Samples	Optical	Raman	WDS	EDXRF	ICP-M	LA-ICP-M	UV-Vis-NIR
	microscopy	spectroscopy	EMPA		S	S	spectroscopy
1-K	+						
2-K	+						
3-K	+			+	+		
4-K	+						
5-K	+						
6-K	+			+	+		
7-K	+						
8-K	+	+	+	+		+	+
9-K	+						
10-K	+						
11-K	+						
12-K	+	+	+	+		+	
13-PY	+		+	+	+		
14-cont.	+			+	+		
15-y/o	+		+	+	+		
16-K+Cl	+		+	+			

Supplementary Materials:

Table S1. The samples and methods used in the research.

Sample 1-K-13PY, 16K+Cl – kyshtymites, 14-cont. - reaction rim between kyshymites and meta-ultramafic host rock, 15 y/o –meta-ultramafic host rocks.

		it abbo ela llori i titti i ile bap pre	iie
Mineral Groups	Major Minerals	Minor Mineral	Accessory Minerals (Syngenetic Inclusions)
Silicates	Plagioclase	Muscovite	Zircon
		Clinochlore	
		Clinozoisite	
Phosphates			Apatite
			Churchite-(Y)
			Monazite-(Ce)

Table S2. Minerals identified in association with the sapphire

Table S3.	. Representative	compositions	(wt. %)) of major miner	als found in	association v	vith sapphire.
-----------	------------------	--------------	---------	------------------	--------------	---------------	----------------

Element	Plagiocl	ase	Clinozo	isite	Musco	vite	Clinoch	lore		
Element	n=12		n=4		n=2		n=9	n=9		
	range mean		range	mean	range	mean	range	Mean		
SiO ₂	43.62-57.17	49.04	37.48-39.2	38.41	44.23-46.5	45.37	33.59-38.25	36.19		
TiO ₂	0.00-0.06	0.02	0.06-0.14	0.09	0.00-0.38	0.19	0.31045	0.36		
Al ₂ O ₃	27.24-36.21	32.64	31.58-32.77	32.25	36.97-37.46	37.22	20.47-22.91	21.33		
FeO	0.00-0.06	0.04	0.39-2.07	1.59	0.36-0.55	0.46	4.83-8.04	6.27		
MnO	0.00-0.07	0.02	0.01-0.06	0.04	n.d.	0.01	0.03-0.08	0.05		
MgO	0.00-0.04	0.02	0.02-0.18	0.13	1.37-1.71	1.54	18.3-24.19	20.48		
CaO	9.13-19.43	0.02	23.57-24.25	23.88	0.48-0.95	0.72	0.01-0.38	0.10		
Na ₂ O	0.33-6.39	2.86	0.02-0.03	0.03	0.71-0.87	0.79	0.35-2.01	1.33		
K2O	0.00-0.06	0.02	_	0.03	8.92-9.4	9.16	3.1-7.87	6.74		
V2O5	0.00-0.03	0.02	0.07-0.09	0.08	n.a	_	0.00-0.12	0.07		

 Cr ₂ O ₃	0.00-0.05	0.02	_	0.06	0.04-0.05	5 0.05	0.00-0.08	0.03
Ga ₂ O ₃	0.01-0.07	0.05	_	0.03	n.a	_	0.04-0.07	0.03
 Total	97.25-101.44	99.43	95.49-98.38	96.52	96.22-94.7	74 95.48	90.10-95.78	92.91
			Formul	a coeffic	cients			
Si	2.07-2.37	2.19	2.91-3.00	2.96	2.93-3.05	2.99	2.83-3.10	2.99
Ti	—	_	—		_		0.02-0.03	0.02
Al	1.64-1.86	1.82	2.89-3.00	2.93	2.89-2.90	2.89	1.982.2.22	2.08
Fe	—	_	0.03-0.13	0.10	0.02-0.03	0.03	0.32-0.55	0.44
Mg	—	—	0.01-0.02	0.02	0.13-0.17	0.15	2.34-2.96	2.53
Ca	0.62-0.86	0.79	1.96-1.98	1.97	0.03-0.07	0.05	0.00-0.03	0.01
Na	0.10-0.38	0.21	—		0.09-0.11	0.10	0.06-0.32	0.21
Κ	—	_	—		0.75-0.80	0.77	0.32-0.81	0.71

n.a. — not analyzed, n.d. — not detected. Plagioclase calculated on the basis of - 8 O, clinozoisite - 8 cations *pfu*, muscovite – 10 O, clinochlore – 9 cations *pfu*.

Table S4. Representative compositions (wt. %) of minor minerals found in association with sapphire.

Element	Chu	urchite-(Y	()	Monazite-(Ce)		Zircon		
SiO ₂	0.14	n.d.	0.31	0.32	32.18	31.89	32.15	
Al ₂ O ₃	n.d.	n.d.	n.d.	0.47	n.d.	n.d.	0.12	
FeO	0.03	0.16	0.17	n.d.	n.d.	n.d.	n.d.	
CaO	0.11	0.07	0.35	0.17	0.06	0.07	0.09	
ZrO_2	n.d.	n.d.	n.d.	0.65	64.81	65	62.76	
P_2O_5	35.9	36.84	35.84	32.27	0.62	0.44	0.58	
F	n.d.	n.d.	n.d.	0.86	0.22	0.18	0.02	
PbO	0.48	0.12	0.44	n.d.	0.03	0.15	n.d.	
Gd ₂ O ₃	1.8	2.15	2.19	4.27	0.05	0.09	0.06	
Pr_2O_3	0.1	0.17	0.12	n.d.	n.d.	0.2	n.d.	
Sm ₂ O ₃	0.91	0.93	1.05	2.74	0.43	0.75	0.51	
Y_2O_3	42.09	43.02	41.3	2.08	n.d.	0.04	0.16	
HfO ₂	n.d.	n.d.	n.d.	n.d.	2.45	0.97	1.98	
La ₂ O ₃	0.12	0.09	n.d.	17.56	n.d.	0.02	0.02	
Ce ₂ O ₃	0.14	n.d.	n.d.	29.89	0.08	0.25	0.16	
Nd ₂ O ₃	0.52	0.16	0.14	9.78	n.d.	0.09	0.26	
ThO ₂	0.72	0.55	0.69	0.7	0.15	n.d.	0.4	
U_2O_3	1.77	n.d.	2.14	n.d.	n.d.	n.d.	n.d.	
Total	84.81	84.11	84.58	101.81	101.13	100.33	99.48	
O=F	_	—	_	0.36	0.09	0.08	0.01	
Total	84.81	84.11	84.58	101.45	101.04	100.25	99.47	
			Form	ula coefficients				
Si	—	—	_	_	0.98	0.98	0.99	
Al	—	—	—	0.02	—	-	—	
Ca	—	—	0.01	0.01	—	—	_	
Y	0.80	0.80	0.78	0.04	—	-	—	
Zr	—	—	—	—	0.96	0.97	0.95	
Р	1.08	1.09	1.08	1.03	0.02	0.01	0.02	
Gd	0.02	0.02	0.03	0.05	_	-	—	
Sm	0.01	0.01	0.01	0.04	—	0.01	0.01	
Hf	—	—	—	—	0.02	0.01	0.02	
La	—	_	—	0.24	—	—	-	
Ce	—	—	—	0.41	-	—	—	
Zr	—	-	—	0.01	-	-	-	
Nd	—	—	—	0.13	—	—	-	
Th	0.01	_	0.01	0.01	_	_	—	

n.d. – not detected. Churchite-(Y), Monazite-(Ce), and zircon were calculated on the basis of 4 oxygen atoms.

Element	1	2	3	4	5
SiO ₂	29.75	28.95	28.11	30.26	30.16
TiO ₂	0.02	n.d.	0.07	n.d.	n.d.
Al ₂ O ₃	0.09	0.38	0.18	0.35	0.13
FeO	0.05	0.08	0.04	0.02	0.07
MnO	0.00	0.01	0.04	0.03	0.08
MgO	0.02	0.02	0.03	0.01	0.04
CaO	0.01	0.06	n.d.	n.d.	0.01
K ₂ O	0.02	0.01	n.d.	n.d.	n.d.
ZrO_2	64.40	61.79	60.27	63.30	64.69
HfO ₂	1.51	3.00	5.38	0.72	0.59
Cr ₂ O ₃	n.d.	n.d.	0.07	0.04	0.03
V_2O_3	n.d.	0.12	0.05	0.12	0.14
Ga ₂ O ₃	n.d.	0.03	n.d.	n.d.	n.d.
Total	95.88	94.45	94.23	94.85	95.94
]	Formula coe	fficients		
Si	0.96	0.96	0.95	0.98	0.97
Al	_	0.01	0.01	0.01	_
Zr	1.02	1.00	0.99	1.00	1.02
Hf	0.01	0.03	0.05	0.01	0.01

 Table S5. Representative compositions (wt. %) of the zircon inclusions in sapphire.

Table S6. Chemical composition of sapphires from Ilmen Mountains and sapphire occurrence with

possible anorthositic-syenitic origin	•
---------------------------------------	---

	Kysh-tymite s	Ilmen syenite pegmatites [2]	Ilmen metaso-matit es within meta-ultram afic rocks [3]	Yogo Gulch lamprophyre dike [39]	Gortva syenite/ anortho-clasi te xenoliths [38]	Montana (USA) [37]	Pailin (Cambodi a) [35, 56]
Fe in µg/g Mg in µg/g	1010 – 5209 47-335	2614-3235 1-7.5	686-1128 11-106	2026-6631 89-172	2073-3415 16-148	2191-7687 9.4-394	320–640 80 - 200
Ti in μg/g Ga in μg/g	101-940 30-61	5.9-167 36-221	92-279 9-35	135-301 31-80	174-2385 71-97	23-142 38-65	120-270 0-70
V in µg/g Gr in µg/g	4 -9 0 -12	13-19 3.5-16	0.92-2.46 0-520	4-84 2-12590	40-94 0-6.8	9-15 0-100	5 -20 —
Ga/Mg	0.11-0.80	36-221	0.43-2.72	0.20-0.57	0.9-4.8	0.65-4.43	0.35
Fe/Mg	6.15-43.32	429-2628	7.23-74.34	22.76-38.55	31-137	23.07-	3.2-4
						129.56	
Cr/Ga	0.01-0.32	0.018-0.074	1.29-9.45	0.06-307.88	0.002-0.088	0.07	_
Fe/Ti	1.08-22.95	19-366	3.21-16.11	8.6-28.2	1.2-16.3	1.43-11.91	2.37-2.66
10000Ga/Al	0.60-0.80	0.68-4.18	0.17-0.66	0.59-1.51	1.34-1.83	0.72-1.23	1.32

			and react	on rim.			
Sample	6K	8K	12K	16KC4	13PY	14-cont.	15 y/o
SiO ₂ (wt.%)	42.37	42.72	40.84	41.56	41.24	45.09	69.72
TiO ₂	0.04	0.10	0.07	0.08	0.13	0.21	0.00
Al ₂ O ₃	34.76	36.77	42.94	35.33	42.77	4.29	1.18
Fe2O3*	0.38	1.32	0.12	0.62	0.51	6.72	6.22
MnO	0.01	0.01	n.d.	n.d.	0.01	0.05	0.18
MgO	1.61	2.52	0.60	2.86	1.11	28.08	17.97
CaO	15.79	11.23	7.46	13.82	5.89	0.42	0.25
Na ₂ O	1.08	2.17	4.01	0.82	3.98	0.09	0.19
K2O	0.50	0.99	0.98	1.29	1.05	0.05	0.05
P_2O_5	0.06	0.07	0.04	0.04	0.04	0.02	0.02
S	0.03	0.02	0.02	0.02	0.02	0.01	0.05
LOI	2.51	1.44	2.42	2.96	2.71	14.67	3.91
Total	99.15	99.37	99.51	99.40	99.46	85.03	95.83
Li (ug/g)	17	_	_	_	102	17	8.9
Be	3.6	_	_	_	17	1.3	0.40
Ti	243	_	_	_	319	1008	35
V	7.3	_	_	_	49	25	13
, Cr	78	_	_	_	36	1515	656
Mn	147		_	_	79	352	1327
Co	78	_	_	_	26	30	53
Ni	219	_	_	_	2.0 45	843	1316
Cu	63	_	_	—	45	17	1510
Ph	18	—	_	—	4.5	24	522
RD Sr	1301	—	_	—	2690	1.0	1.4
SI V	4391	—	_	—	2090	1.9	1.4
1 7-	30 142	—	—	—	14 260	0.4	15
	145	—	—	—	260	0.19	0.50
IND Ma	4.5	—	_	_	9.9	8.8	3.8 1 E
MO	0.25	—	_	_	D.d.1.	9.6	1.5
Ба	226	—	_	_	644	10	1.3
La	13	_	_	_	23	40	47
Ce	21	—	—	—	42	1.1	1.3
Pr	2.09	—	—	—	4.6	2.6	2.8
Nd	7.2	—	—	—	15.54	0.30	0.37
Sm	2.4	—	—	—	4.0	0.92	1.3
Eu	3.1	—	_	_	2.2	0.35	0.37
Gd	3.1	_	_	_	3.8	0.11	0.13
Tb	0.79	—	_	_	0.52	0.21	0.28
Dy	5.3	_	_	_	2.7	0.031	0.037
Но	1.2	_	_	_	0.60	0.17	0.25
Er	3.3	—	—	—	1.8	0.036	0.063
Tm	0.52	—	-	—	0.25	0.12	0.22
Yb	3.1	—	-	—	1.8	0.022	0.040
Lu	0.44	—	-	—	0.25	0.21	0.29
Hf	11	—	_	_	13	0.042	0.043
Та	0.92	—	_	_	0.77	0.25	1.0
W	2.8	_	-	_	0.11	0.35	0.21
Pb	42	_	-	_	48	114	
Th	90	—	-	—	17	7.5	1.5
U	119	—	_	—	13	3.1	0.89
Zr/Hf	12.42	_	_	_	20.72	34.86	3.71
Sr/Ba	19.39	_	_	_	4.18	0.21	0.27
Nb/Ta	4.94	_	_	_	12.83	27.09	7.15

 Table S7. Representative analyses of corundum-blue sapphire anorthosites-kyshtymites, meta-ultramafic host rocks,

3-K, 6-K, 8-K, 12-k, 16-KC4, 13-PY – kyshtymites, 14-cont. - reaction rim, 15 y/o - meta-ultramafic host rocks. Data on major elements are from Filina et. al. 2019. Fe was measured as Fe₂O₃ total; n.d. — not detected. b.d.l. — below the detection limit.

Table S8. LA-ICP-MS trace-elements measurements of zircons from sampel 8-K (in $\mu g/g$).

Sample	1-1	1-2	1-3	2-1	2-2	3-1	3-2	3-3	4-1	4-2	5-1	5-2	6-1	6-2
⁴³ Ca	699	b.d.l.	8226	16894	8338	b.d.l.	823	1562	16366	972	884	3974	5793	392
⁴⁹ Ti	b.d.l.	b.d.l.	43.5	182.1	b.d.l.	53.9	55.3	2523.3	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
^{51}V	b.d.l.	b.d.l.	b.d.l.	7.15	2.2	b.d.l.	2.43	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	1.74
⁵³ Cr	b.d.l.	b.d.l.	b.d.l.	46.7	b.d.l.									
⁸⁹ Y	727	512	1332	497	654	1501	988	2370	1082	381	666	1180	429	522
⁹³ Nb	1.83	2.32	4.96	7.14	5.66	5.74	21.6	426	5.62	4.76	2.53	10.3	2.57	3.28
⁹⁵ Mo	2.14	2.42	2.15	1.45	1.75	2.47	2.31	2.37	3.18	3.00	2.39	2.57	2.08	4.26
^{118}Sn	b.d.l.	b.d.l.	b.d.l.	1.10	1.26	b.d.l.								
¹²¹ Sb	b.d.l.	0.18	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.						
¹³⁹ La	0.23	b.d.l.	0.66	3.12	1.53	1.14	1.48	4.60	1.90	0.75	0.60	12.28	0.36	0.19
¹⁴⁰ Ce	30.1	13.3	66.1	14.3	29.4	73.7	13.8	88.0	48.5	10.4	24.9	87.3	22.9	22.8
$^{141}\mathrm{Pr}$	0.26	0.15	0.94	0.69	0.52	0.70	0.49	5.38	0.66	0.21	0.29	3.96	0.20	0.192
^{146}Nd	3.94	1.94	13.6	5.17	4.47	8.95	3.06	42.8	7.44	1.95	3.95	19.0	1.83	2.17
¹⁴⁷ Sm	6.21	3.11	20.4	3.72	5.04	13.9	4.63	43.6	13.5	3.77	4.93	14.5	3.96	3.93
¹⁵³ Eu	2.96	1.38	9.5	1.69	2.57	6.52	1.46	15.3	5.25	1.26	2.56	6.23	3.81	2.93
¹⁵⁷ Gd	26.0	14.2	74.8	12.2	21.9	60.6	16.9	120	43.6	10.9	22.8	49.0	15.1	17.2
¹⁵⁹ Tb	7.11	4.27	18.1	3.93	6.21	16.0	5.87	33.5	11.4	3.25	6.01	12.5	4.35	4.86
¹⁶³ Dy	70.5	45.7	160	42.0	63.0	163	74.8	296	109	35.6	65.0	121	41.2	49.4
¹⁶⁵ Ho	24.7	16.8	48.8	14.9	21.2	52.7	30.7	80.4	37.9	13.0	22.0	40.6	14.1	17.1
¹⁶⁶ Er	112	80.3	194	74.5	92.7	232	159	297	161	57.1	99.4	176	63.5	78.9
¹⁶⁹ Tm	22.2	17.6	35.9	17.0	18.5	43.8	38.3	52.6	32.7	12.2	20.2	34.6	12.8	16.1
¹⁷² Yb	209	169	303	174	171	407	424	448	297	123	197	312	133	153
¹⁷⁵ Lu	41.8	34.7	58.2	35.4	32.1	79.6	82.9	80.6	58.0	24.4	39.4	61.7	23.3	30.3
¹⁷⁸ Hf	8850	9812	9284	6936	8027	9438	17483	9971	12048	11398	10328	9784	6845	10060
¹⁸¹ Ta	0.54	0.42	0.77	13.2	2.53	3.55	26.8	66.5	1.54	0.83	0.95	0.96	0.42	1.56
^{182}W	b.d.l.	b.d.l.	0.69	b.d.l.	0.46	0.19	1.97	30.4	0.65	b.d.l.	0.24	0.35	b.d.l.	b.d.l.
²⁰⁸ Pb	5.38	2.18	15.5	21.3	16.3	16.6	10.5	29.5	14.7	4.93	4.84	12.0	3.76	4.49
²³² Th	181	83.4	551	81.9	187	557	104	507	348	55	141	395	105	113
²³⁸ U	503	436	884	774	508	1145	2154	1105	946	504	505	866	288	382

		Table 59.	In situ LA-I	CP-IMS geo	ocnron	blogy of zirco	ns from sa	mple 8-K.					
	Ratios				Rho	Ratios		Ages (Ma)					Common Pb
	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ		²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	$\pm 2\sigma\%$	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁶ Pb/ ²⁰⁴ Pb
1-1	0.35087	0.01232	0.04869	0.00112	0.66	0.05227	0.00138	305.4	9.3	3.0	306.5	6.9	
1-2	0.34681	0.01299	0.04832	0.00112	0.62	0.05206	0.00153	302.3	9.8	3.2	304.2	6.9	1805
1-3	0.40919	0.01260	0.05693	0.00125	0.71	0.05213	0.00113	348.3	9.1	2.6	356.9	7.6	
1-4	0.37836	0.01264	0.05205	0.00087	0.50	0.05272	0.00152	325.8	9.3	2.9	327.1	5.3	
1-5	0.37111	0.01633	0.04660	0.00078	0.38	0.05776	0.00235	320.5	12.1	3.8	293.6	4.8	
1-6	0.35599	0.02133	0.05122	0.00117	0.38	0.05040	0.00279	309.2	16.0	5.2	322.0	7.2	488
1-7	0.32687	0.01228	0.04549	0.00083	0.49	0.05211	0.00171	287.2	9.4	3.3	286.8	5.1	1948
2-1	0.37850	0.01374	0.05177	0.00114	0.61	0.05303	0.00153	325.9	10.1	3.1	325.4	7.0	1137
3-1	0.34958	0.01426	0.04828	0.00088	0.45	0.05251	0.00191	304.4	10.7	3.5	304.0	5.4	1198
3-2	0.32427	0.01269	0.04627	0.00130	0.72	0.05083	0.00138	285.2	9.7	3.4	291.5	8.0	1185
3-3	0.34030	0.01234	0.04593	0.00105	0.63	0.05374	0.00151	297.4	9.3	3.1	289.5	6.5	1337
3-5	0.30824	0.01249	0.04421	0.00145	0.81	0.05056	0.00120	272.8	9.7	3.6	278.9	8.9	1010
3-7	0.32184	0.01157	0.04304	0.00133	0.86	0.05423	0.00100	283.3	8.9	3.1	271.7	8.2	14173
4-1	0.35583	0.01733	0.04745	0.00168	0.73	0.05439	0.00182	309.1	13.0	4.2	298.8	10.3	
4-2	0.43799	0.01872	0.05746	0.00188	0.77	0.05528	0.00152	368.8	13.2	3.6	360.2	11.5	2213
4-3	0.40243	0.01533	0.05339	0.00169	0.83	0.05466	0.00115	343.4	11.1	3.2	335.3	10.4	2331
4-4	0.40219	0.01524	0.04938	0.00159	0.85	0.05907	0.00119	343.2	11.0	3.2	310.7	9.8	2113
5-3	0.46492	0.02520	0.05206	0.00173	0.61	0.06477	0.00278	387.7	17.5	4.5	327.2	10.6	2461
5-5	0.39586	0.02054	0.05023	0.00190	0.73	0.05716	0.00203	338.6	14.9	4.4	315.9	11.6	14986
6-1	0.46051	0.02136	0.05349	0.00178	0.72	0.06244	0.00202	384.6	14.9	3.9	335.9	10.9	2262

 Table S9. In situ LA-ICP-MS geochronology of zircons from sample 8-K.

0							
	Kysh-tymites	Ilmen syenite pegmatites [2]	llmen metasomatites within meta-ultramafic	Yogo Gulch lamprophyre dike [39]	Gortva syenite/anorthoclasite xenoliths [38]	Montana (USA) [37]	Pailin (Cambodia) [35,56]
			rocks [3]				
Plagioclase	+			+	+	+	+
Alkali feldspar		+	+		+	+	
Zircon	+	+	+	+	+		+
Xenotime-(Y)	+				+		
Columbite-(Fe)		+					+
Monazite-(Ce)	+	+			+	+	+
Churchite-(Y)	+						
Uraninite		+					
Muscovite	+	+	+			+	
Ilmenite		+			+	+	
Spinel			+		+	+	
Clinoclore	+		+				
Pb- Ni-bearing			+				
minerals							
Apatite group	+		+			+	
minerals							
Rutile	+					+	+
Anatase						+	+

Table S10. Frequently detected solid inclusions and common minerals found in association with sapphires from Ilmen Mountains and sapphires occurrence with possible anorthositic-syenitic origin.

Figure S1. Zircon CL images and maps in average weighted atomic numbers with the spots positions for trace-elements (No of spots inside of circles) and U-Pb geochronological measurements (U-Pb ages inside of circles). Black – Concordia kyshtymite age, red – 6 Concordia elder ages, purple – 3 ages in Discordia.

Figure S2. Chondrite-normalized concentration of REE and trace elements in studied zircons from kyshtymites (red circle), miascites (purple diamond), and carbonatites (green triangle), of the Ilmensky-Vishnevogorsky complex modified after [45]. Data on REE and trace elements in chondrite are after [41].

Figure S3. Trace-elements and REE distribution normalized to primitive mantle (the data on REE and trace-elements in primitive mantle are from [41]) in reaction rim (1) between kyshymites and meta-ultramafic host rock, meta-ultramafic host rocks (2), kyshtymites (3), miascites (4), and carbonatites (5) of the Ilmenogorsky-Vishnevogorsky complex modified after [18] and Medvedeva E.V (unpublished data).

Figure S4. Concordia diagram for zircons from kyshtymite sample 8-K and carbonatites of Vishnevogorsky complex (sample 354 by Nedosekova [50]).

Figure S5. Diagram εSr (T) *vs* εNd (T) for kyshtymite, miascite and carbonatite of the Ilmenogorsky-Vishnevogorsky complex modified after [18,25], the diagram shows mantle reservoirs DMM, HIMU, EM1, EM2, MORB and OBI by [65].