; see Table S1,
Supplementary Materials) and were considered no further. Mn-oxide phase (L2) contained from 4%
to 76% (average 24%) of the ΣREY. The average extraction proportions of light REY (LREY: La, Ce,
Pr, and Nd), middle REY (MREY: Sm, Eu, Gd, Tb, and Dy), and heavy REY (HREY: Y, Ho, Er, Tm,
Yb, and Lu) were 38%, 22%, and 15%, respectively. The post-Archean Australian shale-normalized
(PAAS) REY patterns (Figure 6a) showed pronounced LREY enrichment (Lan/Ybn = 4.81 on average)
and positive Ce anomalies (Ce/Ce* = 2.43). Amorphous FeOOH phase (L3) carried between 23% and
94% (average 67%) of ΣREY. The average extraction proportions of LREY, MREY, and HREY were
44%, 65%, and 83%, respectively. The PAAS-normalized REY patterns (Figure 6b) showed pronounced
HREY enrichment (Lan/Ybn = 0.27 on average), positive Ce anomalies (Ce/Ce* = 3.75), and negative Y
anomalies (Yn/Hon = 0.62).
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REY patterns of bulk Fe–Mn crusts.

The residual aluminosilicates phase (L4) hosted between 1% and 46% (average 10%) of ΣREY.
There were significant differences among the respective fractions in the Fe–Mn crusts. In samples
ST1, ZSQD253A, and ZSQD42A, the residual aluminosilicates phase carried a low proportion
(1%–10%, average 3%) of ΣREY, and the proportions of LREY, MREY, and HREY were 4%, 4%,
and 2%, respectively. The PAAS-normalized REY patterns (Figure 6c, blue patterns) were flat with
positive Ce anomalies (average Ce/Ce* = 1.85) and positive Eu anomalies (average Eu/Eu* = 1.30).
In samples HYD66-2, NASD21-1, and MP4SD24-1, 2%–40% (average 17%) of ΣREY was leached in
L4 and the average extraction proportions of LREY, MREY, and HREY were 31%, 22% and 3% in L4,
respectively. The normalized REY patterns (Figure 6c, yellow patterns) decreased from the LREY over
the MREY to the HREY. There were positive Ce anomalies (Ce/Ce* = 2.65) and negative Y anomalies
(Yn/Hon = 0.56).

4. Discussion

4.1. Validity of LA-ICP-MS Mapping

LA-ICP-MS mapping is an “only slightly” destructive technique and was previously applied to
Fe–Mn crusts and Fe–Mn nodules [14,35]. The accuracy of the LA-ICP-MS is mainly influenced by
a few critical factors. The first and most obvious shortcoming of the line scanning technique is the
signal smearing. Both the accumulation of ablated material in linear ridges at the margins of raster
trenches and the affection of washout characteristics of the sample cell of the laser machine contribute
to the signal smearing, which is more pronounced for low-abundance refractory elements than major
elements [36]. Reducing the beam size or the scanning speed [36] or implementing pre-ablation [36]
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could effectively reduce the effect of accumulation. In addition, previous studies confirmed that the
ablation direction of LA-ICP-MS analysis cannot affect the real element distribution patterns [37].
Our experimental results showed that the distribution of the major elements (Ca, Si, Fe, and Mn)
matched very well with the minerals (Figure 4), that is to say, the data arose simultaneously with
laser ablation spots [31]. Furthermore, there was no pronounced signal smearing in the distribution of
the trace elements, and even the refractory elements (e.g., REY) compared with the major elements
(Figure 4), and the correlation of the elements coincided with the sequential leaching experiment.

Secondly, the internal standard has a strong influence. Mg was used as the internal standard
in the LA-ICP-MS quantitative mapping because it is more homogeneously distributed than other
elements in the Fe–Mn oxides [35]. However, it differs among the different minerals and is obviously
lower in detrital minerals such as calcite and quartz. Thus, the Mg internal standard may cause too
high corrections in the elemental concentrations when the crust contains a lot of detrital minerals.
Here, we discarded the calibration of standards and used CPS to represent the relative level
of content of each element directly. Eventually, the LA-ICP-MS mapping method could supply
qualitative information of the elemental distribution in a straightforward way. Compared with the
sequential leaching experiment, the LA-ICP-MS mapping technique is an in-situ, simpler, rapider,
and highly reproducible technique regarding sample preparation, laboratory experiments, and data
reduction [26,37]. Furthermore, the mapping results mutually corroborated the results of the sequential
leaching experiment.

4.2. Occurrence Phases of REY

The mineralogical analysis of all samples showed that the δ-MnO2 and X-ray amorphous
FeOOH were the dominant minerals, which is the typical mineral combination of hydrogenetic
Fe–Mn crusts [10]. Since these Fe–Mn crusts are typically hydrogenetic in origin, the todorokite in
some samples is more likely to indicate that they experienced lower-oxidation-potential seawater
conditions [17] rather than a diagenetic input. The results of the sequential leaching experiment
showed that most of the REY was extracted in the Mn-oxide and amorphous FeOOH phases (Figure 5),
suggesting that the REY mainly occurred as δ-MnO2 and amorphous FeOOH in the Fe–Mn crusts.
The same conclusion could be obtained from the LA-ICP-MS mapping results (Figure 5; Table S3,
supplementary materials).

δ-MnO2 is composed of one or two water layers within Mn–O-octahedral sheets [38]. These
sheets contain vacancies and abundant isomorphic substitution of Mn4+, both of which can induce
charge deficits [38]. The incorporation of hydrated interlayer cations can compensate for the negative
surface charge of these sheets and, thus, the δ-MnO2 is able to accommodate REY [38,39]. In contrast,
todorokite contains a large three-dimensional (3D) tunnel structure [40], in which the Ce(IV) and
REY(III) are unable to be incorporated. Other factors can affect the crusts during early diagenesis in
some microlayers at the base of crusts, precipitating new minerals (e.g., todorokite). These processes
were observed in nodules and crusts from the Pacific Ocean and the Atlantic Ocean [8]. Therefore,
crystal structures of Mn minerals are another considerable factor in the proportion of Mn-bound REY.

Amorphous FeOOH has a large specific surface area and high chemical reactivity [41,42]; thus, it
has a greater ability to adsorb heavy elements. Clay minerals also have surface charges and highly
specific surfaces, and these characteristics are crucially important for the adsorption of REY [43].
The WPO crusts contain phillipsite (Figure 3) and have a high proportion of aluminosilicate-bound
REY, which implies the clay might constitute an additional REY source. Instead, crystalized quartz and
felspar account for most of the aluminosilicate material in the SCS crusts. These minerals carry some
of the REY (Figure 5) and lead to low concentrations of aluminosilicate-bound REY in the SCS crusts.

4.3. Enrichment Process of REY

As mentioned above, δ-MnO2 and FeOOH are the most important occurrence phases of REY,
that is to say, the process of REY participation in the δ-MnO2 and FeOOH is suggested to be a



Minerals 2019, 9, 8 12 of 19

controlling factor for REY enrichment in hydrogenetic Fe–Mn crusts from the SCS and WPO [44–47].
To illustrate the REY distribution between δ-MnO2 and FeOOH [24], we calculated Lu-normalized
ratios of Fe-bound REY (REY-FeOx) to Mn-bound REY (REY-MnOx) for the members of the REY series.

(
∆REY−FeOx/REY−MnOx

)
Lu =

[REY]FeOx/[REY]MnOx

[Lu]FeOx/[Lu]MnOx (5)

Laboratory experiments showed that the inorganic speciation of REY in seawater is
dominated by REY ions and inorganic speciation REY-carbonate complexes [48–51]. Based on the
[REY(CO3)2

−]/[REYCO3
+ + REY3+] ratios in seawater of pH 8.2 calculated by Schijf [52], we obtained

the Lu-normalized [REY(CO3)2
−]/[REYCO3

+ + REY3+] ratio for each member of the REY series [24].

([REY(CO3)2
−]/[REYCO3

+ + REY3+])Lu = ([REY(CO3)2
−]/[REYCO3+ +

REY3+])/([Lu(CO3)2
−]/[LuCO3

+ + Lu3+]).
(6)

The values of the (∆REY-FeOx/REY-MnOx)Lu ratios were close to the values of the
([REY(CO3)2

−]/[REYCO3
+ + REY3+])Lu ratios (Figure 7). The similarity demonstrates that the

preferential adsorption of REY carbonates by Mn minerals and Fe minerals controls the REY enrichment
in the Fe–Mn crusts [24]. Moreover, the [REY(CO3)2

−]/[REYCO3
+ + REY3+]Lu ratios increased along

the REY series (Figure 7). This indicates that LREY preferentially occurs as LREYCO3
+ and LREY3+,

while HREY prefers to form HREY(CO3)2
− in seawater [53,54]. The zero-point charge (ZPC) of δ-MnO2

is 2.3 [55,56], while that of amorphous FeOOH is 8.8 [57]. Therefore, δ-MnO2 has an excessive negative
surface charge, while the surface of FeOOH may be electrically neutral or weakly electropositive
in seawater. In this case, the δ-MnO2 has a tendency to adsorb positively charged REY complexes
(e.g., LREYCO3

+ and LREY3+), whereas amorphous FeOOH prefers to adsorb negatively charged REY
complexes such as HREY(CO3)2

− [48]. This can explain the LREY enrichment in the Mn-oxide phase
(Figure 6a) and HREY enrichment in the amorphous FeOOH phase (Figure 6b). The yttrium, unlike
other HREY, prefers to form YCO3

+ in seawater [24,26,49], which explains why there were negative Y
anomalies in the amorphous FeOOH phase (Figure 6b).
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([REY(CO3)2

−]/[REYCO3
+ + REY3+])Lu in seawater at pH 8.2 and the patterns of (∆REY-FeOx/REY-MnOx)Lu

values for hydrogenetic Fe–Mn crusts. The similarity demonstrates that the REY speciation in seawater
can basically describe the distribution and fractionation of the REY between the Mn oxides and hydrous
Fe oxides in Fe–Mn crusts. They further suggest that there are other factors in the fractionation of light
REY (LREY) and middle REY (MREY) between the Mn oxides and hydrous Fe oxides.
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Ce is a redox-sensitive element that is easily oxidized to Ce(IV) when the other REY elements
remain strictly trivalent, which usually causes Ce decoupling [4]. In hydrogenetic Fe–Mn crusts, Ce is
tetravalent [25]. The Ce oxidation absorption by δ-MnO2 is widespread because Mn ions are a strong
oxidant in seawater [25,58]. Ce oxidation absorption by FeOOH, however, tends to get overlooked
because of the slow rate of Ce(IV) oxidation [44]. In our experimental results, an average of 50% of
Ce was leached in the FeOOH phase and the values of δCe (average 3.75) were even higher than the
values of the Mn-oxide phase. This suggests that the Ce oxidation absorption by FeOOH is an essential
part of the enrichment and fraction of Ce in the Fe–Mn crusts [13,24,59] and may be more important
than Ce oxidation absorption by δ-MnO2 in seawater. Moreover, this may be the reason why sample
HYD66-2 (with high Fe content) contained a high Ce concentration.

4.4. Factors of the Difference in REY Enrichment in the SCS and WPO Crusts

4.4.1. Terrigenous Input

The SCS crusts (except sample HYD66-2) grow within the continental marginal environment and
they are significantly affected by terrigenous materials [60]. The eolian dust and the huge river systems
(e.g., the Pearl, Red, and Mekong Rivers) transport a large amount of terrigenous detrital minerals
into the SCS [61,62], and these detrital minerals are mainly quartz and felspar. Quartz and felspar
are the last to be leached into the residual aluminosilicates phase (L4) due to their insolubility [27].
In the SCS crusts (except sample HYD66-2), the PAAS-normalized REY patterns of the residual phase
were relatively flat with minor positive Eu anomalies (Figure 6c). The felspars are responsible for the
Eu anomalies because Eu2+ is more strongly stabilized in the structure of the residual felspars than
other trivalent lanthanides [63]. The La/Al ratios (8.3 × 10−4) and Lu/Al ratios (10.6 × 10−6) of the
residual aluminosilicate phase are close to the values of the upper crust (3.8 × 10−4 and 3.8 × 10−6,
respectively) [64]. This indicates that the REY in the residual aluminosilicates phase can be explained
by the presence of terrigenous aluminosilicates [65]. The terrigenous aluminosilicates contain very low
concentrations of REY (Figure 5) and eventually dilute the abundance of REY in the SCS crusts [66,67].

The sample HYD66-2 was obtained from the Central SCS Basin, which is much less affected by the
continent than other Fe–Mn crusts from SCS. The mineralogy (Figure 3 and Section 3.1), geochemistry
(Table 2 and Section 3.3), and REY distribution in major mineral phases showed that the Fe–Mn crusts
in the Central SCS Basin had similar characteristics to the WPO crusts. Thus, crusts of HYD66-2
represent mixed signatures between the SCS and WPO Fe–Mn crust, considering Fe–Mn crusts that
formed in the open oceans for the convenience of subsequent comparison. In these open-ocean crusts,
a large part of the REY was leached into the residual fraction (L4). The Lu/Al ratios (17.0 × 10−6) in L4
were close to the upper crust value, whereas the La/Al ratios (142 × 10−4) were much higher than in
the upper crust. This indicates the existence of excess LREY, which cannot be explained by terrigenous
quartz and felspar. It was found at numerous sites in the Pacific Ocean that deep-sea mud contains
high concentrations of REY [68]; however, in the SCS, the REY concentrations in the sediments are
much lower [66]. It can be inferred that, in the open oceans, the clay may constitute an additional REY
source in the Fe–Mn crusts. In addition, oceanic phillipsite was marked by a positive Ce anomaly and
the Ce concentration could reach 140 ppm [69]; thus, the phillipsite was a likely cause of the positive
Ce anomalies in L4 (Figure 6c). Therefore, it can be suggested that REY adsorption by clay minerals
may be a considerable factor in REY enrichment in the open-ocean Fe–Mn crusts [70,71].

4.4.2. Growth Rate

The SCS crusts (except sample HYD66-2) had a higher growth rate (Table 2) than the open-ocean
crusts (including samples HYD66-2, NASD44-1, and MP4SD24-1). It is known that the SCS Fe–Mn
crusts are subjected to large amounts of terrigenous inputs (see Section 4.4.1). The terrigenous materials
eventually promote the growth rate of the SCS Fe–Mn crusts [11,17].
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Apart from the terrigenous inputs, the growth rate of the hydrogenetic Fe–Mn crusts is
significantly influenced by the development of the oxygen minimum zone (OMZ) [12,72,73]. Figure 8
shows the vertical profiles of dissolved oxygen in different sea areas and the water depth of the Fe–Mn
crusts [74–76]. The core of the OMZ in the SCS (e.g., Zhongsha Islands) is generally located at a
depth of 600−800 m [74]. The Central SCS Basin has a very wide OMZ at a depth of 600−1600 m,
and the vertical change of dissolved O2 is more complex because of the influence by the North Pacific
Intermediate Water through the Philippine Sea [77]. Obviously, sample HYD66-2 grows in the OMZ,
while the other SCS crusts are below the OMZ (Figure 8). Generally, Fe–Mn crusts grow faster below
the OMZ than in the OMZ [11,17]. Hence, sample HYD66-2 had a lower growth rate than the other
SCS crusts. In the WPO crusts, the situation was the same. The depth of OMZ in the WPO (including
the Magellan seamount and Marcus-Wake seamount areas) extends to approximately 1500 m, and the
sample MP4SD24-1 below the OMZ had a faster growth rate than sample NASD44-1 in the OMZ
(Figure 8).Minerals 2018, 8, x FOR PEER REVIEW  15 of 20 
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Figure 8. Vertical profiles curve of dissolved oxygen in different sea areas. The curves of the Philippines
Sea and Zhongsha Islands in the South China Sea are modified from Reference [74]. Data from
the Central SCS Basin refer to Reference [75]. Data for the Magellan seamounts and Marcus-Wake
seamounts are from Reference [76]. The blocks represent the Fe–Mn crusts formed at different water
depths in different sea areas. ZSQD253A and ZSQD42A formed in the Zhongsha Islands, HYD66-2 grew
on a seamount in the Central SCS Basin, NASD44-1 grew on Magellan seamounts, and MP4SD24A-1
grew on Marcus-Wake seamounts.

The OMZ may influence the growth rate and then influence the adsorption/enrichment of
metals [1,78]. As shown in Figure 9 (see Table S2 for correlation coefficients, Supplementary Materials),
the growth rate of the Fe–Mn crusts was negatively correlated with the concentrations of REY
(R2 = 0.7481), FeOOH-bound REY (L3, R2 = 0.5099), and aluminosilicate-bound REY (L4, R2 = 0.5948).
Instead, there was no obvious correlation between growth rate and Mn-bound REY (L2, R2 = 0.0037).
This may suggest that the slow growth rate conduces more adsorption of REY from the surrounding
seawater into the FeOOH and aluminosilicates rather than the δ-MnO2 [70,78]. The SCS Fe–Mn crusts
have fast growth rates, and this may be the reason why they contain lower concentrations of REY than
the open-ocean crusts [1].
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5. Conclusions

Based on our investigations into the mineralogy of the Fe–Mn crusts from the SCS and WPO and
the partitioning behavior of REY among the major mineral phases, the following can be concluded:

1) Mineral composition is a considerable factor in the REY enrichment. Primary occurrence
phases for REY in the SCS crusts are δ-MnO2 and amorphous FeOOH, both of which have
advantageous crystal structures for REY enrichment. The WPO crusts have a large proportion of
aluminosilicate-bound REY. We suggest that REY adsorption by clay minerals may play a role in
the REY enrichment in the open-ocean Fe–Mn crusts.

2) In the hydrogenetic Fe–Mn crusts from the SCS and WPO, most of the ΣREY is bound to Mn-oxide
and amorphous FeOOH phases, with LREY and HREY preferentially adsorbed onto δ-MnO2 and
FeOOH, respectively. REY-carbonate complexes are the dominate REY species in seawater. Thus,
the selective adsorption of major REY complex species from seawater by δ-MnO2 and FeOOH is
the predominant mechanism for REY enrichment in the hydrogenetic Fe–Mn crusts.

3) The SCS crusts grow in the continental margin environment and they are significantly affected
by terrigenous materials. The terrigenous aluminosilicate minerals in the SCS crusts dilute the
abundance of REY. In contrast, Fe–Mn crusts in open oceans are rarely affected by the continent,
and they contain a higher concentration of REY.

4) The terrigenous inputs and the development of OMZ determine the growth rate of the
hydrogenetic Fe–Mn crusts. A fast growth rate is unfavorable for the adsorption of REY from the
surrounding seawater into the FeOOH and aluminosilicates. Therefore, the SCS crusts with a
faster growth rate contain lower REY enrichment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/1/8/s1:
Table S1: Concentrations of REY in the leaches and in bulk crusts investigated in this study; Table S2: Correlation
coefficient matrix for the growth rate and REY in different mineral phases; Table S3: LA-ICP-MS mapping data
(CPS) of three Fe–Mn crusts samples; Figure S1: Microscope photograph of sample ST1 and the elemental maps
determined by LA-ICP-MS; Figure S2: Microscope photograph of sample HYD66-2 and the elemental maps
determined by LA-ICP-MS; Figure S3: Microscope photograph of sample NASD44-1 and the elemental maps
determined by LA-ICP-MS.
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