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Abstract: Naturally-occurring iron nanoparticles constitute a quantitatively-important and
biogeochemically-active component of the broader Earth ecosystem. Yet detailed insights into
their chemical speciation is sparse compared to the body of work conducted on engineered Fe
nanoparticles. The present contribution briefly reviews the analytical approaches that can be used
to characterize natural Fe nanoparticles, before detailing a dedicated synchrotron-based X-ray
spectro-microscopic investigation into the speciation of suspended Fe nanoparticles collected from
fluvial, marine, and lacustrine surface waters. Ferrous, ferric and magnetite classes of Fe nanoparticles
(10–100 nm) were identified, and all three classes exhibited a high degree of heterogeneity in the local
bonding environment around the Fe center. The heterogeneity is attributed to the possible presence of
nanoparticle aggregates, and to the low degrees of crystallinity and ubiquitous presence of impurities
(Al and organic moieties) in natural samples. This heterogeneity further precludes a spectroscopic
distinction between the Fe nanoparticles and the larger sized Fe-rich particles that were evaluated.
The presented results provide an important baseline for natural nanoparticle speciation in pristine
aquatic systems, highlight the degree of inter-particle variability, which should be parameterized in
future accurate biogeochemical models, and may inform predictions of the fate of released engineered
Fe nanoparticles as they evolve and transform in natural systems.
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1. Introduction

Iron (Fe) is the most abundant transition metal in the Earth’s crust, with important and
biogeochemically-active repositories existing in all four of the Earth’s major subsystems (viz. lithosphere,
hydrosphere, atmosphere and biosphere). In these natural environments iron particles exist
over a broad range of sizes, however with the recent advent of the so-called “nanotechnology
revolution”, it is the smallest size classes (i.e., nanoparticles defined as having one dimension
<100 nm; e.g., [1]) that are receiving special scientific and industrial attention. Two key reasons
for this gain in prominence include: (1) On account of their high surface area to size ratio and
because of quantum effects, nanoparticles commonly exhibit differing chemical behavior to their
bulk analogues; and (2) technological advancement and human activity is rampantly increasing the
concentrations of incidental and engineered nanoparticles released into the natural environment
(e.g., References [2–4]). Iron nanoparticles are of particular interest since their surface chemistry
renders them as important transporting agents for nutrients and pollutants in natural systems [5,6],
their reactivity has been exploited for environmental and hazardous waste site remediation (notably
engineered Fe0 nanoparticles [7]), and they may be actively cycled in biogeochemical systems where
Fe is an essential nutrient for driving primary productivity (which in turn influences atmospheric CO2

levels) [8,9].
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Despite their ubiquity and importance, natural Fe nanoparticles have received relatively limited
scientific attention relative to the large body of work that focusses on the synthesis, behavior,
stability, toxicity, and fate of engineered Fe nanoparticles (e.g., References [7,10,11]). A recent
review presented by Sharma and coworkers [12] highlights that, relative to engineered nanoparticles,
environmental inorganic nanoparticles may differ in both their biogeochemical behavior and their
respective ecotoxicities. For this to be validated however, a greater body of work focused specifically
on identifying the speciation of natural Fe nanoparticles is required. Examples of previous work
include Neubauer et al. [13] who use Transmission Electron Microscopy (TEM) to investigate soil
Fe nanomineralogy and its association with ambient heavy metals; and Carbone et al. [14] who use
Electron Paramagnetic Resonance (EPR) spectroscopy to investigate incidental Fe nanoparticles formed
in an Acid Mine Drainage environment. The present contribution seeks to augment the existing body
of work by (1) briefly reviewing the prominent analytical techniques capable of evaluating natural Fe
nanoparticles; and (2) applying a newly-developed synchrotron-based soft X-ray spectromicroscopy
approach towards evaluating natural Fe nanoparticles and nanoparticle aggregates collected from a
selection of fluvial, marine, and lacustrine aquatic environments. The approach exploits the chemical
information contained within the Fe L2,3-edge X-ray Absorption Near-Edge Structure (XANES) spectra
(pertaining to the local bonding environment around the Fe metal center [15]) and is augmented with
additional information collected at the Aluminum K-edge and at the Carbon K-edge. It is foreseen that
the new insights derived from this novel study approach will add meaningfully to our understanding
of Fe nanoparticle speciation and biogeochemical behavior in natural systems. This, in turn, may better
inform the development of future generations of biogeochemical models (e.g., Reference [16]) and
may assist in predictions related to the fate of engineered Fe0 nanoparticles, which readily experience
surface oxidation in the natural environment.

2. Methods for Evaluating Fe Nanomineralogy

The current section diverges from a traditional “Methods” section in that it includes a brief but
pertinent review of a range of analytical methodologies that can be and have been used to study natural
Fe nanominerals and nanoparticles. This review is augmented with a detailed description of the Fe
L-edge XANES research protocol that we have developed specifically for evaluating the chemistry,
valence speciation and local coordination in natural Fe nanoparticles. For a more thorough assessment
of the science underpinning this analytical technique (i.e., X-ray interactions with Fe metal centers),
the reader is referred to Reference [15].

2.1. Review of Current Methods of Studying Fe Nanominerals

Iron nanoparticles have a complex composition and structure in nature, thus a diverse suit of
methods is required to analyze them. Due to their effects on nanoparticle reactivity, the main analytical
parameters of interest include size, shape, size distribution, aggregation, surface area, crystal structure,
surface chemistry, chemical composition, speciation, and coordination. The methods that are commonly
employed therefore are primarily for microscopy and imaging, for physico-chemical characterization
or for a combination of both. A number of instrumental techniques (XRD, BET, NMR, SEM-EDS, AFM,
SEM, TEM, FTIR, and 3-D Tomography; Table 1) are now readily available in common laboratories that
together can characterize a large set of properties of interest rather quickly and economically.
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Table 1. Overview of techniques used to study Fe nanoparticles and nanominerals.

Technique Acronym Signal Analyzed Property/Information Retrieved Relevant
References

Micro-focused X-ray diffraction µXRD Diffraction pattern of X-rays Crystal structure, Grain size, Lattice
parameters [17–19]

Brunauer-Emmett-Teller Surface area
analysis BET Gas sorption Surface area, Pore analysis [20]

Nuclear Magnetic Resonance
Spectroscopy NMR Electromagnetic signal Purity, Molecular structure [21]

Fourier Transform Infrared
Spectroscopy FTIR Absorpiton of electromagnetic

radiations Surface composition, Ligand binding [22]

Scanning Electron Microscopy -
Energy dispersive spectrometry SEM-EDS Elemental X-ray flourescence Size, Shape, Composition [23]

Atomic Force Microscopy AFM Force spectroscopy, imaging Atomic structure, Crystal latice defects,
Youngs modulus, Surface potential [24,25]

Transmission Electron Microscopy TEM Electron beam flourescence Size, Shape, Composition, Aggregation,
Size distribution, Bonding environment [26–28]

3-D Tomography µCT X-ray Irradiation Size, Shape, Aggregation, Porosity -

Extended X-ray Absorption Fine
Structure EXAFS X-ray absorption spectrum X-ray absorption coefficent, Chemical

state of species [29,30]

X-ray Absorption Near Edge
Structure XANES X-ray absorption spectrum, excitation

of an inner shell electron
Vacant orbitals, Oxidation state, Chemical

bonding environment [31,32]

Scanning Transmission X-ray
Microscopy STXM Elemental X-ray absroption and

spectrum
Elemental concentration and speciation

map, valency, coordination number [33,34]

X-ray Photoelectron Spectroscopy XPS Kinetic energy of ejected
photoelectron

Elemental concentration and speciation
on particle surfaces [31,35]

While hard to access, in recent years there is an increased use of synchrotron-based XRD and
spectroscopy techniques to study Fe-nanoparticles. Some advantages of synchrotron techniques
include a need for only small amounts of sample material, no need for sample homogenization or
excessive preparation, the option to selectively target specific and sub-micrometer scale areas of
interest, and in some cases, analyses can be carried out on wet samples at room temperature and
pressure. These X-ray based techniques (e.g., EXAFS, XANES, STXM, and XPS; Table 1) encompass a
wide range of approaches that measure the X-rays or particles emitted during electronic transition
caused by Fe-nanoparticles exposed to high intensity energy beams. The techniques provide element
specific data and offer information on chemical state of iron species, interatomic distances, electronic
structure, oxidation states, and ligand bonding. For example, micro-focused synchrotron XRD has
been used to understand the formation condition or role of surface reactions among iron minerals
found in biofilms or Fe-rich nodules [18,19]. More recently and using TEM coupled with L-edge X-ray
Absorption Spectroscopy (XAS), Hirst et al. [32] evaluated nanoparticles from a boreal river system and
found that the Fe(III)-rich nanoparticles comprised predominantly ferrihydrite aggregates, with minor
goethite and hematite also observed. A detailed discussion and application of analytical techniques to
study Fe-nanoparticles is beyond the scope of this article and readers are referred to recent published
reviews [36,37].

2.2. Fe L-Edge X-ray Absorption Spectroscopy as a Powerful Tool for Investigating Fe Nanomineralogy in
Natural Systems

Synchrotron X-ray spectromicroscopy at the Fe L2,3-absorption edge is well suited towards imaging
and evaluating the chemical and mineralogical speciation of natural Fe particles. The technique is
capable of providing spatial resolutions as small as 10 nm, and spectral resolutions on the order of
0.1 eV and smaller. Importantly, the Fe L-edge (~700 eV) falls within the soft X-ray range and thus
provides complementary information to the Fe K-edge (~7100 eV) but without the significant beam
damage artifacts that may be caused to natural samples by the more energetic X-rays. Soft X-ray
spectroscopy is also favored over hard X-rays because of better resolution of fine structure, higher
absorption cross section, and lower intrinsic lifetime broadening (e.g., Reference [38]). As the Fe
L-edge probes chemical information related to the local coordination around the metal center, its
application is not limited to crystalline mineral phases and it is thus our preferred analytical approach
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when evaluating natural nanoparticles, which are commonly amorphous or poorly crystalline (e.g.,
Reference [34]).

Data presented in this submission were collected using Scanning Transmission X-ray Microscopy
(STXM) at the Molecular Environmental Sciences (MES) beamline 11.0.2 at the Advanced Light Source,
Lawrence Berkeley National Laboratory, CA, USA [39]. This soft X-ray beamline is especially designed
to ensure that natural particles can be investigated in their pristine geochemical state under ambient
physicochemical conditions (i.e., without need for excessive sample drying which induces shrinkage
and loss of water from chemically-active hydration shells). X-ray absorption near-edge structure
(XANES) spectra were collected in transmission mode in a 1 atm. He environment at room temperature.
XANES spectra were collected primarily at the Fe L3-edge (703–715 eV), with supporting data related
to elemental associations and substitutions collected at the C K-edge (283–300 eV) and the Al K-edge
(1563–1572 eV). The spectral and spatial resolutions were 0.2 eV and 12 nm, respectively, and were
achieved using a 17 nm zone plate, a 1200 L/mm grating and 25 mm exit slitsas key parameters in the
experimental end-station. The Fe nanoparticles evaluated in this study were sampled from various
Southern African marine and fluvial water masses, and the details of sample collection and preparation
are described elsewhere [33,34,40].

The Fe L2,3 X-ray absorption edge contains a wealth of information related to the mineral structure
and chemistry of Fe containing minerals. A host of earlier workers have used Fe L-edge spectroscopy
to identify the valence state of iron in mineral structures [41–43], to identify the structural coordination
of Fe in nano-particulate-ferrihydrite [44], and to probe Fe speciation in samples collected from natural
biogeochemical systems [45–48]. A recent systematic study into the Fe L-edge spectral response to Fe
mineralogy has highlighted how the split peaks of the Fe L3-edge (Figure 1) can be used to identify Fe
mineral speciation [15]. Briefly, this peak splitting arises largely because of the effects of ligand field
splitting which results in the Fe 3d orbitals separating into t2g and eg subsets occurring at different
energy positions [15,38,49]. The peak splitting can be parameterized according to the energy difference
between the two peaks (∆eV) and according to the ratio of the respective peaks’ intensities (Figure 1B).
These two parameters vary in response to Fe mineralogy (i.e., factors inherent to mineral structure
such as Fe valence state, coordination number, strength of the ligand field, levels of distortion to
the local Fe polyhedron, nature of ligand bonding and the composition of the resultant molecular
orbitals [15]), and a two parameter ∆eV versus intensity ratio plot can thus be used to identify Fe
mineral speciation (Figure 2: black squares indicating standard Fe-oxide and Fe-oxyhydroxide spectral
signatures). The two parameter plot has previously been used to investigate sub-micrometer sized
environmental particles from glacial [50], lacustrine [40], marine [33], and fluvial systems [34], and the
present study seeks to extend on this body of research by utilizing the spectroscopic tool specifically
to evaluate environmental particles existing in the nano size-domain (i.e., having at least one size
dimension <100 nm).
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iron oxide minerals (goethite (α-FeOOH); lepidocrocite (γ-FeOOH); and hematite (α-Fe2O3)) clearly 
illustrating the peak splitting that occurs in both the L2-edge and the L3-edge on account of ligand 
field splittingeffects. (B) The fine structure of the L3-edge region of the spectrum (i.e., the degree of 
L3-edge peak splitting (ΔeV) and the intensity ratio (i) between the split peaks) reflects the differences 
in chemistry and mineralogy of the three minerals. These differences can be quantified and represent 
a useful tool for Fe nanoparticle characterisation (e.g., Figure 2; Reference [15]). 

3. Results 

The complete dataset includes four fluvial nanoparticles, ten coastal marine nanoparticles, and 
122 open ocean nanoparticles. Of these particles, the majority comprises Fe in its ferric form although 
three ferrous nanoparticles were also identified. Carbon K-edge XANES confirmed an association 
between these ferrous nanoparticles and organic carbon [40], suggesting that organic functional 
groupssuch as carboxamidemay play a role in stabilizing reduced forms of Fe in oxic water masses. 
Additionally, at one of the open ocean marine sampling sites (located in sub-Antarctica frontal zone 
of the Southern Ocean) the nanoparticle mineralogy predominantly matched that of magnetite 
(Figure 3A). Throughout the samples evaluated, the nanoparticle morphology was generally 
rounded, although several examples (e.g., Figure 3B,D—particle corresponding to spectrum F) were 
elongate and classified as nanoparticles because of a single dimension being in the <100 nm size 
range. 

Figure 1. (A) The Fe L2,3 X-ray Absorption Near-Edge Structure (XANES) spectrum for three standard
iron oxide minerals (goethite (α-FeOOH); lepidocrocite (γ-FeOOH); and hematite (α-Fe2O3)) clearly
illustrating the peak splitting that occurs in both the L2-edge and the L3-edge on account of ligand
field splittingeffects. (B) The fine structure of the L3-edge region of the spectrum (i.e., the degree of
L3-edge peak splitting (∆eV) and the intensity ratio (i) between the split peaks) reflects the differences
in chemistry and mineralogy of the three minerals. These differences can be quantified and represent a
useful tool for Fe nanoparticle characterisation (e.g., Figure 2; Reference [15]).

3. Results

The complete dataset includes four fluvial nanoparticles, ten coastal marine nanoparticles,
and 122 open ocean nanoparticles. Of these particles, the majority comprises Fe in its ferric form
although three ferrous nanoparticles were also identified. Carbon K-edge XANES confirmed an
association between these ferrous nanoparticles and organic carbon [40], suggesting that organic
functional groupssuch as carboxamidemay play a role in stabilizing reduced forms of Fe in oxic water
masses. Additionally, at one of the open ocean marine sampling sites (located in sub-Antarctica frontal
zone of the Southern Ocean) the nanoparticle mineralogy predominantly matched that of magnetite
(Figure 3A). Throughout the samples evaluated, the nanoparticle morphology was generally rounded,
although several examples (e.g., Figure 3B,D—particle corresponding to spectrum F) were elongate
and classified as nanoparticles because of a single dimension being in the <100 nm size range.
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using ArcGIS point density function). 

Figure 2 provides an overview of the spectral signatures of the nanoparticles identified in this 
study (green- and orange point data), and compares these data to larger µm-scale natural Fe particles 
(grey shading) and standard Fe oxides and Fe oxy-hydroxides [15]. Most of the data points fall 
outside of the fields for the standard Fe mineral phases, alluding to the fact that most of these 
evaluated natural nanoparticles are aggregates, are amorphous in nature or contain ionic substituents 
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relatively high degree of ligand field splitting, and may be characterized by distorted (larger volume) 
local Fe coordination polyhedral [15]. Similarly, the clustering of data favours lower intensity ratio 
values (between 0.45–0.55) indicative that a significant concentration of hydroxyl ligands coordinate 
to the Fe metal center (i.e., compare FeOOH standards at low intensity ratio values to Fe2O3 standards 
at intensity ratios> 0.55). A secondary clustering (i.e., Δ1.1–1.3; intensity ratio >0.7; Figure 3E) occurs 
near to the standard magnetite data point. Again, the agreement between the standard data point 
and the natural particles is not perfect, likely reflecting structural and chemical impurities. The level 
of disagreement may also reflect a possible particle size effect in the nanoparticle size regime, since it 

Figure 2. Plot of the spectral parameters ∆eV versus intensity ratio clearly illustrating the discrete fields
occupied by synthetic Fe mineral standards (black squares and associated bars representing standard
deviation (modified after Reference [15])). Colored point data represent the spectral signatures for
individual Fe nanoparticles from fluvial (orange) and marine (green) systems, whereas the shaded
region represents the density distribution of data points for sub-micrometer (larger than 100 nm) and
micrometer sized particles collected from marine and fluvial environments (generated using ArcGIS
point density function).

Figure 2 provides an overview of the spectral signatures of the nanoparticles identified in this
study (green- and orange point data), and compares these data to larger µm-scale natural Fe particles
(grey shading) and standard Fe oxides and Fe oxy-hydroxides [15]. Most of the data points fall outside
of the fields for the standard Fe mineral phases, alluding to the fact that most of these evaluated
natural nanoparticles are aggregates, are amorphous in nature or contain ionic substituents that render
their chemistry impure relative to the standards. The data points are relatively scattered on the
∆eV versus intensity ratio diagram, although there exists some clustering near to the position of the
lepidocrocite standard. This clustering agrees well with the density distribution of larger (>100 nm)
natural Fe-rich particles indicating a degree of similarity in mineral chemistry between the two datasets.
This clustering occurs at high ∆eV values (between 1.6 and 1.7) which suggests that the natural
Fe nanoparticles predominantly comprise Fe(III) in octahedral coordination, experience a relatively
high degree of ligand field splitting, and may be characterized by distorted (larger volume) local Fe
coordination polyhedral [15]. Similarly, the clustering of data favours lower intensity ratio values
(between 0.45–0.55) indicative that a significant concentration of hydroxyl ligands coordinate to the
Fe metal center (i.e., compare FeOOH standards at low intensity ratio values to Fe2O3 standards at
intensity ratios> 0.55). A secondary clustering (i.e., ∆1.1–1.3; intensity ratio >0.7; Figure 3E) occurs
near to the standard magnetite data point. Again, the agreement between the standard data point and
the natural particles is not perfect, likely reflecting structural and chemical impurities. The level of
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disagreement may also reflect a possible particle size effect in the nanoparticle size regime, since it is
noted that a proportion of the >100 nm natural Fe particles (grey shading) do show good overlap with
the standard magnetite data points.
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Figure 3. (A,B) X-ray absorption maps of marine nanoparticles collected at 709.8 eV using Scanning
Transmission X-ray Microscopy (STXM)). (C,D) Fe distribution maps generated by subtracting the X-ray
absorption map collected below the Fe L-edge (i.e., 703 eV) from the X-ray absorption map collected at
the Fe L-edge (e.g., Figure 3A,B). Colour bar shows relative Fe concentration. (E,F) Fe L2,3-edge spectra
for identified Fe-rich nanoparticles. Spectrum E reflects magnetite chemistry, whereas Spectrum F is
indicative of Fe(III)—likely in the form of an amorphous Fe oxy-hydroxide phase.

Similarities in cation size and charge result in Al-for-Fe substitution reactions being common
phenomena in Fe oxides and Fe oxy-hydroxides. For example, natural soil Fe oxide minerals have
previously been investigated and were found to contain levels of Al substitution reaching up to
36% [51]. Using Al subtraction maps generated by subtracting an X-ray absorption map collected
below the Al K-edge (e.g., 1565 eV) from the X-ray absorption map collected at the Al K-edge (1572 eV),
we were able to measure and compare the Al/Fe ratio in a subset of natural aquatic Fe nanoparticles to
the Al/Fe ratio measured in natural aquatic particles >100 nm in size (Figure 4). The Al/Fe ratio in the
nanoparticles ranges between 0.07 and 0.18; whereas the larger particles show a more extensive range
spanning between 0.03 and 0.45. A student t-test conducted on the two datasets however, revealed that
there is no significant difference (α = 0.05) between the Al/Fe ratios measured in the two size fractions.
The Al K-edge XANES spectra were also used to evaluate the ligand coordination around the Al metal
center in the natural nanoparticles and larger particles [52]. The side panels in Figure 4 summarize
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these findings (further details in Reference [34]) and show that Al associated with Fe-rich nanoparticles
is high hydroxylated (i.e., coordinated to between four (coordination environment similar to Al in 1:1
clays) and six (Al(OH)3-like coordination) hydroxyl ligands). In comparison, the larger sized Fe-rich
particles show a much more diverse array in the local coordination environment of the contained Al,
with the number of hydroxyl ligands ranging between none (i.e., Al is coordinated only to oxygen
ligands in a local bonding environment characteristic of Al in primary silicates) and six.
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Figure 4. Box-and-whisker diagram comparing the Al/Fe ratio measured in nanoparticles versus the
range measured in larger sub-micrometer (>100 nm) and micrometer sized particles (data extracted
from [34]). Side panels show the diversity in the number of hydroxyl ligands coordinated to the
Al metal centers in the two size fractions (from interpretations of Al K-edge XANES [34,52]; ligand
positions are not absolute). These side panels highlight that hydroxyl ligands predominate over oxygen
ligands in the Fe-rich nanoparticles, whereas larger-sized natural Fe particles are characterized by a
prevalence of both oxygen and hydroxyl ligand bonding.

4. Discussion

The nanoparticles evaluated in this study were collected from relatively pristine aquatic systems
and are thus expected to reflect the natural class of nanoparticles, although the presence of engineered
and incidental nanoparticles cannot be completely ruled out. In contrast to the volume of work that has
recently been conducted on engineered nanoparticles, natural inorganic nanoparticles have received a
surprisingly lesser amount of scientific attention, despite some studies showing that the fate and toxicity
of these natural nanoparticles differ from those of engineered ones (Reference [12], and references
therein). Using a specialized synchrotron-based X-ray spectro-microscopic tool, this study thus seeks
to provide new and additional insights into the characterization of biogeochemically-active natural
Fe-rich nanoparticles.

Because of its combined imaging and local coordination environment probe capabilities, soft X-ray
Fe L-edge XANES and STXM techniques have gained prominence as tools for studying natural
sub-micrometer particles and nanoparticle in their pristine state [34,50]. Furthermore, and as
correlative study approaches continue to evolve, it is foreseen that the detailed chemical information
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contained in the Fe L-edge spectrum will be used to complement other study methodologies
(Table 1) to more fully explore the emerging field of natural nanoparticle research. In contrast
to engineered nanoparticles, and in contrast to experimental results produced in controlled laboratory
environments; natural nanoparticles are produced by a diverse array of formation mechanisms
(including bottom-up (aggregation and growth of nanomaterial precursors); top-down (e.g., weathering
reactions), and biologically-mediated reactions) and are influenced by variable environmental
conditions (e.g., pH, Eh, temperature, salinity, solar radiation and the presence of organic matter) [1,2,12].
Given this vast range in influencing parameters, it is thus not surprising that our dataset shows a
high degree of scatter on the ∆eV versus intensity ratio diagram (Figure 2). This scattering reflects
divergence in the local Fe coordination environment away from what is expected for pure crystalline
Fe mineral standards (Figure 2, black squares), and is caused for example, by variations in the ligand
type and geometry and by structural distortions to the local Fe coordination polyhedra [15]. Given the
measured presence of Al in the Fe-rich nanoparticles (Figure 4), we suggest that one of the reasons for
the scatter is the ubiquitous presence of cation substitutions within the nanoparticle structure, including
but not limited to Al and Si. Two other possible reasons for the scatter include: (1) The likelihood
that natural particles are poorly-crystalline or amorphous, and (2) the possibility that what we have
measured as discrete 10–100 nm sized particles actually represent aggregates of smaller (<10 nm)
particles with variable chemistry and bound together by organic coatings (e.g., humic acids [53]).

Our research broadly identifies three groups of Fe nanoparticle mineralogy in the natural aquatic
systems evaluated. A small number of Fe(II)-rich nanoparticles were identified despite all samples being
collected from oxygen replete waters where Fe(II) is the thermodynamically less-favored form of Fe.
Based on carbon K-edge XANES analyses, we have previously suggested that the Fe(II) presence may
be a result of active reduction of Fe by microbial communities [40], or may be due to the stabilizing effect
of Fe(II)-specific organic functional groups [48]. Recent work focused on Fe nanoparticulate speciation
in glacial sediments invokes the role of amorphous silica in Fe(II) preservation [50], highlighting the
need for further work to more firmly elucidate the mechanisms that stabilize ferrous Fe in natural
nanoparticles and to constrain the interactions between these phases and the biosphere.

The second broad group identified in this study-in which Fe is present in its oxidized (Fe(III))
valence state-represents the dominant Fe nanoparticle speciation identified in natural aquatic
environments. No distinctive difference was observed between the chemical speciation of the
nanoparticles and that of the larger sized particles (Figure 2), likely reflecting that in heterogenous
natural systems nanosize effects (e.g., quantum effects) have a secondary influence on XANES spectral
signatures relative to the more obvious effects of inter-particle variability caused by differences in
environmental parameters. Because of their strong surface complexing capacity, their high surface area
to charge ratio and their resistance to sedimentation, ferric oxide nanoparticles have been highlighted
as important contaminant and nutrient transporting agents in fluvial systems [1,5,6,54]. Furthermore,
within the marine domain where important biologically-mediated air-sea CO2 exchange takes place,
Fe particles (including these Fe(III) nanoparticles) collected in the nominally-defined “dissolved” size
fraction (<0.2 or <0.45 µm filter pore sizes) are suggested as being important repositories of potentially
bioavailable Fe [8,9].The Fe L-edge spectral signatures (i.e., intensity ratio < 0.55) suggest that these
phases are predominantly hydroxyl-bearing moieties, which is corroborated by the prevalence of
highly-hydroxylated Al metal centers associated with these Fe nanoparticles (Figure 4). This Al is
further noteworthy in that its presence (especially as a cation substituent) is expected to modify the
particles’ surface chemistry by decreasing the net concentration of reactive Fe sites through replacement
by less-reactive Al [55,56].This impact on surface reactivity in turn affects the nutrient- and pollutant
transporting capacity of the natural Fe nanoparticles, especially when compared to model experimental
systems in which observations are based on the behavior of pure mineral standards. Aluminum
substitution is further known to modify the solubility and dissolution kinetics of model Fe oxides
(e.g., Reference [57], and references therein). The importance and accessibility of the marine Fe
nanoparticulate pool as a repository of bioavailable Fe for driving primary productivity (and thus for
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influencing global climate feedback loops) must therefore be interpreted in a context of the observed
and associated Al presence.

Finally, the presence of magnetite nanoparticles in marine surface waters of the Southern Ocean
(Figures 2 and 3) has previously been related to Patagonian atmospheric Fe inputs [33], but may also
derive from magnetotactic bacteria [58]. The possible presence of biogenic Fe nanoparticles may be
extended to the Fe(III) phases discussed above, since certain genera of Fe-oxidising bacteria are known
to produce ferrihydrite and Fe(III) oxyhydroxides [12].Magnetic Fe nanoparticles have recently received
increased attention since they are known to cause complex and potentially harmful interactions with
living matter (e.g., through the production of excess reactive oxygen species [59]). However, it is
important to highlight that the ecotoxicology of natural magnetite nanoparticles and the other forms of
natural Fe nanoparticles identified in this study is not well constrained. Indeed, by virtue of their small
size, they have a much higher likelihood of crossing cellular barriers (e.g., Reference [60]). However,
ecotoxicological effects of the natural nanoparticles are expected to be restricted (relative to engineered
nanoparticles) due to the potential presence of organic surface coatings [12]—such as those identified
from our carbon K-edge XANES spectro-microscopy.

5. Conclusions

The discussion above highlights the diversity in nanoparticle mineral chemistry and speciation in
natural aquatic environments. Given that the production of engineered Fe nanoparticles is expected to
increase significantly in forthcoming years (2010 estimates at up to 42,000 t per year [61]), such a study
focused on relatively pristine aquatic systems forms an important baseline from which to interpret
future environmental change. The most common type of engineered Fe nanoparticle is the Fe0 class of
nanoparticles, which are commonly used in environmental remediation efforts [7]. These engineered
nanoparticles are however expected to experience significant levels of surface oxidation and surface
reactions when released into natural aquatic environments [62]. The insights provided here related
to the associations of natural Fe nanoparticles with Al and with organic functional groups, and may
thus serve as a good proxy for the ultimate fate and speciation of engineered nanoparticles that
evolve in heterogenous natural systems. Further work should continue to focus on the speciation,
biogeochemical behavior and ecotoxicological impacts of both natural and engineered Fe nanoparticles
existing in Earth’s various subsystems (e.g., hydrosphere, biosphere, etc.).
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