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Abstract: Phosphorite is a nonrenewable strategic resource, a convenient and rapid method of
phosphorite grade identification and classification is important to improve phosphate utilization.
In this study, Raman spectroscopy has been combined with principal component analysis and
hierarchical clustering analysis (PCA-HCA) and orthogonal partial least squares-discriminant analysis
(OPLS-DA) models for an investigation of different grade phosphorite samples. Both the PCA-HCA
and OPLS-DA models showed that different grade phosphorite samples can be clearly distinguished
by statistically analyzing the Raman spectra after smoothing, baseline correction, and first derivation.
In addition, the S-line study on the OPLS-DA model clearly demonstrated that the symmetrical
stretching vibrational mode of phosphate near 960 cm−1 had a much more significant contribution
than other vibrational modes for the differentiation of different grade phosphorite samples.

Keywords: phosphorite; Raman spectroscopy; PCA-HCA; OPLS-DA

1. Introduction

Phosphorite is a nonmetallic mineral, which is an important raw material for many kinds
of phosphorus products [1–5]. The main types of phosphorite are magmatic apatite, sedimentary
metamorphic apatite, and sedimentary rock-type apatite. These phosphorites constitute essentially
the apatite group with a wide range of accessory minerals of quartz, calcite, dolomite, and silicates,
etc. Because of the diverse compositions, most phosphorites must be pretreated to reach a qualified
phosphate concentrate. Thus, the classification of phosphorite grade is an important issue in the study
of various types of phosphorites. The common methods for determining phosphorite grade include
conventional chemical analyses, infrared spectroscopy, nuclear magnetic resonance, X-ray spectroscopy,
and plasma mass spectrometry, etc. [5–10], however, most of these methods require complex sample
preparation and are difficult to perform on site for underground measurements. Therefore, it is of
great interest to study a powerful method to meet these difficulties.

Raman spectroscopy is a powerful, fast, and nondestructive experimental technique, which has
been extensively applied not only in basic scientific researches, but also for practical applications.
It can provide physical, chemical, and structural characteristics of investigated samples [11–24]. In the
past decade, Raman spectroscopy has been applied for quantitative and qualitative studies of various
types of minerals. Frost et al. [15] suggested that Raman technology is a powerful and underutilized
technique in terms of mineralogy for the study of closely related minerals. Dörfer et al. [16] proposed
four different ways to generate quantitative and qualitative mineral information based on a Raman
mapping experiment. Bartholomew et al. [17] showed that Raman spectroscopy is effective for mineral
identification through spectral pattern matching and it offers a number of practical advantages over
established mineral-identification technologies. Lopez-Reyes et al. [18] used Raman Laser Spectrometer
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technology to quantify and determine the mineral concentration of rock powder in Mars exploration.
Sharma et al. [19] developed a scanning standoff Raman spectroscopy system for mapping out the spatial
distributions of selected minerals at long distances (10–100 m). Raman spectroscopy also has been
applied to study various types of phosphorites. Antonakos et al. [20] studied the differences between
biological apatite and different types of natural apatite and synthetic apatite. Elgharbi et al. [21] found
the structure and composition of the Tunisian phosphorite after calcination at different temperatures.
Wang et al. [22] analyzed the structural changes of synthetic carbonate apatite and natural bone
minerals. These studies suggested that Raman spectroscopy is a promising method for the tremendous
research efforts of phosphorite. Nevertheless, the related research is still short in the aspect of rapid
identification and classification of phosphorite grade by Raman spectroscopy, and therefore further
research and exploration would be meaningful and necessary.

In this study, Raman spectroscopy has been combined with chemometrics methods of principal
component analysis and hierarchical clustering analysis (PCA-HCA) and orthogonal partial least
squares-discriminant analysis (OPLS-DA) for an investigation of different grade phosphorite samples.
Combining the advantages of Raman spectroscopy and chemometrics analyses, our results show that
different grade phosphorite samples can be clearly distinguished. This provides a promising method
for future practical applications of quick on site classification of different grade phosphorite samples.

2. Materials and Methods

2.1. Samples

The following six phosphorite power samples with different grade values were studied: high
grade samples A and B, medium grade samples C and D, and low grade samples E and F. Apatite
Ca5(PO4)3(F,Cl,OH) was the main mineral containing phosphorus in these phosphorite samples, and
the phosphorite grade was calculated by the P2O5 content. The grade values of samples A–E were
31.25%, 29.06%, 25.26%, 22.08%, 12.12%, and 3.29%, respectively; which were estimated with the
same procedure as “Determination of Phosphorus Pentoxide Content in phosphorite by Quinoline
Phosphomolybdate Volumetric Method” (GB/T 1871.1-1995). Sample A was from Weng’an, Guizhou,
China. Samples B, C, D, E, and F were from Jinning, Yunnan, China. The colors of these powder
samples were light greyish or light yellowish.

2.2. Raman Scattering

Before the Raman scattering measurements, all the samples were filtered by sieve with 60 meshes
for making pellet samples. For each grade sample, ten pellets were prepared with an initial amount
of sample (250 mg) and same hand press pressure. The Raman spectra of the pellet samples were
obtained in backscattering configuration with an XperRam200 spectrometer (Nanobase, Seoul, Korea)
connected to an Olympus BX41M-LED microscope with a 50X, NA = 0.55 objective lens. The excitation
laser had a wavelength of 532 nm. The collected Raman signal was dispersed with 1800 lines mm−1

grating and focused on an air-cooled CCD detector. The final spectrum for each sample was recorded
in the spectral window of 100–1950 cm−1 with 20 s acquisition time. All the spectra were corrected in
wavenumber by using the 521 cm−1 phonon mode of a Si substrate. For each pellet sample, five random
points were measured, and the average spectrum of these five random points were used to characterize
the pellet. A total of 60 Raman spectra of the pellet samples were obtained for the PCA-HCA and
OPLS-DA analyses.

2.3. PCA-HCA and OPLS-DA

Before PCA-HCA and OPLS-DA analyses, the 60 Raman spectra of the pellet samples were
smoothed, and baseline corrected. Savitzky–Golay (SG) convolution method was used for smoothing
with 8-point polynomial of order 2. The adaptive iteratively reweighted Penalized Least Squares (airPLS)
algorithm was used for baseline correction. In addition, first-order and second-order derivatives
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were performed on the smoothed and baseline corrected spectra to further eliminate baseline and
fluorescence contributions using Origin 2017 (OriginLab, Northampton, USA).

The PCA-HCA study was performed with SIMCA software v.14.1 (Umetrics, Umea, Sweden).
PCA is an unsupervised model which simplifies the interpretation of variables between samples by
dimensionality reduction [25–30]. The dimensionality reduction of spectral data by unsupervised PCA
not only reflects most of the original spectral information, but also reflects the difference between
the sample points [25–28]. HCA is a grouping structure method which defines sample data by
dendrogram [25,26,29]. HCA analysis using reduced spectral data can effectively compress the number
of variables participating in a Euclidean distance calculation [30]. Through the combination of PCA
and HCA, the natural grouping property of phosphorite samples can be confirmed.

The OPLS-DA study was performed with SIMCA software v.14.1 (Umetrics, Umea, Sweden).
The OPLS method is an extension of PLS and it is very helpful to find relevant information
associated with particular samples and variables of a dataset [31–35]. R2X, R2Y, and Q2 are the
quality evaluation indexes of the models established in OPLS-DA analysis. R2X (cum) and R2Y
(cum) are the cumulative sum of squares of all x-variables and y-variables explained by all extracted
components. The cumulative prediction degree of the model described by parameter Q2 is also called
prediction superiority. Classification of different grade phosphorite samples was directly reflected by
the principal component scores of the OPLS-DA model. In addition, the S-line study of the OPLS-DA
model demonstrated which vibrational mode had significantly contributed to the differentiation of
different grade phosphorite samples.

3. Results and Discussion

3.1. Raman Spectra

Figure 1a shows the Raman spectra of the six different grade phosphorite samples.
Five characteristic spectra for each sample were presented, and these spectra were SG smoothed and
airPLS baseline corrected. Apatite Ca5(PO4)3(F, Cl, and OH) is the main mineral containing phosphorus
in phosphorite [23]. PO4

3− is a tetrahedral pentaatomic group with four vibrational modes, namely,
symmetrical stretching vibration (V1), double degenerate bending vibration (V2), triple nonsymmetrical
stretching vibration (V3), and triple degenerate bending vibration (V4) [20,21,23]. In Figure 1a, the
strong peak near 960 cm−1 belongs to the V1 mode; the weak peak near 430 cm−1 can be assigned to the
V2 mode; the weak peaks near 1035 cm−1 and 1050 cm−1 correspond to the V3 modes; and the weak
peak near 585 cm−1 is correlated with the V4 mode [20–23].

In addition to the characteristic peaks of phosphate, Raman peaks of quartz, calcite, and dolomite,
etc. were also observed. The peak near 465 cm−1 is correlated with the stretching vibration of Si–O in
quartz [23]. The two peaks near 1085 cm−1 and 280 cm−1 are Raman modes of calcite CaCO3 [24], in
which the 1085 cm−1 mode is correlated with the symmetrical stretching vibration of C–O in CO3

2−, and
the 282 cm−1 mode is the external vibrational mode of CO3

2−. The peak near 1100 cm−1 corresponds
to the C–O vibration of dolomite CaMg(CO3)2 [23]. The two peaks near 1340 cm−1 and 1445 cm−1

are disordered carbon D bands, and the peak near 1580 cm−1 corresponds to disordered carbon G
bands [21,23]. The peak near 300 cm−1 belongs to hematite [28].

In Figure 1a, the Raman spectra of the six different grade phosphorite samples have complex and
different features. For a clearer observation of the major difference between different grade phosphorite
samples, first and second derivatives of the Raman spectra in Figure 1a were performed, and the results
are presented in Figure 1b,c, respectively. As shown in Figure 1a–c, the strong peak near 960 cm−1 of
the V1 (PO4

3−) mode had a major contribution for the differences of the six different grade phosphorite
samples. In previous studies, it was also shown that this peak should be used to distinguish different
types of phosphorite samples, since the V1 (PO4

3−) mode has a much stronger intensity than that of V2,
V3, and V4 modes [22,23].
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phosphorite grade varies. Thus, simple average analysis of the Raman spectra of different 
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Figure 1. (a) Raman spectra of the six phosphorite samples after Savitzky–Golay (SG) smoothing
and adaptive iteratively reweighted penalized least squares (airPLS) baseline correction. (b) First
derivatives of the Raman spectra in (a). (c) Second derivatives of the Raman spectra in (a). (d) Averaged
Raman spectra of the six phosphorite samples in the zoomed spectral range of 950–980 cm−1. For each
sample, the averaged spectrum was obtained by averaging the spectra of the 10 pellets.

For a clear observation of the phosphorite grade dependence on the strong V1 (PO4
3−) mode, in

Figure 1d, the averaged Raman spectra of the six different grade phosphorite samples were compared
in the zoomed spectral range of 950–980 cm−1. For each sample, the averaged spectrum was obtained
by averaging all the spectra of the 10 pellets. Figure 1d shows that for the phosphorite samples
obtained from Jinning, the intensity of the V1 (PO4

3−) mode increases systematically with increasing
phosphorite grade. However, if the sample from Weng’an is included, or the peak position of the V1

(PO4
3−) mode is included, there is no systematic change of Raman spectra when the phosphorite grade

varies. Thus, simple average analysis of the Raman spectra of different phosphorite grade samples is
not helpful for the identification of phosphorite grade, which would be correlated with the significant
inhomogeneity property of phosphorite samples. Therefore, in the following, we apply statistical
chemometrics methods for the identification of different phosphorite grade samples.

3.2. PCA-HCA Study

Figure 2a–c show the PCA dimensionality reduction projection plots of the spectra presented
in Figure 1a–c, respectively. Figure 2a shows that the PCA study of the smoothed and baseline
corrected spectra can only barely distinguish different grade phosphorite samples. In Figure 1a, the
total variance contributions of PC1 and PC2 were 39% and 24.5%, respectively. With the process of first
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derivative, although the total variance contributions of PC1 and PC2 were decreased to 24.1% and
15.3%, respectively; the six different grade phosphorite samples can be much more clearly distinguished
than only smooth and baseline process. As can be seen in Figure 2b, the data points of 3.29% and
12.12% grade phosphorite samples were separately clustered on the right side of the graph; the data
points of 22.08% grade phosphorite sample were clustered between two quadrants in the middle of the
graph; and the data points of 25.26%, 29.06%, and 31.25% were separately clustered on the left side
of the graph. With the process of second derivative, the clustering effect for distinguishing different
grade phosphorite samples is further improved, however, the total variance contributions of PC1 and
PC2 were significantly decreased to only 9.06% and 7.24%, respectively. Therefore, the process of
Raman spectra with smoothing, baseline correction, and first derivative would be the best choice for
distinguishing different grade phosphorite samples and still retaining good original information of the
Raman spectra.
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Figure 2. Principal component analysis (PCA) dimensionality reduction projection plots of the smoothed
and baseline corrected spectra (a), first derivative treated spectra (b), and second derivative treated
spectra (c).
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To further confirm that the PCA result in Figure 2b is valid for distinguishing different grade
phosphorite samples, the HCA study is performed using the first six principal components in the
PCA study. These components have 53.7% cumulative interpretation of the original Raman spectra.
The Ward’s method of square deviation was applied to cluster the similarity of the score data matrix to
generate the dendrogram [25,26] and the result is shown in Figure 3. In the HCA study, the 60 data
points of the six different grade phosphorite samples were named as follows: 1–10 as sample F (3.29%),
11–20 as sample E (12.12%), 21–30 as sample D (22.08%), 31–40 as sample C (25.26%), 41–50 as sample
B (29.06%) and 51–60 as sample A (31.25%), The longitudinal coordinates represent the weight distance
of variance between clustering centers and the abscissa indicates the number of the samples. As can be
seen in Figure 3, the 60 data points of the six different grade phosphorite samples are divided into
seven groups. The seven hierarchy clustering groups are presented in Table 1. Figure 3 and Table 1
show that only 3 data points were misclassified. Data point 8 was misclassified into one group by itself,
and data points 39 (25.26%) and 59 (31.25%) were misclassified into group 4 (12.12%). The classification
accuracy of all the data points is about 95%, indicating that the PCA–HCA study of the Raman spectra
can be applied for distinguishing different grade phosphorite samples.
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Figure 3. Hierarchical cluster dendrogram of the 60 data points of the six different grade phosphorite samples.

Table 1. Hierarchy clustering groups of the 60 data points of the six different grade phosphorite samples.

Group Details of Group Category

Group1 (8) F(3.29%)
Group2 (9,7,3,10,4,6,5,1,2) F(3.29%)
Group3 (53,54,55,52,58,57,56,51,60) A(31.25%)
Group4 (15,59,18,39,11,17,16,19,12,14,13,20) E(12.12%)
Group5 (31,32,33,35,40,38,37,34,36) C(25.26%)
Group6 (28,21,25,24,22,23,27,26,29,30) D(22.08%)
Group7 (46,42,47,48,41,43,45,44,49,50) B(29.06%)

3.3. OPLS-DA Study

Figure 4a–c presents two-dimensional OPLS-DA scoring maps of the spectra presented in
Figure 1a–c, respectively. For the OPLS-DA analysis, X is the spectral data matrix and Y is the matrix
of the category of phosphorites. Cross-validation is a useful tool for internal model validation. It can
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remove sample subsets from the training set before building the model with the goal of performing
sub-validation experiments, in which the samples used for validation were not used to construct the
model. In this work, seven-fold cross-validation was used to evaluate the classification performance of
the model, in which the datasets are divided into seven parts, six parts for training in turn, and the
remaining part for testing.

The parameters of R2X(cum), R2Y(cum), and Q2(cum) correlated with Figure 4a are 0.961, 0.668,
and 0.540, respectively. The parameters of R2X(cum), R2Y(cum), and Q2(cum) correlated with Figure 4b
are 0.584, 0.878, and 0.726, respectively. The parameters of R2X(cum), R2Y(cum), and Q2(cum) correlated
with Figure 4c are 0.254, 0.740, and 0.604, respectively. These values indicate that the process of
Raman spectra with smoothing, baseline correction, and first derivative would also be the best choice
in the OPLS-DA study for distinguishing different grade phosphorite samples, consistent with the
PCA–HCA study.
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To further validate and evaluate the performance of the OPLS-DA model, the permutation tests
(number of permutations was 200) were performed for the process of Raman spectra with smoothing,
baseline correction, and first derivative and the result is presented in Figure 5a. The R2Y(cum) and
Q2(cum) values of the original OPLS-DA model are greater than all the R2Y and Q2 values of the
permutated models, indicating that the original model has high predictive ability. The intercepts of
R2Y and Q2 are 0.381 and 0.351 and both are smaller than 0.4, indicating the model is not overfitted.
The values of valuable importance for the projection (VIP) obtained from the model are plotted in
Figure 5b. The VIP value of a vibrational mode indicates how important this mode is for classification
of the samples. The vibrational mode near 960 cm−1 has the greatest VIP value, thus it would have the
greatest contribution for the classification of different grade phosphorite samples.
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Figure 5. (a) Permutation test analysis of the OPLS-DA model, the green dots represent R2 and the
blue dots represent Q2. (b) Valuable importance for the projection (VIP) plot of classification.

In order to further confirm that the vibrational mode of phosphate V1 near 960 cm−1 has the
greatest contribution to the differentiation of different types of phosphorite samples, the S-line diagrams
were used to analyze the data. Figure 6a shows the S-line result between 3.29% sample F and 29.06%
sample B, both of them from Jinning. Figure 6b shows the S-line results between 29.06% sample B from
Jinning and 31.25% sample A from Weng’an. In both Figure 6a,b, the contribution (covariance) and
correlation values of the vibrational mode near 960 cm−1 are significantly larger than those of other
vibrational modes. Therefore, we conclude that the vibrational mode of phosphate V1 near 960 cm−1

has the greatest contribution for the differentiation of different grade phosphorite samples.
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4. Conclusions

Raman spectroscopy combined with PCA-HCA and OPLS-DA models were applied to analyze
different grade phosphorite samples. Both the PCA-HCA and OPLS-DA models showed that different
grade phosphorite samples can be clearly distinguished by statistically analyzing the Raman spectra
after smoothing, baseline correction, and first derivation. The OPLS-DA model has better classification
effect than the PCA-HCA model. In addition, the S-line study in the OPLS-DA model clearly
demonstrated that the symmetrical stretching vibrational mode of phosphate near 960 cm−1 has a
much more significant contribution than other vibrational modes for the differentiation of different
grade phosphorite samples. Compared with the current method, the Raman method has the potential
advantages of high precision and convenient experimental procedure, which provides a promising
method for future practical applications of quick on site classification of different grade phosphorite
samples combined with chemometrics methods.
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