Supplementary Materials

Analytical methods

Whole-rock analysis

Prior to whole-rock analyses any obvious crust related to post-magmatic alteration and/or weathering was removed from the investigated rock specimens. Samples for bulk-rock analysis were sawn into chips (~5 mm-thick) and washed twice with purified water. After drying, the crushed samples were pulverized and the ensuing particles were washed with a mixture of deionized water with HCl (2%). Then, they were powdered to <200 mesh using an agate mortar. Each powdered sample was fluxed with a solution of Li₂B₄O₇ (1:8) at 1150-1200 °C to produce homogeneous glass discs employing an automatic fusion device (Analymate Company V8C). Major-element oxide contents were measured by X-ray fluorescence (XRF) spectrometry using a Rigaku 100e instrument at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIG-CAS). Analytical accuracy was better than 1% as assessed by screening of reference samples of known composition (AGV-2, BHVO-2) [56]. Loss on ignition (LOI) was determined by gravimetric methods at ~1000 °C.

Trace element analyses were carried out using an inductively coupled plasma-mass spectrometer (ICP-MS) Thermo X Series II at the Radiogenic Isotope Facility, School of Earth and Environmental Sciences, University of Queensland (RIF-SEES-UQ), Brisbane, Australia. A small quantity (~35 mg) from each powdered sample was digested with a HF-HNO₃ (4:1) solution in a Savillex™ Teflon beaker at 110 °C for 24 hours and subsequently was heated at 120 °C until it started getting dry. The powdered samples were digested once more with a solution of HF-HNO₃ (4:1) and dissolution was done by heating at 195 °C for more than 48 hours. The residues were dissolved in HNO₃ and were left to dry again. After this stage the resultant residues were dissolved in ~8 ml of a 5% HNO3 solution. Part of this solution was mixed with an internal standard containing 6Li, 61Ni, 103Rh, 115In, 187Re, and 235U and then was diluted with 2% HNO3 to achieve a dilution factor of 1:5000 for trace element analyses. The reference materials AGV-2, BHVO-2, and BCR-2 were used to monitor the precision of the analyses and were cross-checked with BIR-1. The average full procedural blank values of the present work are 100 pg for the large-ion lithophile elements (LILE) and less than 1 pg for the high-field-strength elements (HFSE) and the rare-earth elements (REE: the lanthanides not including Y and Sc). The concentrations of major-element oxides and trace elements of the investigated rocks are presented in Table S1.

Strontium-Nd-Pb isotope analysis

Strontium-Nd-Pb isotope ratios of whole-rock samples were measured using a multicollector (MC)-ICP-MS (Nu Plasma HR) at the RIF-SEES-UQ, following the analytical method described by [57]. Approximately 200 mg from each rock specimen was removed ultrasonically in 4 ml of a 4 N HCl solution at 50 °C for ~20 min. Each sample was then dissolved in a 20 ml Teflon beaker by adding a mixture of HNO₃ and HF (1:3), and was put into a hotplate at 80 °C for the whole night. Then the studied samples were heated at 140 °C to achieve full dissolution. The ensuing solutions were dried at 80 °C and ~1 ml of concentrated HNO₃ solution was put into each one of them, before they were left to dry once more at 80 °C. Subsequently, 10 ml of a solution composed of 1 N HCl and 0.25 N HNO₃ was added to the residues. The resultant solutions were heated on beakers for the whole night at 90 °C to achieve complete removal of fluorides and then were left on hotplates to dry. Subsequently, they were mixed with 1 ml of a 7 N HNO₃ solution to achieve full conversion to nitrites. Last of all, 2 ml of 1 N HNO₃ solution were added to dissolve the residues at 80 °C.

A continuous distillation column with Sr-Spec resin was used for the purification of Sr, Nd and Pb. The detector efficiency of the instrument was monitored using the NBS-987 standard. A ⁸⁶Sr/⁸⁸Sr ratio of 0.1194 was used for mass fractionation corrections. The difference between the institute's long-term obtained average of 0.710239 ± 5 (2σ) and the measured mean value ($0.710236 \pm 8, 2\sigma$) was

used for isotopic ratio corrections. Lead isotopes were analyzed together with Tl isotopes (²⁰³Tl, ²⁰⁵Tl) to correct for mass-dependent isotope fractionation. The process was monitored using standard SRM-981. BCR-2 was analyzed as an external standard to check the accuracy of the method. Neodymium was separated using TRU-Spec and Ln-Spec resins. ¹⁴³Nd/¹⁴⁴Nd ratios were corrected for mass bias to ¹⁴⁶Nd/¹⁴⁴Nd equal to 0.7219. The ¹⁴³Nd/¹⁴⁴Nd data are given with respect to an Ames Nd metal ¹⁴³Nd/¹⁴⁴Nd value of 0.511966. Accuracy was monitored by analyzing the JNdi-1 reference standard and the USGS BHVO-2 rock standard. Procedural blanks were < 1 ng for Sr, < 100 pg for Pb and < 25 pg for Nd. Whole-rock Sr-Nd-Pb isotopic data of the investigated rocks are presented in Table S1.

Hafnium isotope analysis

Bulk-rock Hf isotopes were measured using the method described by [58]. Hafnium isotope analyses were performed using a Micromass IsoProbe MC-ICP-MS at the GIG-CAS. The Hf isotopes were separated from powder dissolutions by sequential ion exchange column chemistry. The exponential law was applied for mass fractionation correction using a ¹⁷⁹Hf/¹⁷⁷Hf ratio of 0.7325. The ¹⁷⁶Hf/¹⁷⁷Hf ratios were corrected with respect to a JMC 475 Hf standard solution with a ¹⁷⁶Hf/¹⁷⁷Hf ratio of 0.282160. Every analytical run included 20 cycles with an integration time of 4.194 s for a single cycle. The reproducibility of the resultant ¹⁷⁶Hf/¹⁷⁷Hf ratios is high, indicating that the isotopic composition of a small quantity of Hf (< 20 ng) could be determined with high accuracy in a short time (< 60 s). Bulk-rock Hf isotopic data of the investigated rocks are presented in Table S1.

Re and Os concentration measurements and Os isotope analysis

Osmium isotope analyses were performed employing a Thermo-Finnigan Triton thermal ionization mass spectrometer (TIMS) at the GIG-CAS. This instrument is equipped with nine Faraday collectors and a secondary electron multiplier. Almost 2.5 g from every powdered sample was spiked with ¹⁸⁵Re and ¹⁹⁰Os, and digested in inverse aqua regia in sealed borosilicate Carius tubes at 240 °C for 24 hours to obtain sample-spike equilibration. Osmium was purified using a CCl₄ solvent extraction process [59], back-extracted into HBr and further purified by microdistillation [60]. Rhenium was separated from sample groundmass and interfering elements using a two-stage column chemistry method (AG1×8, 200-400 resin). Osmium isotope measurements were carried out by negative (N-)TIMS on a Thermo-Finnigan TRITON instrument [61]. Total blank levels were 3.0 ± 0.9 pg for Os and 10.6 ± 0.5 pg for Re. Osmium and Re were corrected for blanks. The blank ¹⁸⁷Os/¹⁸⁸Os ratio was 0.256 ± 0.034. Bulk-rock Os and Re concentrations and Re-Os isotopic data of the investigated rocks are presented in Table S1.

⁴⁰Ar/ ³⁹Ar geochronological dating

Samples for ⁴⁰Ar/ ³⁹Ar dating were prepared and analyzed at the Argon Geochronology Laboratory of the Oregon State University (AGL-OSU), Corvallis, USA. Samples were crushed and sieved to 125-355 μ m, washed and then passed through a Frantz magnetic separator to isolate groundmass from phenocrysts. Groundmass was cleaned by a procedure involving leaching for 1 hour with several acids (1 N HCL, 6 N HCL, 1 N HNO₃, 3 N HNO₃) and finally cleansing with distilled H₂O. Groundmass wafers (weighing 10-50 mg) from each specimen were encapsulated in aluminum foil and loaded with the Fish Canyon Tuff sanidine flux monitor (FCT-NM with an age of 28.201 ± 0.023 Ma) and vacuum-sealed in quartz vials. Sample heights were determined using a Vernier caliper. The samples and flux monitors were irradiated for 6-7 hours in the Cd-lined-in-core irradiation tube (CLICIT) of the TRIGA (Training, Research, Isotopes and General Atomics) nuclear reactor at the OSU.

The ⁴⁰Ar/³⁹Ar ages were determined by incremental heating age using a CO₂ laser and analyzed using a MC ARGUS-VI MS at the AGL-OSU, equipped with $5 \times 10^{12} \Omega$ Faraday collectors and an ion-counting CuBe electron multiplier. Ages were calculated using the decay constant of 5.530 ± 0.097 × 10⁻¹⁰ yr⁻¹ (2 σ). Further details of this analytical method are given in [62,63]. Ages and

uncertainty estimates include corrections for baseline measurements, blanks, irradiation production ratios, radioactive decay, mass fractionation and the multiplier/Faraday collector calibration on Ar isotope mass 36. 40 Ar/ 39 Ar ages, including the weighted plateau age, total fusion age, normal isochron age and inverse isochron age were calculated and plotted using ArArCALC software [64]. Uncertainties of ages are reported at the 95% confidence level (2 σ). Age spectra, integrated and plateau ages, and isochron diagrams for the investigated rocks are given in Table S2.

Sampla	HD66-1	HD66-2	HD66-3	HD66-4	AGV	V-2	BHV	0-2	BCR-2			
Sample	Basalt	Basalt	Basalt	Basalt	Recommend	This work	Recommend	This work	Recommend	This work	BLANK(ng/g)	
Major oxide	es (wt. %)											
SiO ₂	47.89	48.80	48.45	48.15	59.14	59.16	49.6	50.19				
TiO ₂	2.75	2.79	2.77	2.81	1.05	1.04	2.73	2.46				
Al ₂ O ₃	16.4	16.41	16.41	16.73	17.03	16.86	13.44	13.35				
Fe ₂ O ₃ ^t	9.78	9.79	9.78	9.83	6.78	6.72	12.39	11.72				
MnO	0.49	0.14	0.24	0.36	0.1	0.10	0.17	0.15				
MgO	5.61	5.93	5.76	6.05	1.8	1.86	7.26	7.03				
CaO	8.74	8.56	8.66	8.73	5.15	5.08	11.4	11.09				
Na ₂ O	3.34	2.9	3.07	3.01	4.204	4.10	2.22	2.02				
K2O	2.04	2.13	2.09	2.11	2.9	2.87	0.51	0.52				
P_2O_5	0.87	0.63	0.79	0.75	0.48	0.46	0.27	0.28				
L.O.I	1.73	1.51	1.61	1.82		1.78		1.57				
Total	99.64	99.6	99.62	100.35		100.01		100.37				
Mg#	57	59	58	59								
Trace elemen	nts (ppm)											
Sc	18.9	20.2	19.2	20.9	13.1	12.6	31.8	32.0			0.0040	
Ti	15977	16668	16359	16129		6432		17366			0.8476	
V	171	187	174	181	119	112	318	320			0.4749	
Cr	145	162	159	148	16.2	15.0	287	288			0.0585	
Mn	3763	1047	1669	2031		16.3		46.1			0.0352	
Co	39.2	31.1	32.9	37.6	15.5	15.4	44.9	44.7			0.0125	
Ni	154	105	150	133	18.9	19.9	120	124			0.2513	
Cu	65	44.4	53.8	59.6	51.5	50.4	129	128			0.0363	

Table S1. Major element oxide and trace element concentrations and Sr-Nd-Pb-Hf-Os isotopic compositions of the Nanyue basalts.

Zn	120	110	119	126	86.7	85.2	104	105	0.0782
Ga	18.7	18.9	18.9	19.1	20.4	21.1	21.4	21.5	0.0004
Rb	48.1	46.1	47	47.9	67.8	65.1	9.26	8.99	0.0185
Sr	757	760	764	812	660	653	394	399	0.0019
Y	23.3	20.7	21.2	22.4	19.1	19.9	25.9	26.4	0.0000
Zr	379	381	380	390	232	228	171	167	0.0074
Nb	65.3	65.7	65.4	66.1	14.1	14.2	18.1	18.6	0.0001
Cs	0.64	0.53	0.62	0.59	1.17	1.12	0.10	0.11	0.0010
Ba	727	695	700	715	1134	1135	131	123	0.0070
La	43.6	37.4	41.2	39.7	38.2	38.0	15.2	15.2	0.0002
Ce	84.7	72.6	80.5	77.3	69.4	69.1	37.5	37.0	0.0001
Pr	9.88	8.79	9.69	9.91	8.17	8.01	5.34	5.25	0.0003
Nd	38	34.4	35.8	36.1	30.5	30.3	24.3	24.1	0.0011
Sm	7.32	6.63	6.93	6.87	5.51	5.67	6.02	6.09	0.0001
Eu	2.44	2.27	2.4	2.38	1.55	1.55	2.04	2.04	0.0004
Gd	6.57	5.98	6.39	6.24	4.68	4.60	6.21	6.11	0.0001
Tb	0.92	0.82	0.92	0.87	0.65	0.66	0.94	0.95	0.0001
Dy	5.21	4.75	4.9	4.86	3.55	3.65	5.28	5.37	0.0001
Но	0.99	0.89	0.98	0.82	0.68	0.66	0.99	0.99	0.0001
Er	2.52	2.22	2.32	2.18	1.83	1.86	2.51	2.44	0.0001
Tm	0.35	0.31	0.32	0.28	0.26	0.27	0.33	0.35	0.0001
Yb	2.06	1.84	1.92	1.89	1.65	1.69	1.99	1.93	0.0012
Lu	0.33	0.28	0.31	0.29	0.25	0.24	0.28	0.28	0.0002
Hf	7.7	7.5	7.6	8.12	5.14	5.18	4.47	4.30	0.0006
Та	4.72	4.69	4.71	4.88	0.87	0.86	1.15	1.17	0.0008
Pb	3.52	3.17	2.17	2.79	13.1	13.3	1.65	1.74	0.0044
Th	6.28	5.52	5.76	7.39	6.17	6.14	1.22	1.20	0.0001

U	3.54	2.92	3.29	4.27	1.89	1.89	0.41	0.42			0.0005
⁸⁷ Sr/ ⁸⁶ Sr	0.704325	0.704222	0.704275		0.703992	0.703977					
2σ	0.000013	0.000014	0.000014		±0.000033	±0.000009					
⁸⁷ Sr/ ⁸⁶ Sr(i)	0.704303	0.704201	0.704255								
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512881	0.512839	0.512865		0.512786	0.512774					
2σ	0.00001	0.00001	0.000012		±0.000014	±0.000017					
¹⁴³ Nd/ ¹⁴⁴ Nd(t)	0.512875	0.512833	0.512859								
$\epsilon_{ m Nd}(t)$	+4.8	+4	+4.5								
¹⁷⁶ Hf/ ¹⁷⁷ Hf	0.2829	0.282905	0.28291						0.282865	0.282883	
2σ	0.000007	0.000005	0.000009						±0.000013	±0.000006	
εhf(t)	+4.7	+4.9	+5								
²⁰⁶ Pb/ ²⁰⁴ Pb	18.26	17.73	17.96						18.75	18.74	
2σ	0.0006	0.0007	0.0009						±0.009	±0.0003	
²⁰⁷ Pb/ ²⁰⁴ Pb	15.6	15.51	15.61						15.62	15.63	
2σ	0.0006	0.0006	0.0008						±0.005	±0.0003	
²⁰⁸ Pb/ ²⁰⁴ Pb	38.53	38.01	38.37						38.73	38.74	
2σ	0.0015	0.0016	0.0018						±0.022	±0.0001	
Re conc (ppt)	249.6	255.11									
2σ	1.82	4.01									
Os conc (ppt)	85.13	60.37									
2σ	2.51	0.15									
¹⁸⁷ Os/ ¹⁸⁸ Os	0.2081	0.1856									
2σ	0.0004	0.0007									
¹⁸⁷ Re/ ¹⁸⁸ Os	14.27	20.5									
2σ	0.43	0.33									

Note: $Fe_2O_3^t$ = Total Fe_2O_3 content; $Mg^{\#} = Mg^{2+}/(Mg^{2+} + Fe^{2+}) \times 100$; LOI = Loss on ignition. GeoReM preferred Values can be found in http://georem.mpch-mainz.gwdg.de/sample_query_pref.asp.

Incrementa	l Heating	³⁶ Ar(a)	³⁷ Ar(ca)	³⁸ Ar(cl)	³⁹ Ar(k)	${}^{40}Ar(r)$	Age	±2σ	⁴⁰ Ar(r)	³⁹ Ar(k)	- V/Ca	
Steps	Laser (%)	[V]	[V]	[V]	[V]	[V]	(Ma)	(%)	(%)	N/Ca	± 20
HD66-1 (C	Groundmass); J =	$0.00298119 \pm 0.$	00000563		T1	= 8.29± 0.06 M	Ma;T2 = 7.	91± 0.03 Ma	$a;T3 = 8.14 \pm 0$.06 Ma;T4 =	3.17± 0.06 N	1a
15D30083	1.5 %	2.822	119.582	7.615	262.879	446.586	9.14	± 0.12	34.85	7.94	0.945	± 0.019
15D30084	1.8 %	0.981	179.248	6.135	289.139	464.622	8.64	± 0.05	61.50	8.73	0.694	± 0.011
15D30086	2.2 %	0.399	309.369	4.858	350.687	552.731	8.48	± 0.02	82.25	10.59	0.487	± 0.006
15D30087	2.5 %	0.174	351.163	3.438	321.234	498.651	8.35	± 0.02	90.47	9.70	0.393	± 0.005
15D30088	2.8 %	0.065	233.935	1.735	185.240	286.345	8.31	± 0.02	93.48	5.59	0.340	± 0.005
15D30090	3.1 %	0.058	309.088	1.843	236.651	364.509	8.28	± 0.02	95.28	7.14	0.329	± 0.004
15D30091	3.4 %	0.043	228.836	1.165	163.523	251.013	8.26	± 0.03	94.91	4.94	0.307	± 0.004
15D30092	3.8 %	0.035	290.683	1.256	207.750	317.475	8.22	± 0.02	96.64	6.27	0.307	± 0.004
15D30094	4.2 %	0.023	223.748	0.839	155.408	236.087	8.17	± 0.03	96.95	4.69	0.299	± 0.004
15D30095	4.5 %	0.010	101.594	0.390	68.964	105.298	8.21	± 0.05	97.04	2.08	0.292	± 0.007
15D30096	5.0 %	0.011	106.265	0.400	72.582	110.106	8.16	± 0.04	96.93	2.19	0.294	± 0.006
15D30098	5.5 %	0.018	185.296	0.519	132.853	197.948	8.01	± 0.03	97.17	4.01	0.308	± 0.005
15D30099	6.1 %	0.011	121.129	0.297	82.176	122.283	8.00	± 0.04	97.22	2.48	0.292	± 0.006
15D30100	6.6 %	0.022	262.669	0.587	176.225	250.992	7.66	± 0.02	97.20	5.32	0.288	± 0.004
15D30102	7.2 %	0.016	176.097	0.474	106.494	144.254	7.29	± 0.03	96.56	3.21	0.260	± 0.004
15D30103	7.7 %	0.010	108.980	0.246	62.456	80.287	6.92	± 0.05	96.05	1.89	0.246	± 0.005
15D30104	8.3 %	0.011	107.696	0.284	55.643	68.784	6.65	± 0.05	95.38	1.68	0.222	± 0.005
15D30106	8.8 %	0.013	142.656	0.349	65.556	73.540	6.04	± 0.05	94.83	1.98	0.198	± 0.003
15D30107	9.5 %	0.009	108.569	0.208	36.711	39.529	5.80	± 0.08	93.60	1.11	0.145	± 0.003
15D30108	10.2 %	0.014	191.453	0.388	60.462	56.445	5.03	± 0.06	92.90	1.83	0.136	± 0.002
15D30110	11.0 %	0.012	139.037	0.240	40.109	35.920	4.82	± 0.08	90.34	1.21	0.124	± 0.002
15D30111	12.1 %	0.011	168.540	0.328	40.307	32.660	4.36	± 0.08	90.70	1.22	0.103	± 0.002
15D30112	13.8 %	0.014	295.531	0.387	45.761	31.661	3.73	± 0.08	88.32	1.38	0.067	± 0.001
15D30114	15.0 %	0.009	277.750	0.310	34.376	23.324	3.65	± 0.10	89.13	1.04	0.053	± 0.001
15D30115	17.1 %	0.008	158.635	0.224	20.893	14.473	3.73	± 0.14	85.07	0.63	0.057	± 0.001
15D30116	18.5 %	0.005	111.316	0.129	12.610	8.179	3.49	± 0.23	85.42	0.38	0.049	± 0.001
15D30118	19.7 %	0.005	156.669	0.107	11.624	6.917	3.20	± 0.26	82.72	0.35	0.032	± 0.001
15D30119	21.4 %	0.003	93.905	0.040	6.508	4.132	3.42	± 0.45	80.48	0.20	0.030	± 0.001
15D30121	23.7 %	0.005	111.562	0.024	7.715	4.453	3.11	± 0.39	75.62	0.23	0.030	± 0.001
HD66-2 (C	Groundmass); J =	$0.00298004 \pm 0.$	00000530		T1	= 8.26± 0.06 M	Ma;T2 = 7.	84± 0.03 Ma	$a;T3 = 8.11 \pm 0$.06 Ma;T4 =	3.15± 0.06 N	1a
15D30123	1.5 %	2.765	118.800	7.583	262.313	463.487	9.50	± 0.12	36.17	7.94	0.949	± 0.019
15D30124	1.8 %	0.960	178.079	6.104	288.517	470.649	8.77	± 0.05	62.30	8.73	0.697	± 0.011
15D30125	2.2 %	0.390	307.355	4.830	349.935	555.448	8.53	± 0.02	82.65	10.59	0.490	± 0.006

 Table S2. 40 Ar/39 Ar dating of the Nanyue basalts.

15D30126	2.5 %	0.169	348.878	3.416	320.545	500.072	8.39	± 0.02	90.72	9.70	0.395	± 0.005
15D30127	2.8 %	0.063	232.416	1.724	184.844	286.994	8.35	± 0.02	93.69	5.59	0.342	± 0.005
15D30128	3.1 %	0.056	307.079	1.831	236.145	365.198	8.31	± 0.02	95.46	7.14	0.331	± 0.004
15D30129	3.4 %	0.042	227.350	1.157	163.173	251.528	8.29	± 0.02	95.10	4.94	0.309	± 0.004
15D30130	3.8 %	0.033	288.793	1.247	207.305	318.004	8.25	± 0.02	96.79	6.27	0.309	± 0.004
15D30131	4.2 %	0.022	222.292	0.832	155.075	236.470	8.20	± 0.02	97.10	4.69	0.300	± 0.004
15D30132	4.5 %	0.009	100.932	0.387	68.817	105.468	8.24	± 0.04	97.19	2.08	0.293	± 0.007
15D30133	5.0 %	0.010	105.571	0.396	72.425	110.284	8.19	± 0.04	97.09	2.19	0.295	± 0.006
15D30134	5.5 %	0.017	184.081	0.512	132.566	198.243	8.04	± 0.03	97.32	4.01	0.310	± 0.005
15D30135	6.1 %	0.010	120.330	0.292	81.996	122.462	8.03	± 0.03	97.39	2.48	0.293	± 0.006
15D30136	6.6 %	0.021	260.943	0.577	175.843	251.386	7.69	± 0.02	97.36	5.32	0.290	± 0.004
15D30137	7.2 %	0.015	174.927	0.466	106.259	144.507	7.31	± 0.03	96.76	3.21	0.261	± 0.004
15D30138	7.7 %	0.010	108.245	0.239	62.315	80.428	6.94	± 0.04	96.30	1.89	0.248	± 0.005
15D30139	8.3 %	0.010	106.966	0.276	55.515	68.919	6.68	± 0.05	95.67	1.68	0.223	± 0.005
15D30140	8.8 %	0.012	141.691	0.339	65.405	73.716	6.06	± 0.04	95.17	1.98	0.198	± 0.004
15D30141	9.5 %	0.008	107.822	0.198	36.622	39.639	5.82	± 0.07	94.09	1.11	0.146	± 0.003
15D30142	10.2 %	0.013	190.164	0.377	60.321	56.670	5.06	± 0.05	93.44	1.82	0.136	± 0.002
15D30143	11.0 %	0.012	138.086	0.229	40.010	36.077	4.85	± 0.07	91.01	1.21	0.125	± 0.002
15D30144	12.1 %	0.010	167.397	0.317	40.208	32.838	4.40	± 0.07	91.50	1.22	0.103	± 0.002
15D30145	13.8 %	0.012	293.561	0.376	45.651	31.992	3.77	± 0.07	89.53	1.38	0.067	± 0.001
15D30146	15.0 %	0.008	275.900	0.301	34.292	23.617	3.71	± 0.09	90.62	1.04	0.053	± 0.001
15D30147	17.1 %	0.007	157.566	0.216	20.839	14.640	3.78	± 0.13	86.52	0.63	0.057	± 0.001
15D30148	18.5 %	0.004	110.562	0.123	12.575	8.282	3.55	± 0.20	87.19	0.38	0.049	± 0.001
15D30149	19.7 %	0.004	155.636	0.104	11.596	7.096	3.29	± 0.24	85.16	0.35	0.032	± 0.001
15D30150	21.4 %	0.003	93.293	0.040	6.495	4.253	3.53	± 0.40	82.81	0.20	0.030	± 0.001
15D30151	23.7 %	0.004	110.868	0.031	7.708	4.650	3.25	± 0.35	77.80	0.23	0.030	± 0.001

T1 = Weighted plateau age; T2 = Total fusion age; T3 = Isochron age; T4 = Inverse Isochron age.