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Abstract: Effective biosynthesis of magnetite nanoparticles using current technology is challenging.
We investigated the synthesis of nanoparticles by Acidithiobacillus ferrooxidans grown on ferrous iron,
elemental sulphur, and mixtures of both substrates. A comparison of tests with different doping
amounts of elemental sulphur in ferrous-containing medium showed that the addition of 0.25 and
0.5 M elemental sulphur to the medium resulted in an increased delay of microbial growth and
ferrous iron oxidation. TEM suggested that the ferrous material was an essential energy source
for the synthesis of nanoparticles in cells. TEM results indicated that the different ratios of ferrous
and sulphur had no significant effect on the morphology of bacteria and the size of nanoparticles.
High-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy
(EDX), and X-ray absorption near edge structure (XANES) showed that the nanoparticles were
composed of magnetite. For the first time, HRTEM and XANES spectra in-situ characterization was
conducted to investigate the nanoparticles that were synthesized by A. ferrooxidans. The findings
from this study indicated that the different ratios of ferrous and sulphur had no significant effect on
size and shape of nanoparticles synthesized by A. ferrooxidans.
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1. Introduction

Nanoparticles play a crucial role in a number of industries due to their dimension, high surface
area, quantum confinement, and dispersal without agglomeration [1–3]. Various physical and chemical
methods are used to produce monodisperse nanoparticles [4,5]. The stability and the use of non-toxic
chemicals are of paramount importance, thus there is a strong demand for environmentally friendly
and sustainable methods. Since magnetite particles were discovered in magnetotactic bacteria [6],
microbial synthesis of nanoparticles is under investigation as an environmentally friendly approach
that interconnects nanotechnology and microbial biotechnology [7,8].

Magnetotactic bacteria (MTB), first discovered by Blakemore in 1975 [6], are a polyphyletic group
of bacteria that have the ability to orient and move along the magnetic and geomagnetic field lines.
Species of magnetotactic bacteria have been observed in diverse gram-negative phylogenetic groups,
including the Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, and Nitrospira [9–11].
The magnetotactic behavior is enabled by the synthesis of ferrimagnetic intracellular organelles termed
the magnetosome [12]. As the most important component of MTB, magnetosomes can sense the

Minerals 2019, 9, 163; doi:10.3390/min9030163 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
https://orcid.org/0000-0001-5030-3817
http://www.mdpi.com/2075-163X/9/3/163?type=check_update&version=1
http://dx.doi.org/10.3390/min9030163
http://www.mdpi.com/journal/minerals


Minerals 2019, 9, 163 2 of 13

Earth’s magnetic field and drive the MTB into the suitable environment for their growth [13]. It has
been reported that magnetosomes are magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals enveloped
by a phospholipid bilayer membrane [14,15]. Owing to their magnetic properties, magnetosomes
have already been successfully applied in various fields, including analytical labeling of DNA and
RNA, magnetic resonance imaging, tumor diagnosis, and nanoprobes [16–19]. Nearly all known
MTB are microaerophilic, anaerobic, or facultatively anaerobic microaerophilic microbes. They are
widely dispersed in the environment, including the soil, lakes, oceans, and other underwater
sludges [20]. Some have also been observed in extreme environments including thermophilic,
alkaliphilic, psychrophilic, acidophilic, and halophilic habitats [21,22]. However, only a few types
of MTB have been isolated and cultured, and large-scale culture is limited due to their strict growth
conditions. At present, this is the primary limiting factor for their application [23].

Acidithiobacillus ferrooxidans is an economically significant bacterium in the field of
biohydrometallurgy [24–26] and is easily cultured on a large scale [27,28]. Additionally, it can
continuously produce leaching agents when it obtains energy by oxidizing elemental sulphur,
ferrous iron, and metal sulphide ores [29–32]. Interestingly, A. ferrooxidans has also been shown
to intracellularly produce magnetite nanoparticles [22,33,34]. A study by Yan et al. [35] demonstrated
that these nanoparticles were not cytotoxic, septicaemic, or genotoxic, and could be applied in medical
and biotechnological applications. Therefore, A. ferrooxidans is a promising alternative strain to
magnetotactic bacteria. Zhang et al. [36] demonstrated that the optimal conditions for cell growth and
magnetosome growth are different. Additionally, oxygen concentration and magnetic field intensity
can affect the formation of nanoparticles [34,37]. When oxygen concentration is low, bacteria are more
likely to synthesize nanoparticles, and A. ferrooxidans synthesizes nanoparticles more easily under a
magnetic field. Liu et al. [33] further demonstrated that the expression of mpsA, magA, thy, and mamB
genes, which can affect the formation of nanoparticles, is regulated by ferrous ion concentrations.
They found that the expression of these genes was decreased under iron-deficient and iron-excessive
conditions, and the cells synthesized fewer nanoparticles. Several researchers have investigated the
effect of using ferrous iron and elemental sulphur as either the sole or mixed energy sources for
mineral bioleaching [38,39]. Their studies focused on the influence of bioleaching, but little is known
about the influence on bacterial growth [40]. In a prior study, we found that A. ferrooxidans had
the ability to synthesize inhomogeneous intracellular nanoparticles containing iron [41]. Based on
this, we investigated the effect of sole and mixed energy sources on nanoparticles synthesized by A.
ferrooxidans.

In the previous studies [34,35,42], researchers isolated nanoparticles from A. ferrooxidans first
and then characterized them with XRD. However, the X-ray absorption near edge structure (XANES)
spectrum allows us to work with a whole cell, avoiding the process of extraction of nanoparticles [43].
Thus, XANES and high-resolution transmission electron microscopy (HRTEM) in-situ characterization
was conducted to investigate the nanoparticles that were synthesized by A. ferrooxidans in this work.

2. Materials and Methods

2.1. Bacterial Enrichment

The A. ferrooxidans strain ATCC 23270 was provided by the Key Laboratory of Biohydrometallurgy
of Ministry of Education, Central South University, China. The strain was cultured in 9 K basal
medium containing (NH4)2SO4 (3.09 g/L), KCl (0.1 g/L), K2HPO4 (0.5 g/L), MgSO4·7H2O (0.5 g/L),
and Ca(NO3)2 (0.01 g/L) at 30 ◦C. pH was adjusted to 1.97 using 50% H2SO4. The strain was cultivated
in 250 mL flasks with FeSO4·7H2O (0.16 M) as an energy source. The strain was collected in the
logarithmic phase by centrifugation (Beckman Coulter, Inc. Avanti J-E) at 10,000 rpm at 25 ◦C for
15 min. The bacteria were re-suspended in sterilized distilled water and then collected for experiments.



Minerals 2019, 9, 163 3 of 13

2.2. Experimental Design

All experiments were conducted in 250 mL flasks containing 100 mL sterilized 9 K basal medium.
The experiment was divided into four groups (Table 1), where the first group (1#) received 0.16 M
FeSO4·7H2O, the second group (2#) received 0.16 M FeSO4·7H2O and 0.25 M elemental sulphur,
the third group (3#) received 0.16 M FeSO4·7H2O and 0.5 M elemental sulphur, and the fourth group
(4#) received 0.31 M elemental sulphur. Each flask was inoculated with 5.0 × 106 cells/mL (cell density
was measured using blood cell counting chambers under an optical microscope) A. ferrooxidans.
All experiments were carried out in triplicate at 30 ◦C in a rotary platform incubator at 170 rpm for
156 h. Samples (0.2 mL) were collected every 12 h, and evaporation loss was compensated periodically
by adding distilled water.

Table 1. The composition of energy source in experimental systems.

Experimental Systems FeSO4·7H2O and Sulphur Composition Ratios
(FeSO4·7H2O: Sulphur; Unit: g)

1# 4.47:0
2# 4.47:0.8
3# 4.47:1.6
4# 0:1

2.3. Analytical Methods

Cell density was measured using blood cell counting chambers under an optical microscope
(BX-41TF, Olympus, Tokyo, Japan). The ferrous ions were detected by the 1,10-phenanthroline
method [44], and the total iron was assayed after reducing ferric to ferrous by ascorbic acid [45].
The pH and oxidation-reduction potential (ORP) value in the solutions were measured using a
pH meter (PHSJ-4A) and a Pt electrode in reference to an Ag/AgCl electrode (3M KCl) (BPP-922).
These analyses were performed on the experimental system. Values presented show means ± SD of
triplicate samples analyzed individually.

2.4. TEM Analysis

Cells were collected after 156 h of culture and fixed at 4 ◦C in 2.5% glutaraldehyde for 24 h,
post-fixed in 1% OsO4 for 50 min, dehydrated in graded ethanol, and then embedded in epoxy resin.
Ultrathin sections (100 nm) were cut using an ultramicrotome (LKB-5, LKB, Sweden). The ultrathin
sections were collected on carbon-coated copper grids and stained with uranyl acetate and lead citrate.
The observations and images were performed with TEM (FEI Tecnai Spirit, Hillsboro, OR, USA) with an
accelerating voltage of 80 kV. The crystal structures and chemical compositions of nanoparticles were
analyzed using HRTEM and energy dispersive X-ray spectroscopy (EDX) using a TEM (JEM 2100F)
with an accelerating voltage of 200 kV. The size of bacteria and nanoparticles was measured using TEM
images imported into Adobe Photoshop. The length and width of bacteria were measured. The longest
length of nanoparticles was measured. The size is presented as means ± SD.

2.5. XANES Analysis

The XANES analysis was performed at the 1W1B beamline in the Beijing Synchrotron Radiation
Facility (BSRF), Beijing, China. Reference sample of spectra of Fe K-edge XANES was collected from
pure compounds, including FeCl2, Fe2O3, Fe(OH)3, and Fe3O4. Each reference sample was placed
on the Kapton tape, and the A. ferrooxidans collected from the experimental system was injected into
a 10-mm-thick cell with Kapton film windows. Fe foil was used to calibrate the monochromator.
Data were collected with a step of 1 eV and dwell time of 1 s under a transmission model using
a Si (311) double crystal monochromator. The XANES spectra were normalized using the Athena
program [46].
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3. Results and Discussion

3.1. Growth Characteristics

As shown in Figure 1, in medium 1#, the logarithmic phase of the bacteria started at 12 h and
ended at 48 h with a peak cell density of 8.0 × 107 cells/mL. There was a slight decrease in bacteria
density in the 2#, 3#, and 4# media during the initial growth period, which was attributed to the
adsorption of a free population on the surface of elemental sulphur [47,48]. The lag phase of bacteria
in the medium with added elemental sulphur was longer than that in the medium using ferrous
iron as the sole energy source because of a period of adaptation in the ferrous grown culture to a
mixed substrate and sulphur-only environment. The final cell densities for 2#, 3#, and 4# media were
2.1 × 108, 1.8 × 108, and 1.4 × 108 cells/mL, respectively. The cell density in the 4# medium was
higher than the maximum density of bacteria in the 1# medium at 156 h. A previous study reported
that sulphur-grown cells give a higher yield of carbon dioxide fixation than cells grown on ferrous
ions [49]; furthermore, carbon dioxide fixation is the only option available for chemolithotrophic
bacteria to generate biomass [50]. Therefore, the density of sulphur-grown cells is higher than that of
ferrous-grown cells.
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Ferrous ion concentration decreased in the 1#, 2#, and 3# media (Figure 2a) due to the oxidation of
ferrous ions to ferric ions by A. ferrooxidans (Equation (1)) [51]. The concentration of ferrous ions in
the 1# medium decreased sharply during the first 48 h. The ferrous ions were completely oxidized
in the 2# and 3# media at 84 h and 144 h, respectively. When elemental sulphur was added to the
medium, the oxidation of ferrous iron was delayed. Previous investigations have shown that ferrous
irons and elemental sulphur are used simultaneously by A. ferrooxidans [39,52]. Therefore, an increase
in the proportion of sulphur in energy results in an increased delay of ferrous iron oxidation. Figure 2b
shows the variation in soluble total iron during cultivation, with a decrease in soluble total iron due
to the formation of ferruginous substances such as jarosite [47], which can be expressed as Equation
(2). In addition, Fang et al. [41] found that a small amount of iron was taken into cells for synthesis of
ferruginous nanoparticles.

2Fe2+ + 1/2O2 + 2H+ → 2Fe3+ + H2O (1)

3Fe3+ + 2SO2−
4 + K+ + 6H2O→ KFe3(SO4)2(OH)6 + 6H+ (2)
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experimental systems supplemented with ferrous.

The variation of pH is shown in Figure 3a. In the 1# medium, pH increased from 1.97 to 2.40 at 24
h then decreased to 1.69 at 156 h. This was likely due to the consumption of H+ in the early period
when bacteria utilized ferrous iron, as shown in Equation (1). Later decreases were likely due to the
abiotic hydrolysis of ferric sulphate (Equation (3)) and the formation of ferruginous substances such as
jarosite (Equation (2)). The variation of pH in the 2# and 3# media was also initially increased and then
decreased. The decrease was likely due to the abiotic hydrolysis of ferric sulphate and the synthesis of
jarosite, as well as the oxidation of sulphur (Equation (4)). In the 4# medium, the pH value decreased
slowly in the first 72 h then decreased more significantly. The oxidation of elemental sulphur by A.
ferrooxidans is an acid-producing reaction [47], as shown in Equation (4). The ORP increased from
350 mV at 12 h to 620 mV at 48 h in the 1# medium. In the 2# and 3# media, a lag period of 36 h and
108 h was observed before the ORP obviously increased (Figure 2b). The variation in ORP showed a
negative correlation with the ferrous concentration.

Fe3+ + 3H2O→ Fe(OH)3 + 3H+ (3)

2S0 + 3O2 + 2H2O→ 2H2SO4 (4)
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3.2. Morphology of Bacteria

Figure 4a–d shows representative TEM images of bacteria in all four media. The average size of
bacteria in the 1# medium was 0.80 ± 0.21 µm × 0.36 ± 0.05 µm (n = 72) (Table 2). With the addition of
0.8 g and 1.6 g elemental sulphur to the ferrous-containing medium, the average size of bacteria was
0.82 ± 0.32 µm × 0.32 ± 0.04 µm (n = 64) and 0.84 ± 0.31 µm × 0.34 ± 0.05 µm (n = 69), respectively.
When only elemental sulphur was added to the medium, the size of bacteria was 1.03 ± 0.40 µm ×
0.35 ± 0.05 µm (n = 75). These results indicate that bacteria were a little longer when using elemental
sulphur as the sole energy source. However, there was no significant difference in size observed.
Bacterial cell morphology may vary according to energy source, and the morphology observed here
was club-shaped under ferrous iron and rod-shaped under elemental sulphur [53].
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Table 2. Summary of physical properties of cultured A. ferrooxidans.

Name of Strain Component Concentration (g/100 mL)
in Growth Medium

Size of
Bacterium (µm)

Size of
Nanoparticles (nm)

A. ferrooxidans

1# ferrous 4.47 (0.80 ± 0.21) ×
(0.36 ± 0.05) (41.5 ± 14.2)

2# ferrous 4.47 (0.82 ± 0.32) ×
(0.32 ± 0.04)

(38.1 ± 9.3)sulphur 0.8

3# ferrous 4.47 (0.84 ± 0.31) ×
(0.34 ± 0.05)

(36.1 ± 12.6)sulphur 1.6

4# sulphur 1 (1.03 ± 0.40) ×
(0.35 ± 0.05) None

3.3. Nanoparticles

TEM images are shown in Figure 4, and the arrangements of nanoparticles (white arrow) can
be observed. The bacteria cannot synthesize nanoparticles without a ferrous energy source in the
medium, as shown in Figure 4d. Ferrous material is an essential energy source for the synthesis
of nanoparticles in A. ferrooxidans [36] and can stimulate the expression of magnetosome synthetic
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genes [33]. In the other three conditions, the nanoparticles were not arranged in a chain as in the case
of MTB [11,12]. Rather, the nanoparticles cultured in the 1# medium were distributed against the cell
wall. Additionally, the nanoparticles cultured in the 2# and 3# media were respectively dispersed
and aggregated. The δ ratio is an indicator of the arrangement of magnetosomes in bacteria [54].
Yan et al. [42] used low-temperature magnetic experiments and found that A. ferrooxidans had a low δ

ratio, which indicates no intact chains in the cell. However, for the majority of MTB, magnetosomes
are arranged in one, two, or multiple chains, which are usually fixed to the cell and parallel to each
other along the length of the chain to minimize magnetostatic energy [55]. We performed TEM
analysis of images for three conditions. The diameters of nanoparticles cultured in the 2# and 3# media
were 38.1 ± 9.3 nm and 36.1 ± 12.6 nm, respectively, while the diameter of nanoparticles cultured
in the 1# medium was 41.5 ± 14. nm. The mean size of nanoparticles cultured in the 1# medium
was slightly larger than that in the 2# and 3# media. However, the difference was not significant,
and the range of these sizes fell within one standard deviation. Figure 5 presents the histograms of
the diameter of nanoparticles for three cases. In these radius distribution patterns, the majority of
nanoparticles cultured in the 1# medium were in the size range of 40–50 nm, whereas the majority of
nanoparticles cultured in the 2# and 3# media were around 30–40 nm. Faivre et al. [56] showed that
the sizes and morphologies of mature magnetosomes synthesized by MTB were affected by the rates
of Fe uptake. The lower the rates of Fe uptake, the smaller the nanoparticles synthesized by bacteria
were. This showed that Fe uptake rate played a key role in magnetosome formation. In our study,
the oxidation of ferrous iron was delayed when elemental sulphur was added to the medium; however,
there was no significant effect on the size of nanoparticles.
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EDX and HRTEM analyses were performed on nanoparticles. Fe and O peaks were present in all
three samples, as shown in Figure 6a–c. EDX analysis indicated that nanoparticles were composed of
iron and oxygen. Meanwhile, the carbon-coated copper grids explained the carbon and copper peaks,
and osmium oxide explained the oxygen and osmium peaks. However, Fang et al. [41] found that
nanoparticles synthesized by Ferroplasma thermophilum contained iron, oxygen, and cobalt. Meanwhile,
as shown in Figure 7, the lattice spacing of nanoparticles cultured in the media 1#, 2#, and 3# was
2.95 Å, 2.53 Å, and 2.43 Å, respectively. The fringes with spacing clearly corresponded to magnetite,
which has been previously demonstrated in A. ferrooxidans [35,42].Minerals 2018, 8, x FOR PEER REVIEW  8 of 12 
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To determine Fe species of nanoparticles, Fe K-edge XANES analyses were carried out. As shown
in Figure 8, the spectra of standard Fe-containing compounds showed differences in the peaks’
positions. When we examined the XANES spectra of 1#, 2#, and 3#, we observed a shoulder feature
at 7139 eV (green dotted line, Figure 8), which was consistent with Baumgartner’s finding [57].
This shoulder was also observed in the XANES spectrum of poorly ordered ferric phosphates [58].
It has been reported that magnetite formation in magnetotactic bacteria proceeds from disordered ferric
phosphate [57]. In our study, the medium contained K2HPO4, hence we speculated the nanoparticle
formation in A. ferrooxidans may have proceeded from a ferric phosphate. We also observed a shoulder
feature at 7114 eV (red dotted line, Figure 8) and strong peaks at 7131 eV (black arrow, Figure 8).
The spectra of Fe2O3 and Fe(OH)3 had two peaks at 7129 and 7134 eV (red arrow, Figure 8). The spectra
of Fe3O4 had one peak at 7131 eV (black arrow, Figure 8). Moreover, the spectra of nanoparticles
cultured in the media 1#, 2#, and 3# had strong peaks at 7131 eV and had no peak at 7134 eV. Therefore,
the spectra of 1# to 3# were more similar to Fe3O4 than Fe(OH)3 and Fe2O3. Overall, by combining the
results of EDX, HRTEM, and XANES, it could be inferred that the composition of the nanoparticles
was magnetite.
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4. Conclusions

We investigated changes in A. ferrooxidans growth and nanoparticle production during culture
with different concentration ratios of ferrous iron and elemental sulphur. The following results were
produced:

• In the ferrous-containing medium, more elemental sulphur in the medium resulted in an increased
delay in microbial growth and ferrous iron oxidation.

• Different ratios of ferrous and sulphur had no significant effect on the morphology of bacteria or
the size of nanoparticles synthesized by A. ferroxidans.

• EDX, HRTEM, and XANES results showed that the nanoparticles were composed of magnetite.

These findings help to gain a better understanding into the formation of nanoparticles under
different energy sources and further enrich the theory of nanoparticle synthesis by extremely
environmental microbes.
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