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Abstract: Driven by concerns for safe storage of CO2, substantial effort has been directed on wellbore
integrity simulations over the last decade. Since large scale demonstrations of CO2 storage are
planned for the near-future, numerical tools predicting wellbore integrity at field scale are essential
to capture the processes of potential leakage and assist in designing leakage mitigation measures.
Following this need, we developed a field-scale wellbore model incorporating (1) a de-bonded
interface between cement and rock, (2) buoyancy/pressure driven (microannulus) flow of brine
and CO2, (3) CO2 diffusion and reactivity with cement and (4) chemical cement-rock interaction.
The model is aimed at predicting leakage through the microannulus and specifically at assessing
methods for CO2 leakage remediation. The simulations show that for a low enough initial leakage
rate, CO2 leakage is self-limiting due to natural sealing of the microannulus by mineral precipitation.
With a high leakage rate, CO2 leakage results in progressive cement leaching. In case of sustained
leakage, a CO2 reactive solution can be injected in the microannulus to induce calcite precipitation and
block the leak path. The simulations showed full clogging of the leak path and increased sealing with
time after remediation, indicating the robustness of the leakage remediation by mineral precipitation.

Keywords: CO2 leakage; cement; well integrity; leakage remediation; TOUGHREACT; reactive
transport modelling

1. Introduction

Large scale geological storage of CO2 can significantly reduce CO2 emissions and limit global
warming [1]. Geological reservoirs are selected for the physical containment of CO2 which guarantees
permanent storage in the subsurface. However, CO2 injection wells (and possibly old oil and gas
wells) penetrating the reservoirs and the caprocks above can compromise the integrity of the storage
complex. Wells have a primary structural seal of casing and annular cement (between the casing and
the geological formation) and a cement plug when abandoned. Despite these seals, many oil and gas
wells leak during their operational lifetime or after abandonment through leakage pathways formed by
cement shrinkage or pressure and temperature fluctuations [1]. If annular cement is placed properly,
the most likely leak path for CO2 is along the well through fractures in the cement or microannuli
between the cement and the casing or adjacent rock [2–5].

CO2 leakage through microannuli will cause dissolution of CO2 in the pore waters which
acidifies the near-wellbore environment and causes cement reactivity. Reactions of cement in contact
with CO2-rich water or brine have been extensively studied with experiments and by numerical
modelling [6–13]. A typical wellbore cement mineralogy consists of mainly portlandite (Ca(OH)2)
and calcium silicate hydrate (CSH), with minor phases such as aluminium-, iron-, magnesium-,
or calcium-containing sulphate-, carbonate-, or silicate-hydrates [14]. In general, cement-CO2 interaction
is primarily characterized by portlandite dissolution and subsequent precipitation of calcium carbonate
(CaCO3) because of the fast reaction kinetics. The dissolving CSH phase forms additional calcium
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carbonate and amorphous silica gel (SiO2) [7]. Characteristic successive, inward moving reaction
zones are observed consisting of portlandite dissolution, calcite precipitation, and subsequent calcite
dissolution from the rim, leaving a porous, silica-rich rim [6,10–12]. However, cement reactivity will
most-likely only lead to cement degradation under leaching/flow conditions when reaction products
are quickly removed from the reaction site. At no/low flow conditions, calcite precipitation is the
dominant process rather than (re-)dissolution [4,15,16]. Depending on the initial flow and chemical
conditions, continuous cement leaching occurs, or cement reactivity may actually support natural
sealing of the micro annulus [17–19].

In the case of sustained CO2 leakage, a corrective measures plan must be in place and appropriate
remediation measures should be taken [20,21]. Intentional clogging of the near-well area with salt has
been proposed as a preventative measure against CO2 leakage [22]. This method was based on the
capacity of injected CO2 to evaporate water and precipitate pore filling salt. The process of natural
sealing of the microannulus by mineral precipitation indicates a potential for chemical clogging of
the annulus leak path. Clogging with calcite or silica has already been proposed for a CO2 leak path
through the caprock [23–25]. To induce mineralization in a leak path, it was proposed to inject a silica-
or calcium-rich suspension or solution into the CO2-containing environment. The injected solution
will react in the acid environment to form a solid silica (gel) or carbonate mineral. A modelling study
on leakage remediation above a leaking fault through a caprock indicated a final leakage reduction
of up to 95% [25]. Experimental [23] and modelling results [24,25] for caprock leakage mitigation
support the feasibility of the method for reactive clogging by injecting a CO2-reactive solution into a
high permeable leak path to form solid reactants that clog the leak path, reduce permeability and stop
leakage. The main objective of this study is to assess the possibility of reactive leakage mitigation for
wellbore annulus leakage.

We developed a field scale reactive transport model based on the model reported by Koenen
and Wasch [18] to simulate CO2 leakage through a microannulus, resulting in either sustained flow
and cement leaching or in natural sealing and reduced leakage. For the leakage cases, we study the
potential of induced CO2 mineralization in the leak path, mitigating CO2 leakage. The numerical
modelling study includes the following processes:

• Flow of supercritical CO2 and brine along the initially water-saturated microannulus;
• Diffusion of dissolved CO2 into the caprock;
• Diffusion of dissolved CO2 into impermeable cement and reactions of dissolved CO2 and cement;
• Leakage into the aquifer overlying the caprock;
• Injection of a CO2-reactive solution in the microannulus leak path to promote clogging by

calcite formation;

In this paper, we report on microannulus leakage (versus sealing), the intentional clogging
process for leakage remediation, and the post-clogging phase to assess the sustainability of the
clogging procedure.

2. Materials and Methods

A reactive transport model was developed in TOUGHREACT (Version 3, Lawrence Berkeley
National Laboratory, Oakland, CA, USA) [26], a simulator for coupled modelling of multiphase fluid
and heat flow, solute transport, and chemical reactions by introducing reactive transport into the flow
simulator TOUGH2. We use the ECO2N fluid property module to include the thermodynamic and
thermophysical properties of H2O–NaCl–CO2 mixtures [27].

A 2D axisymmetric field-scale model (Figure 1) was adapted from the model reported in [18].
The well consists of two cemented casings: a 9 5/8” casing of 3590 m depth into the reservoir and a 13
3/8” casing to a depth of 2569 m. We assume a 0.5 cm thick casing (unreactive transport barrier) and a 3
cm thick annular cement. A 500-micron thick, porous and highly permeable micro-annulus is defined
between the cement and the adjacent rock. For the rock formations, three layers are defined: a reservoir
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(infinite volume, representing a large storage reservoir), an impermeable caprock (550 m thick) and an
overlying, permeable aquifer (3040 m thick). Simulations are performed in isothermal mode, with a
(fixed) temperature gradient from reservoir to surface. To reduce simulation times, the upper 2500 m of
the aquifer to the surface are removed after initializing pressure and temperature. The resulting mesh
contains 70 layers and 36 columns. Vertical mesh refinement is defined around the layer interfaces and
at the leakage remediation interval down to 5 cm. The mesh is refined towards the well in the radial
direction, down to cells of 0.5 cm width for the annular cement. The pressure is equilibrated with depth;
25 ◦C and 1.5 bar at the top and 90 ◦C and 327 bar at reservoir level. This yields a 1180 m thick model
with a radius of 150 m (Figure 1). The boundary conditions are represented by the infinite volume
reservoir with a 0.8 CO2 saturation and an infinite volume upper boundary for the microannulus. The
reservoir was given a 20 bar overpressure to simulate upward leakage out of the CO2 reservoir.
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Figure 1. Schematic overview of the 2D radial symmetric TOUGHREACT model showing: the model
dimensions, the different rock formations, the well and the leak path through the wellbore microannulus,
and the location of leakage remediation.

The TOUGHREACT software is developed to simulate reactive transport through porous media
and does not allow open space. Therefore, we defined the microannulus as cement material with a
0.9 volume fraction porosity, with the remaining 0.1 volume fraction made up by cement mineralogy.
The 500-micron microannulus hence has an effective thickness of 450 micron, but the width of the
microannulus may increase by 10% in case of cement mineral dissolution. The microannulus width
(aperture) can be related to its permeability by the cubic law. For an aperture of 500 micron the
permeability would be 4.2 × 10−9 m2 (~4200 Darcy), however, the actual hydraulic permeability will be
lower as it is affected by many factors such as fracture wall roughness. To account for this, simulations
have been previously run with various initial (hydraulic) permeability values between 5 × 10−13 m2

(~500 mDarcy) and 8.3 × 10−10 m2, covering values reported in literature [18]. For the present study
we use a permeability range between 1 × 10−13 m2 and 1 × 10−11 m2 to capture the uncertainty and
natural variation in microannulus flow. For the base case, a permeability of 1.3 × 10−12 m2 is selected.

The flow properties of the different materials used in the model are summarized in Table 1.
For relative permeability, we use the equation from Corey’s curve with a residual liquid and gas
saturation of 0.02 and 0.1. The diffusion coefficient is calculated in TOUGHREACT by multiplying a
standard diffusion coefficient (1 × 10−9 m2/s) by the tortuosity, porosity and liquid saturation. Hence
the effective diffusion coefficient will change over time as the porosity and saturation develop due to
fluid flow and mineral reactions.
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Table 1. Transport properties of the different materials used in the model. * In TOUGHREACT a
permeability of 1.0 × 10−30 m2 represents impermeable material.

Transport
Properties Unit Reservoir Cement Caprock Microannulus Aquifer

Porosity ϕ (-) 0.2 0.3 0.1 0.9 0.2
Permeability k (m2) 2.0 × 10−13 1.0 × 10−30 * 1.0 × 10−30 * 1.3 × 10−12 2.0 × 10−13

Tortuosity τ (-) 0.4 0.01 0.05 0.4 0.4

Capillary
Curve

Van
Genuchten

λ (-) 0.2 - - - 0.2
Slr (-) 0.1 - - - 0.1

1/P0 (-) 0.002 - - - 0.002
P0 (Pa) 1.0 × 108 - - - 1.0 × 108

Sls (-) 1 - - - 1

TRUST

P0 (Pa) - 1.0 × 106 1.0 × 106 - -
Slr (-) - 0.2 0.2 - -
η (-) - 0.4 0.4 - -

Pe (Pa) - 4.0 × 106 4.0 × 106 - -

The cement consists of portlandite, CSH_1.6 (CSH of a 1.6 Ca/Si ratio), monosulfoaluminate and
hydrotalcite (Table 2). The secondary minerals for cement are calcite, amorphous silica, anhydrite,
dolomite and gibbsite. A clastic rock was included consisting of quartz, albite, microcline, kaolinite,
anhydrite, dolomite and calcite. We used the thermodynamic database Thermoddem (version 1.10,
6 Jun 2017, BRGM, France) to model chemical reactions [28]. The reaction of minerals is kinetically
controlled using a rate expression of Lasaga et al. [29]. Mineral kinetics are listed in Table 3. The
specific surface area is assumed 0.98 m2/kg, except for the C-S-H phases and clays for which a value of
100 m2/kg is assumed. The CO2-reactive solution to stimulate microannulus clogging is designed by
equilibrating lime with a sodium chloride brine at surface conditions. The different fluid compositions
are listed in Table 4.

Table 2. Initial mineralogy of cement and aquifer/caprock and possible secondary minerals.

Mineral-Formula Cement (Volume Fraction) Aquifer/Caprock (Volume
Fraction)

Portlandite-(Ca(OH)2) 0.2 -
CSH(1.6)-(Ca1.60SiO3.6:2.58H2O) 0.6 -

Monosulfoaluminate-(Ca4Al2SO10:12H2O) 0.1 -
Hydrotalcite-(Mg4Al2O7:10H2O) 0.1 -

Quartz-(SiO2) - 0.7
Calcite-(CaCO3) - 0.01

Amorphous silica-(SiO2) - -
Anhydrite-(CaSO4) - 0.01

Dolomite-(CaMg(CO3)2) - 0.01
Gibbsite-(Al(OH)3) - -

Microcline-(K(AlSi3)O8) - 0.1
Albite-(NaAlSi3O8) - 0.1

Kaolinite-(Al2Si2O5(OH)4 - 0.07

Porosity changes due to water-rock reactions are calculated in TOUGHREACT using mineral molar
volumes. Porosity change can be related to permeability change by porosity-permeability relations,
but they contain highly uncertain and material specific input parameters [30]. The Verma–Pruess
relation (Equation (1)) is an extension of a Power Law relation considering a critical porosity at which
the permeability is assumed zero. This relation is often used for mineral precipitation processes given
the high impact of the critical porosity on porosities decreasing during mineral precipitation, while the
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relevance of critical porosity in the mathematical expression diminishes for porosities increasing
during dissolution [30]. We used the porosity-permeability relationship of Verma and Pruess [31] and
addressed the uncertainty of the input parameters by a sensitivity study. The base case values are a
0.80 critical porosity and a power law component of 6.

k
ki

=

(
ϕ − ϕc

ϕi − ϕc

)n

(1)

where k is the permeability, ki the initial permeability, ϕ the porosity, ϕi the initial porosity, ϕc the
critical porosity below which the permeability is assumed zero, and n is a power law exponent.

Table 3. Kinetic rate parameters (*a [32], *b [33] and *c [34]).

Mineral

Acid Mechanism Neutral Mechanism Carbonate/Base Mechanism

Log (k25 ◦C)
(mol/m2/s) ∆H (kJ/mol) n Log (k25 ◦C)

(mol/m2/s) ∆H (kJ/mol) Log (k25 ◦C)
(mol/m2/s) ∆H (kJ/mol) n

Portlandite
*c −3.10 75 0.6 −7.66 75 - - -

C1.6SH *c
−7.23 23 −0.28 - - - - -

Monosulf. *b −3.09 74.9 0.6 −11.2 15 - - -
Hydrotal. *b −7.23 15 0.28 −17.8 15 - - -

Quartz *a
−7.52 56.9 0.5 −4.55 56.9 - - -

Calcite *a
−0.30 14.4 1 −5.81 23.5 −3.48 35.4 1

Silica(am) *a - - - −9.42 49.8 - - -
Anhydrite *a - - - −3.19 14.3 - - -
Dolomite *a

−3.19 36.1 0.5 −7.53 52.2 −5.11 34.8 0.5
Gibbsite *a

−7.65 47.5 0.99 −11.5 61.2 −16.7 80.1 −0.78
Albite *a

−10.2 65 0.46 −12.6 69.8 −15.6 71 −0.57

Table 4. Initial composition of the different fluids, dissolved species in mol/L.

Cement Aquifer/Caprock CO2 Reservoir CO2-Reactive
Solution

pH (-) 10.8 6.2 3.5 13.8
Ca2+ 1.30 × 10−2 3.15 × 10−2 3.10 × 10−2 0.68
Mg2+ 1.69 × 10−8 9.32 × 10−3 9.16 × 10−3 -
Na+ 1.0 0.98 0.98 1.03
K+ - 8.62 × 10−3 8.48 × 10−3 -

H4SiO4 4.10 × 10−6 8.57 × 10−4 8.46 × 10−4 -
HCO3

− - 8.29 × 10−3 1.78 -
SO4

2− 2.07 × 10−4 3.25 × 10−2 3.20 × 10−2 -
Al3+ 4.14 × 10−4 7.24 × 10−8 7.12 × 10−8 -
Cl− 1.0 1.0 0.98 1.03

3. Results of CO2 Leakage and Natural Sealing

3.1. CO2 Leakage and Cement Reactions

The reactive transport simulations show upward flow of CO2 through the microannulus. With
the applied 20 bar overpressure, the flow rate of gaseous CO2 through the microannulus is 2.1 ×
10−5 kg/s. During upward flow, a fraction of the CO2 gas dissolves into the cement and caprock pore
water and diffuses horizontally into the cement and the caprock, thereby lowering the pH of the
pore waters. Cement minerals react with the carbonized water and start to dissolve to buffer the pH.
Similar to e.g., Kutchko et al. [6], we observe inward progression of reaction zones in the horizonal
direction, which is limited by diffusion (Figure 2). The reaction zones are characterized by: portlandite
dissolution and calcite formation, CSH dissolution with amorphous silica and calcite precipitation,
monosulfoaluminate and hydrotalcite dissolution with dolomite (max. 0.003 volume fraction), gibbsite
(max. 0.0025 volume fraction) and anhydrite (max. 0.009 volume fraction) precipitation. The further
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up from the reservoir level, the less advanced the horizontal progression of these zones is, since the
reactions only start as soon as the upward migration of the CO2 reaches that level and the pH decreases.
After 2 years of CO2 leakage, approximately 1 cm of the cement just above reservoir level is affected
by horizontal CO2 diffusion and related reactions (Figure 2). The silicate minerals of the caprock do
not show siginificant reactions within the simulated time. There is a minor increase of calcite in the
caprock adjacent to the microannulus.
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Figure 2. The cement mineralogy and porosity after two years of CO2 leakage are plotted for a
horizontal transect across the cement sheet and the microannulus, located just above the CO2 reservoir.
Cement reacts with CO2 from the microannulus on the right. Note that, even though not well visible,
small amounts of dolomite, anhydrite and gibbsite precipitate in the microannulus and cement.

After the CO2 within the microannulus reached the top of the caprock, the pH is around
4.5 throughout the microannulus. In the cement affected by CO2 interactions-adjacent to the
microannulus-the pH is roughly 5 and in the unaltered cement nearly 11 (Figure 3). The pH
decrease causes full dissolution of portlandite in the microannulus and adjacent cement cells and
gradual dissolution of the other cement phases such as CSH, with decreasing amount of dissolution
from the reservoir level upwards. As a result, secondary calcite is also highest at the level close to
the reseroir (Figure 3). Within the microannulus calcite that precipitated is re-dissolved due to the
low pH and flow conditions which allow quick removal of dissolved species. The permeability of the
microannulus is predicted to increase from 1.3 × 10−12 m2 to 1.9 × 10−12 m2 after 2 years of CO2 flow
and corresponding cement alteration.
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Figure 3. The background shows a schematic overview of the model with a cement sheet,
the microannulus leak path and the adjacent formation rock. The pH, calcium silicate hydrate
(CSH) content and calcite content after two years of CO2 leakage are plotted for the lower part of the
annulus adjacent to the caprock.

3.2. Microannulus Leakage Versus Natural Sealing

Four permeability values were selected to simulate different initial leakage rates and to assess
the chemical processes within a leaking or self-sealing annulus. Results are discussed after half a
year of leakage simulation. The different permeabilities yield different levels of gas saturation, with a
higher gas saturation for a higher permeability (Figure 4a). For all scenarios, the flow of CO2 and
dissolution of CO2 in the initially water saturated microannulus result in complete dissolution of
portlandite within the microannulus—which was 10% cement filled—and subsequent precipitation of
calcite (Figure 4b). Above the reservoir, re-dissolution of calcite can be observed. Only for the lowest
permeability of 1 × 10−13 m2, CO2 gas does not reach the top of the caprock. This is due to natural
sealing of the microannulus, with complete calcite clogging in the middle part of the microannulus.
The front of calcite precipitation is characterised by a peak in calcium content (Figure 4c) and an
increase in pH (Figure 4d). The permeability of the microannulus depends on the initial permeability
and the dissolution and precipitation reactions. There is a high permeability near the reservoir where
the calcite content is lowest (Figure 4e). The 1 × 10−11 and 5 × 10−11 m2 scenarios show only little
permeability change in the upper part of the microannulus due to portlandite dissolution and calcite
precipitation. The initial permeability value 1 × 10−12 m2 is more affected by calcite precipitation and
the 1 × 10−13 m2 scenario shows complete permeability impairment due to calcite clogging.
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permeability of the high and low initial permeability scenarios respectively.

4. Results of CO2 Reactive Leakage Remediation

4.1. Injection of the CO2-Reactive Solution with Different Injection Pressures

The 1 × 10−12 m2 permeability scenario is selected to model initial leakage and subsequent leakage
remediation. Upward CO2 leakage through the microannulus was simulated for half a year before
leakage remediation was applied. To remediate leakage, a CO2-reactive solution (composition given
in Table 4) was injected into the CO2 containing microannulus. The solution is injected at a depth
of 3048 m, which is 8 m below the top of the caprock. The CO2-reactive, lime-saturated solution is
injected in order to react with dissolved CO2 to form calcite (CaO + CO2- > CaCO3). To inject the
CO2-reactive solution in the model, we used a fixed pressure cell adjacent to the microannulus to
allow for pressure-controlled injection, instead of defining a fixed injection rate. The sensitivity of
leakage remediation to flow rates was asessed by variying the pressure of injection with 1, 5 and 10 bar
overpressure for the microannulus pressure of 324 bar.

For all three injection pressures, the injection of the CO2-reactive solution leads to an initial
increase followed by an interruption of the upward CO2 flow in the microannulus, but flow recovers
(after t = 0 in Figure 5, showing the results of 5 bar overpressure injection). Calcite starts to precipitate
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in the microannulus at the level where the CO2-reactive solution is injected. Gradually the permeability
of the microannulus reduces with a corresponding decrease of the CO2 and water flow rate (Figure 5).
The rate of solution injection reduces as well, since the permeability decreases and the pressure is
fixed. Figure 6a shows the initial higher injection rate with a higher overpressure and the decrease
of injection rate with time. The moment of complete flow impairment occurs at the time when the
microannulus adjacent to the injection cell is nearly filled with calcite, reducing the permeability to
zero (Figure 5). All overpressures yield complete calcite clogging (Figure 6b), but with differences
in the development of calcite precipitation due to the differences in the balance of calcium and CO2

supply. Within 10 days, all injection pressure scenarios predict clogging the microannulus with calcite
precipitation, preventing further leakage of the CO2.
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Results are from the 5 bar overpressure scenario. Data is plotted with time for the period around
leakage remediation.
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4.2. Sensitivity to Porosity-Permeability Relation Input Parameters

The clogging process and specfically the calculation of the permeability based on the porosity
development depends on highly uncertain porosity-permeability parameters [30]. A sensitivity study
is performed reflecting the range in values for the critical porosity (ϕc) and power law (n) component as
probed by Verma and Pruess [31] (1 ≤ n ≤ 6, 0.8ϕ ≤ ϕc ≤ 0.9ϕ) and Xu et al. [35] (4 ≤ n ≤ 13, 0.88ϕ ≤ ϕc ≤

0.94ϕ). The initial leakage and subsequent remediation simulations (with a 1 × 10−12 m2 permeability)
were repeated for six combinations of 2 critical porosity values of 0.8 and 0.88 (80 and 88% reduction of
the original porosity) with three different power law components of 2, 6 and 10.

The calcite plug formed using the different porosity-permeability relation input parameters
is very similar (Figure 7). A peak of calcite precipitation is observed next to the cell from which
the reactive solution is injected. Above this interval, the microannulus is only partially clogged
due to calcite precipitation. The relative insensitivity of the characteristics of the calcite plug to
the porosity-permeability relationship can be explained by the nature of the remediation process.
The process is designed to inject the reactive solution up to full clogging, meaning that with all
parameters a full permeability reduction will be simulated. There is a small difference in the calcite
formed in the upper part of the plug, with the 0.88ϕc–2n model yielding the most precipitation and a
combinitation of 0.8ϕc and 10n the least. The used porosity-permeability parameters do have a large
impact on the predicted time that is required to achieve full clogging. The time it takes to perform
the remediation method ranges from 7 to 113 days (Table 5). This indicates the importance of the
porosity-permeability parameters for the prediction of the duration of the remediation procedure and
for the asessment of the related costs and overall feasibility.
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Figure 7. The calcite content for a 1 m section of the microannulus after leakage remediation, showing
a peak adjacent to the level of reactive solution injection. The results are shown for six scenarios of
different porosity-permeability relation input parameters.

Table 5. The predicted time of remediation up to full clogging of the microannulus.

Scenario (ϕc – η) 0.8–6 0.8–2 0.8–10 0.88–2 0.88–6 0.88–10

Remediation Time (d) 39 7 48 11 45 113

4.3. Stability of the Plug in Time

After the remediation procedure, the reactive transport simulation is continued for 1 year to assess
the stability of the calcite plug with time. This allows for equilibration of the system and continuation
of diffusion and possibly flow. To assess the stability of the plug and the chemical evolution within the
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microannulus, two porosity-permeability scenarios were selected representing the most (0.88ϕc – 2n)
and least calcite precipitation (0.80ϕc – 10n).

Throughout the microannulus, the pH remains around 4.6 in the post-remediation phase, indicating
the wellbore environment is still acidic and is not buffered by the cement within the year after leakage
remediation that was simulated. The caprock minerals show no significant reactions in this time period.
The main observed process is the increase in calcite volume fraction throughout the microannulus
(Figure 8a), the thin original plug is plotted for comparison. After the remediation method stops CO2

leakage, the process of natural sealing becomes dominant throughout the micoannulus adjacent to
caprock due to the absence of flow. This results in clogging by mainly calcite precipitation and minor
amorphous silica precipitation. After one year of reactions following the remediation procedure, the
0.80ϕc–10n scenario yields full clogging of the microannulus (Figure 8a,b). The 0.88ϕc–2n scenario
does have two sections of partial clogging, but full clogging of the rest of the microannulus (Figure 8b).
The partial clogging above the original plug is due to absence of CO2 which has been completely
consumed, yielding a zero gas saturation (Figure 8c). The gas saturation is highest just below the plug
and just above the CO2 reservoir. The zero permeability of the plug continues to block the CO2 flow
and causes the gas saturation above the clogged level to decrease with time as CO2 migrates and is
consumed by reactions. The permeability impairment forms a pressure block, with the microannulus
below the plug approaching the CO2 reservoir pressure and the microannulus above the plug retaining
hydrostatic pressure.

The two porosity-permeability scenarios both yield sigificant natural sealing after clogging by
injection of the remediation fluid. This indicates that reduction of leakage due to the remediation
procedure enhances the natural capability of the wellbore system to seal and form a barrier against
future leakage.Minerals 2019, 9, x FOR PEER REVIEW 11 of 15 
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Figure 8. The development of the microannulus within 1 year after remediation. Results are shown for
(a) calcite around the original plug, (b) permeability of the microannulus, and (c) gas saturation of the
microannulus adjacent to the caprock.

5. Discussion and Conclusions

Despite the function of annular cement as a seal preventing oil, natural gas or stored CO2 to
migrate to aquifers or to the surface, wells are known to leak due to microannuli formed by processes
such as cement shrinkage or pressure and temperature fluctuations [2,5]. The width of a microannulus
formed tends to increase for larger temperature differences between the produced or injected fluid
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and the rock formation, which is especially relevant for cold CO2 injection [36]. The higher risk of
microannulus formation during CO2 injection combined with high abandonment pressures asks for
an assessment of CO2 microannulus leakage and methods for leakage remediation. Due to the high
reactivity of cement with carbonated brine, the chemical processes are key. A field-scale wellbore
model was developed which successfully incorporates CO2 migration by two-phase flow through a
microannulus and diffusion of dissolved CO2 into the adjacent caprock and cement. This enables the
simulation of the complex reactive transport processes of a storage system, including a storage reservoir,
wellbore cement with a continuous microannulus from reservoir to caprock, and caprock overburden.
Despite the large scale of the model, it was successful in predicting the well-known small-scale reaction
characteristics as found in experimental and (small scale) modelling studies [6,8–12].

Previous simulations showed an initial critical CO2 leakage velocity of 0.1 × 10−5 m/s below which
calcium released from dissolving cement minerals can diffuse towards the microannulus where calcite
forms which clogs the microannulus and prevents further flow [18]. For our models, a low enough
leakage rate to facilitate natural sealing was achieved with an initial microannulus permeability of
1 × 10−13 m2. The possibility for natural microannulus clogging at low leakage rates is similar to the
self-sealing potential of fractures in cement as demonstrated by e.g., Huerta et al. [16]. They discussed
the critical residence time for the CO2 fluid to be present in a cement sample for a fracture to close.
However, natural sealing is not solely dependent on the flow rate as determined by the systems
permeability. Nonuniformity of the microannulus geometry can lead to local changes in flow velocity
affecting the sealing process [19]. The specific chemistry of the cement and rock formations has a large
impact, with, for example, a high potential for calcite forming in the microannulus when the host rock
is a carbonate [17]. Previous modelling showed anhydrite clogging of the microannulus related to
relatively high sulphate concentration in the formation water of the caprock [18], whereas the chemical
characteristics of the cement and surrounding formation water in our model led to dominant calcite
clogging. The thermodynamics and kinetics of the cement phases still pose uncertainty in the chemical
processes in the microannulus [17]. Our kinetic parameters for CSH and silica may be considered
conservative, yielding only minor amorphous silica in the microannulus. In addition, the uncertainty
and variability in the reactive surface area of cement phases may further affect the predicted leaching
of cement and natural sealing process. A dedicated uncertainty assessment with varying parameters
for dissolution/precipitation kinetics and mineral reactive surface areas was out of the scope of this
study but would be needed to assess the sensitivity to natural sealing of the microannulus.

For high leakage rates when natural sealing is not predicted to occur, the process of microannulus
clogging can be induced by adding calcium to the system [22–24]. We injected a calcium-rich brine to
react with the dissolved CO2 in the microannulus, yielding a full permeability decrease due to calcite
precipitation, as graphically represented in Figure 9. There are large uncertainties in the clogging
process regarding the porosity-permeability relation of mineral precipitation in a microannulus.
As discussed by Ito et al. [23] and Druhan et al. [24], the porosity-permeability relation is of utmost
importance for predicting effective leakage remediation. However, compared to our previous numerical
modelling study [22] in which we injected the CO2-reactive solution in an aquifer above a caprock leak,
leakage remediation in the microannulus was predicted to be more successful and far less sensitive
to the porosity-permeability relation. This is due to the confined nature of a microannulus and the
more difficult placement of a plug above a caprock leak path. In our study, the uncertainty of the
porosity-permeability relation was primarily expressed in the time it takes for remediation and not
in the success of remediation. A longer remediation time is related to the larger amount of mineral
precipitation and porosity reduction that is required to achieve full permeability reduction when using
a more conservative porosity-permeability relationship. Hence, accurate design of the remediation
procedure requires additional data on the porosity-permeability behaviour of a microannulus. The
previous study [22], indicated the significance of the leakage rate on the success of leakage remediation.
The design of the remediation procedure would require knowledge on the actual leakage rate or a
numerical sensitivity study on the possible range in initial microannulus permeability and resulting
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leakage rate. With a higher initial leakage rate, injection of the reactive solution might require a higher
injection pressure.

Permanent leakage remediation, considering long-term CO2 storage, requires a chemically stable
plug in the leak path. Our model results indicate that the formed calcite plug does not only remain
stable, but that cessation of flow enables natural sealing in the microannulus at the level below the
plug. The increase in sealing of the microannulus enhances the potential for intentional clogging as a
remediation method. Future work could focus on the sensitivity of the intentional and subsequent
natural clogging process to the chemistry of the CO2 reactive solution and the cement and formation
rock chemistry. The chemical nature of the plug is of less importance when subsequent natural sealing
can take over the barrier function, even if a placed plug would degrade in time.
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