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Abstract: Mixed cyanobacteria-dominated biofilms, enriched from a tributary of the Mérantaise
(France) were used to conduct laboratory experiments in order to understand the relationship between
the morphology of carbonate precipitates and the biological activity (e.g., cyanobacterial exopolymeric
substances (EPS) production, photosynthetic pH increases). DNA sequencing data showed that
the enriched biofilm was composed predominantly of two types of filamentous cyanobacteria that
belonged to the Oscillatoriaceae and Phormidiaceae families, respectively. Microscopic analysis also
indicated the presence of some coccoid cyanobacteria resembling Gloeocapsa. Analysis of carbonate
precipitates in experimental biofilms showed three main morphologies: micro-peloids with different
shapes of mesocrystals associated with Oscillatoriaceae filaments and theirs EPS, lamellae of carbonate
formed directly on Phormidiaceae filaments, and rhombic sparite crystals wrapped in EPS. All crystals
were identified by FT-IR spectroscopy as calcite. Similar structures as those that formed in laboratory
conditions were observed in the microbial-tufa deposits collected in the stream. Microscopic
and spectroscopic analysis of laboratory and natural samples indicated a close proximity of the
cyanobacterial EPS and precipitated carbonates in both. Based on the laboratory experiments, we
conclude that the microbial tufa in the stream is in an early stage of formation.
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1. Introduction

Extant organosedimentary deposits, referred to as microbialites, have formed since the Archean [1].
These benthic phototrophic microbial communities trap and bind detrital sediments and/or provide an
appropriate locus for mineral precipitation [2]. Extant microbialites, resulting from the lithification of
microbial mats, are presently forming in many locations around the Earth [3–5]. Benthic microbial
mats [6] are characterized by a vast species diversity [7,8], yet their biogeochemical functioning
can be described by a limited number of guilds [9,10]. The combined community metabolism can
inhibit or promote carbonate precipitation [11]. In this process, the mineral alteration potential of
various microorganisms has been acknowledged [12–14]. Notably, photosynthesis and some types of
sulfate reduction were identified to promote carbonate precipitation [14–16]. In contrast, fermentation
and sulfide oxidation could potentially promote dissolution of carbonates [14]. Consequently, the
organomineralization of microbial mats (i.e., precipitation and preservation of carbonates) results from
the balance of metabolic activities including their spatial and temporal variations in the mat, especially
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as these occur during a diel cycle [13]. The combined microbial metabolisms may be key in promoting
conditions that precipitate carbonates, some external physicochemical factors can change the local
alkalinity as well (e.g., degassing of CO2, input of calcium or carbonate rich water [17,18]). In addition
to this so-called alkalinity engine with both biotic and abiotic contributions, the role of the organic
matrix was identified as the other main component of the organomineralization process [17,19]. This
organic matrix can be produced by various microbes and consists mainly of exopolymeric substances
(EPS) [20] that may act as a possible nucleation site for carbonate minerals [21]. The functional groups
of EPS (e.g., carboxyl, sulfate, phosphoryl, amide and hydroxyl; [16]) can reduce the availability of
cations, such as calcium, by binding these [19]. Consequently, this leads to a decrease in the {Ca2+} and
the degree of supersaturation with respect to calcium carbonate (see (Equation (1)) below).

There are two main approaches for investigating carbonate precipitation. The first one is through
studying naturally-occurring modern or ancient organomineral (e.g. [1,22–30]). The main difficulty of
this approach is the interpretation of multiple, steep chemical and physical gradients and complex,
interconnected microbial processes that vary over both space and time. The second approach,
“experimental modeling”, consists of laboratory studies with pure cultures or more complex mixed
microbial communities. Such studies can be conducted under controlled chemical, physical and
biological conditions (e.g., [31–36]). Although deviating from natural conditions, where multiple
microbial species and their metabolic products act in concert, experimental modeling can elucidate
the potential role of individual metabolic processes on mineral formation. Furthermore, controlled
experimental design permits for the screening of a wide range of environmental conditions, including
those now absent in natural ecosystems but that possibly existed in the geologic past.

Combining natural observations and experimental approaches is critical for a better understanding
of microbial carbonate precipitation. In the current laboratory investigation, we describe carbonate
precipitation in biofilms with cyanobacteria obtained from a freshwater stream and compare this with
microbial carbonates sampled from the same stream.

2. Material and Methods

2.1. Site Description and Field Sampling

The stream investigated here is a tributary of the Mérantaise river (Figure 1a,b) (2◦07’16.48”E,
48◦43’06.03”N), located 20 km to the Southwest of Paris (Figure 2).

This 1.1-km long stream runs from North to South, through the Oligocene Saclay Plateau and
supports development of modern microbial tufa deposits (Figure 1c,d). The microbial tufas in this
stream, first erroneously identified as algal concretions [37], are described in detail by [38].

Field campaigns were carried out in October, November, and December of 2016 and in March
of 2017. Physicochemical characteristics along the stream were monitored and physical substrates
characterized [38].
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Figure 1. Images of (a) the sampling location in the stream (2◦07’16.48”E and 48◦43’06.03”N), located
21 km to the Southwest of Paris and (b) a close-up view of the stream showing fine-grained sediments
and green biofilm to the right in the stream bed. Laminated microbial deposits encrusting (c) a pebble
and (d) a wooden stick; (e) the Winogradsky column filled with shredded paper (bottom left), microbial
mat and sediments; the column was deployed to enrich for a cyanobacterial biofilm used in the
laboratory experiment and (f) a cyanobacterial biofilm on a soft agar surface in a Petri dish (second
stage of enrichment (see Section 2.2).
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Figure 2. Location of the study site.

Mineralized structures in the streambed sampled included various microbial biofilms and microbial
mats. Biological samples were collected in December 2016 in order to perform microbial culture
experiments in the laboratory. The physicochemical characteristics during sampling (over the four
field excursions) are given in Table 1.

Table 1. Physicochemical characteristics at the biological sampling site during the four field excursions.
SI = saturation index.

Physicochemical
Attribute

2016 (Autumn/Winter) 2017 (Spring)

October November December March

Water temperature (◦C) 10.8 7.2 6.5 8.2
pH 8.31 8.24 8.60 8.03

Alkalinity (meq/L) 5.56 5.34 3.50 6.61
Conductivity (µS/cm) 712 704 704 667
Dissolved O2 (mg/L) 10.8 14.2 - 10.2

Ca2+ (mg/L) 142.2 149.7 104.9 88.1
K+ (mg/L) 3.5 3.6 2.8 2.8

Mg2+ (mg/L) 13.8 14.2 9.9 10.8
Na+ (mg/L) 19.3 19.7 13.5 13.8
Cl− (mg/L) 36.0 34.0 24.7 23.4

NO3
− (mg/L) 90.1 90.9 12.9 17.3

SO4
2− (mg/L) 22.8 18.3 68.5 61.4

SI calcite 1.30 ± 0.33 1.19 ± 0.25 1.23 ± 0.06 0.90 ± 0.30
SI aragonite 1.16 ± 0.30 1.04 ± 0.30 1.08 ± 0.05 0.75 ± 0.25

2.2. Enrichment using Cyanobacterial Biofilms

Sediment samples were collected from the end of the stream. This part (Zone 3 in [38]) has a
high mineralization potential and microbial tufa form when a suitably hard substrate is available.
The sediments were used as inoculum for Winogradsky-type ([39]) columns in order to enrich
for cyanobacterial biofilms. Winogradsky columns have been used for diversity and enrichment
studies, including that of cyanobacteria ([40]). The enrichments were used for carbonate precipitation
experiments in laboratory. Microbial mat samples (0.5 to 2.5 cm thick) and underlying sediments
(3 to 6 cm in thickness) were taken from the river bottom using a spatula and transferred into sterile
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glass jars containing cellulose (shredded paper) to provide an organic carbon source for heterotrophic
organisms (Figure 1e). Stream water (50 mL) was added to the mixture of the microbial mat sample
and paper and the contents were then homogenized. The columns were incubated for two months at
25 ◦C, in 12 h light at 2000 lux (or 12,680 W/m2)/12 h dark cycles and gas exchange with the atmosphere
was allowed. Blue-green biofilms mostly composed of filamentous cyanobacteria based on microscopic
observations that developed in the Winogradsky column were used for further enrichment. It should
be noted that these cyanobacterial biofilms were complex communities dominated by cyanobacteria,
but not axenic and also included some heterotrophs (See Results and Discussion below).

Subsequently, cyanobacterial biofilms for precipitation experiments were obtained in a
two-step procedure:

(1) Culturing in liquid medium: the thin blue-green biofilms (1–3 mm thick) from the superficial
green part of the Winogradsky column were transferred using sterile techniques into Petri
dishes containing 20 mL of liquid culture medium BG-11, commonly used for cyanobacterial
cultivation [41]. The pH was adjusted to 8 using sterile 0.1 N HCl to mimic the natural pH of
the stream. The closed Petri dishes were incubated at 25◦C for three weeks in 12 h light/12 h
dark cycles (under ~2000 lux). This step produced the necessary biomass for a second stage of
biofilm preparation;

(2) Culturing in semi-liquid (soft-agar) medium: small (1 cm2) fragments of the biofilm grown in
liquid (see 1) were transferred into a Petri dishes with sterile soft agar (0.75% w/v) containing
half-strength BG-11 medium (i.e., 1:1 BG-11 medium and water) with a pH of circa 8. The soft
agar was used to provide a substrate for biofilm growth [38]. In total, 18 Petri dishes were
prepared: 12 with biofilms for biotic experiments and 6 with soft-agar BG-11 medium only as
abiotic experimental controls. Petri dishes were kept for two weeks at 25 ◦C, in 2000 lux under
12 h light/12 h dark cycles (Figure 1f). The soft agar was used as a surrogate for gelatinous
bacterial biofilms found in situ in the order to mimic the mineral precipitation processes.

2.3. Characterization of Cyanobacterial Communities

2.3.1. Light Microscopy and Scanning Electron Microscopy (SEM)

Light and electron microscopy were used to establish the morphology and size of the cyanobacteria.
Light microscopy was performed with a Nikon® Eclipse E400 microscope (Microscopy, Melville,
NY, USA) equipped with transmitted light. For scanning electron microscopy (SEM), samples were
dehydrated through a series of ethanol–water solutions. The samples were then critical-point dried on
a Leica® EM CPD300 apparatus (Leica Microsystems, Wetzlar, Germany) before carbon sputtering.
The samples were examined with Hitachi® SU8230 (Hitachi, Tokyo, Japan) and JEOL® (JSM-IT100,
JEOL, Tokyo, Japan) scanning electron microscopes.

2.3.2. Isolation of Genomic DNA

A sample of the biofilm cultured in liquid medium was taken at the end of the first stage
using a sterile scalpel. Nucleic acids were then extracted using the RNA PowerSoil Total RNA Kit
and DNA PowerSoil DNA Elution Kit (Qiagen, Valencia, SC, USA). Amplification and sequencing
were realized by Fasteris DNA sequencing service (Fasteris, Geneva, Switzerland). The DNA
extracts were amplified using the universal primer 515F (5′-GTGYCAGCMGCCGCGGTA-3′) and 909R
(5′-CCCCGYCAATTCMTTTRAGT-3′) for the V4-V5 hypervariable region of the 16S rRNA gene [42]
using the following cycle: 1 min initial denaturation at 94 ◦C, 30 cycles of denaturation (1 min at 94 ◦C),
annealing (30 s at 52 ◦C) and extension (30 s at 72 ◦C), and final extension for 3 min at 72 ◦C.

Sequencing was carried out on an Illumina Miseq V3 over 2 × 300 cycles (Illumina, San Diego,
CA, USA). The analysis yielded 12.4 Gb of sequence fragments (415 bp) with error rate within quality
specifications. Adapters were removed using the trimmomatic protocol [43], assembly of contigs
was carried out using ea-utils [44] and demultiplexed using an in-house script by Fasteris (Geneva,
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Switzerland). The sequences that were obtained were aligned with Mothur v1.41.1 software [45].
Chimeras were checked with Uchime [46], and remaining sequences were classified against the SILVA
SSU database release 123 [47]. Cyanobacterial sequences are available in the National Center for
Biotechnology Information database under the accession numbers MK968453—MK968520.

2.4. Laboratory Experiments

At the end of the second enrichment stage (see Section 2.2), the soft-agar gels (both blanks and
with biofilms) were transferred to 250-mL sterile jars for the precipitation experiment. This experiment
was performed at 25 ± 1 ◦C under 2000 lux-12 h light/12 h dark cycles, without agitation and allowing
for gas exchange with the atmosphere. In total, six different conditions (treatments), differed by
initial calcium and bicarbonate concentrations were tested in this experiment. Initial concentrations of
calcium and alkalinity ranged from 0 to 150 mg/L and 0.93 to 4.62 meq/L, respectively (Table 2).

Table 2. Initial conditions for precipitation experiment, showing the different Treatments A–F.

Treatment * pH Ca2+, mg/L Alkalinity, meq/L SIcalcite

A 8.76 0 0.93 0
B 8.32 50 1.34 0.63
C 8.60 50 2.87 1.17
D 8.65 50 4.62 1.38
E 8.35 100 2.49 1.15
F 8.40 150 2.66 1.36

* Each treatment consisted of three incubations: two biological (duplicates) with a soft agar biofilm and one abiotic
blank with soft agar only as a control treatment.

The solutions of the treatments were composed of (i) 150 mL of five times diluted BG-11
(to approximate the nutrient conditions in the stream), and (ii) 50 mL of the various concentrations
of calcium (CaCl2) and bicarbonate (NaHCO3) as outlined in Table 2. Each of these six treatments
comprised two biological duplicate incubations with soft-agar biofilms and one incubation that was an
abiotic control consisting of a blank agar gel. The experiment was carried out for 40 days.

2.5. Sampling and Analysis

2.5.1. Microscopic Observations and Spectroscopic Analysis of Biofilm

A small part (≈25 mm2) of biofilm was removed from the experiments after 19 and 40 days (i.e.,
halfway and at the end of the experiment, respectively) to visually inspect for carbonate precipitation.
Following extraction, the biofilm aliquots were dehydrated successively in a water-ethanol series (30%,
50%, 70%, 90%, 99% of ethanol). The biofilm samples were immersed for three minutes in each solution
prior to critical point drying (Leica® EM CPD300) in order to preserve the microstructures, specifically
the spatial organization of bacteria and precipitated minerals in the biofilms. After critical point drying,
the samples were sputter-coated with carbon. Although samples were processed rapidly, we cannot
rule out that minor changes in mineral and EPS composition occurred during processing.

SEM was used to localize the carbonate precipitate and determine the crystal form and size. Fourier
Transform InfraRed spectroscopy (FT-IR) was carried out to characterize the chemical composition of
the minerals. SEM examination was performed in the ICB-DTAI Laboratory (UBFC, Dijon, France)
using a Hitachi® SU8230 microscope and in the Biogéosciences Laboratory (Dijon, France) using JEOL®

(JSM-IT100) microscope equipped with an Energy Dispersive X-ray Spectrometer (EDS) operating at
10 kV. FT-IR spectroscopy was performed at Pôle Chimie Moléculaire (UBFC, Dijon, France) using a
LUMOS Brucker spectroscope (Brucker, Billerica, MA, USA) with a spectrum range between 7000 and
650 cm−1.
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2.5.2. Geochemical Analysis

Ten-mL of experimental solutions were removed every seven days in order to monitor the changes
in physicochemical conditions. The pH in the aliquot was measured using a Fisher® pH combined
electrode (Hampton, NH, USA), with an accuracy of 0.01 units. Subsequently, the samples were
centrifuged for 10 min at 4500 rpm (3500× g) at 15 ◦C and filtered through a 0.22 µm acetate cellulose
membrane filter to remove bacterial cells. The filtrates were analyzed for alkalinity and calcium
ion concentrations.

The total alkalinity was determined following a standard HCl Gran titration procedure [48] using
an automatic titration cell (TitroLine alpha TA10 plus, Schott Instruments) with an accuracy of ±2% and
a detection limit of 5 × 10−5 M. Total alkalinity is defined as the sum of all of the bases that are titratable
with strong acid (HCO3

−; CO3
2−; B(OH)4

−; H3SiO4
−; HS−; organic anions, e.g., low molecular weight

organic acids; OH−) [49,50]. It should be noted that the individual components of the total alkalinity
were not measured in our experiment. Although we assume that HCO3

− was the main component of
the alkalinity, the contribution of other ions could change during the course of the experiment, and thus
affect the alkalinity as well, particularly products of cyanobacterial photorespiration, which include
organic acids [6,10,13]. The calcium concentration was determined by suppressed ion chromatography
(Dionex® DX100, Thermo Fisher Scientific, Waltham, MA, USA) with a detection limit of 3 × 10−5 M.

To minimize physicochemical precipitation that can occur in the filtered supernatant between
sampling and time of analysis: (i) samples were refrigerated at 4 ◦C, (ii) the alkalinity was measured
within 48 h of sampling and (iii) the sample for calcium analysis was diluted five times and measured
between one and three weeks after sampling. Only one alkalinity and one [Ca2+] measurement were
carried out because of the small sample volume and statistical analysis was therefore not possible.

The calcite saturation state is given by the saturation index [51]:

SIcalcite = log (IAP/Kcalcite) (1)

where IAP is ion activity product {Ca2+} × {CO3
2−} and Kcalcite is the solubility of calcite [49].

The saturation index (SI) was calculated with PHREEQC software [52]. The temperature, pH,
alkalinity and calcium concentrations were the variables used for this calculation.

3. Results and Discussions

3.1. The Composition Cyanobacterial Biofilm Community

Light and electron microscopic observations revealed that based on morphology [53] the biofilm
at the end of the liquid enrichment (see Section 2.2. Stage 1; i.e., used in precipitation experiment)
was predominantly composed of filamentous cyanobacteria of the Oscillatoriaceae family (filamentous
cyanobacteria with a diameter of 3 to 4 µm) (Figure 3A,B). Less abundant, larger filamentous
cyanobacteria with a diameter of around 10 µm were identified as members of the Phormidiaceae family
(Figure 3F). Coccoid cyanobacteria (3–5 µm in diameter, similar to Gloeocapsa sp.) were repeatedly
observed near the Oscillatoria-type filaments (Figure 3A,C). The fraction of the sequences in molecular
analyses that could be classified as Cyanobacteria confirmed that most of these phototrophs were
related to the Tychonema genus (resembling Kamptonema sp.), within the Phormidiaceae family of the
Oscillatoriales order, and to the Oscillatoriaceae family Microcoleaceae genus (closely related to the
Arthrospira sp.) according to the latest version of the SILVA SSU database r132. A few sequences were
classified within the Spirulina genus (Spirulina sp.).
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Figure 3. Images of (A) Filamentous (Oscillatoriaceae) (black arrows) and coccoid Gloeocapsa-like
cyanobacteria (white arrows) viewed under light microscopy; SEM observations of (B) filamentous
Oscillatoriaceae-type cyanobacteria, (C) coccoid Gloeocapsa-like cyanobacteria (white arrows) (D) pennate
diatoms near cyanobacterial filaments in an EPS matrix, (E) presumably heterotrophic bacteria
(white arrows) covered in EPS matrix and (F) a large cyanobacterial filament, likely a Phormidium sp.
(black arrows).

Some pennate diatoms were observed in close proximity to cyanobacterial filaments (Figure 3D).
Presumably heterotrophic bacteria (500 nm-long, elongated cells) were often “trapped” in the EPS
matrix (Figure 3E), but their abundance was low compared to natural Mérantaise biofilms.

3.2. Morphology and Mineralogy of the Carbonate Precipitates

Analyses of precipitates using SEM and FT-IR spectroscopy were carried out on Day 19 and
Day 40 of the experiment. Day 19 corresponded to period of extensive carbonate precipitation (see
Section 3.4.) During this stage, micro-peloid precipitates were observed in all biological incubations
except for Treatment A (Figure 4A, Day 19). The micro-peloids, up to 50 µm in diameter, were
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embedded in the bacterial biofilm or completely entrapped by filamentous cyanobacteria (Day 19,
Figure 4C,D). Well-formed micro-peloids conglomerated in multi-peloidal clusters measuring several
hundred micrometers. Similar mineral structures and arrangements of the biofilm and the precipitate
were observed by [54] in a freshwater cyanobacterial mesocosm experiment. The quantity of minerals
precipitated depended on the initial experimental conditions: highest number of micro-peloids was
observed in Treatments E and F, where initial concentrations of calcium were higher (100 mg/L and
150 mg/L, respectively). Diatoms were present in large quantities in all experimental biofilms and were
often observed in close proximity to the precipitate (Figure 4D, Day 40).

The SEM observation at the termination of the experiment (Figure 4, Day 40) showed a similar
precipitate morphology as observed in Day 19 samples: well-developed micro-peloids covered most of
the biofilm surface (Figure 4C, Day 40). Detailed analysis of micro-peloids (both after 19 and 40 days
of the experiment) showed four structures of micro-peloids, differing by their mesocrystals shape:
(1) rhombic/polygonal mesocrystals, with a size ranging from 3 to 5 µm, wrapped in EPS oriented in
different directions (Figure 5A). The majority of these crystals had polycrystalline structures and cracks;
(2) trigonal mesocrystals, 3–7 µm in size, had a common orientation and were linked by thin filaments
of EPS. These mesocrystals were porous and not yet completely shaped (Figure 5B); (3) compact
arrangements of needle mesocrystals radiating in the same direction, with a length of 10–15 µm and a
diameter of 100–300 nm (Figure 5C); and (4) spheric mesocrystals with a diameter of 3–7 µm, composed
of spherulites (size 0.5–1 µm), also often referred to in the literature as “nano-globules” (e.g., [31]). These
mesocrystals were completely wrapped in EPS (Figure 5D). There was no obvious relationship between
the shape of mesocrystals and the type of microorganisms these crystals precipitated in proximity
to. However, all of the mesocrystal shapes were covered by EPS (Figure 5), as was also reported in
natural mats [28]. Liang et al. [33] had two explanations for the coexistence of different mesocrystal
morphologies in their experiment: (i) one crystal shape could transform to another. For example,
needle-shaped mesocrystals could change into rhombs at a later stage of experiment; (ii) the chemical
properties of EPS, critical for morphology of crystals, changed: e.g., a decrease in acidity of amino
acids within the EPS modified the shape of carbonate minerals from spherical to rhombohedral [55].
Furthermore, Jones [56] indicated that morphology of carbonate (meso)crystals may depend on the
degree of supersaturation of carbonates. An increase in supersaturation with respect to carbonates
changed the mesocrystal morphology from polygonal to dendritic to spherulitic. Our results are similar
to those found in intertidal mats, where similar micropeloids and mesocrystals were observed [28].

The composition and structure of EPS is complex and subject to continuous partial production and
consumption, especially in biofilms of mixed microbial composition [20,22,57,58]. The micro-peloid
distribution within the biofilm studied here was heterogeneous, displaying areas of high and low
density of micro-peloid in close proximity (example: Figure 4C, day 40). Microscopic observations
did not show apparent differences in cyanobacterial biofilm structure in these zones. The different
mesocrystal fabrics and the irregular micro-peloid distribution can be explained by: (1) local differences
in structure, composition and density of EPS, and, potentially coupled to this (2) local variations in
physicochemical conditions (e.g., pH, SI, negatively charged functional group availability).

In addition to meso-peloids, two other carbonate morphologies precipitated in biological
treatments were detected: (1) rhombic sparite crystals (10–20 µm) wrapped in biofilm (Figure 6A).
Similar rhombic crystals precipitating in cyanobacterial biofilms were reported by [54]; and (2) a very
thin sheet of carbonate (lamellae) formed directly on the surface of Phormidiaceae filaments (Figure 6B).
Identical sheet-like carbonate precipitates were deposited on Phormidium incrustatum filaments in
the Sarine River, Switzerland [17,59] and in Nivå Bay, Denmark, after a two-year growth period of
experimental mats [30].
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Figure 4. SEM images of carbonate precipitates in the experimental biofilm of Treatments (A–F) at
Day 19 and Day 40. SI indicates the saturation index of calcite for each sample.
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Figure 5. SEM images of the four mesocrystal shapes that form the micro-peloids: (A) rhombic/

polygonal, (B) trigonal, (C) needle and (D) spherical carbonate crystals (white circles) composed of
nano-globules. All mesocrystals were covered by EPS (white arrows).

Figure 6. SEM images of (A) rhombic sparite crystals wrapped in EPS and (B) a thin sheet (white arrow)
of carbonate precipitated directly on the surface of a Phormidium-like filament.

The chemical composition of the micro-peloid and rhombic sparite crystals was analyzed by
EDS. The spectrum revealed that the crystals were composed of Ca, C and O (Figure 7a). The same
crystals when examined by FT-IR spectroscopy, showed absorption peaks at 1408, 872 and 711 cm−1,
which corresponded to calcite (Figure 7b). The FT-IR spectrum revealed additional peaks at 3284, 2934,
1645 and 1032 cm−1, which were interpreted as (oligo)sugars (Welience software platform; Figure 7c),
specifically D-Raffinose pentahydrate (an oligosugar composed of galactose, glucose and fructose
monomers). D-Raffinose pentahydrate most likely originated from the EPS matrix, which typically
consists mostly of polysaccharides [60]. This co-occurrence of organic and inorganic carbon in the
mineral sample confirmed that carbonate precipitated within the cyanobacterial EPS matrix.



Minerals 2019, 9, 409 12 of 22

Figure 7. Spectra showing the chemical composition of the crystals, as analyzed by (a) EDS, (1 and 3)
of micro-peloids and (2) of a rhombic crystal, (b) FT-IR, showing calcite peaks in a micro-peloid at 1408,
872, 711 cm−1 and (c) a mixed signal of calcite and D-Raffinose pentahydrate.

3.3. Comparison Carbonate Minerals Observed in the Natural Environment and in the Laboratory Experiment

Well-mineralized field samples were collected at the same time and location as the inoculum for
laboratory experiment. The field samples comprised microbial tufa consisting of a sequence of flat
or slightly wavy laterally persistent laminae, 100 to 1000 µm-thick, with alternating dense and loose
filament molds. Thin sections and SEM were viewed in order to compare the micro-morphology of
field samples with that obtained in the laboratory experiment. Carbonate precipitates were often found
in close proximity of diatoms, which were abundant in both field and laboratory biofilm samples (e.g.,
Figure 5C, Figure 6B, Figure 10A,B and Figure 11A,B). The role of diatoms in carbonate precipitation is
not the topic of this work, but based on their vast EPS production potential [57], these organisms could
be important contributors to the mineralization process.

Microscopic observations of natural samples showed an abundance of filaments with an
approximate diameter of 10 µm, completely encrusted in carbonate (Figure 8A,B). According to
DNA sequencing and to the morphology, we assumed that these cyanobacterial belong to the
Phormidiaceae family.

Vertically-oriented, non-branching filaments were organized in fan-shaped structures near the
surface of the biofilm (Figure 8A). SEM analysis of a fresh cut sample showed that the filaments
were covered with calcite laminae (Figure 8C), resembling our laboratory observations (Figure 6B).
Based on these observations, we suggest that this represented the initial step of carbonate precipitation.
It should be noted that only a few Phormidium-like filaments were present in the laboratory experiments,
in contrast to the field samples in which this cyanobacterium was abundant. This difference may be
due to: (1) the laboratory incubations were too short to allow for some organisms to fully develop;
(2) experimental conditions (nutriments, light, and temperature) deviated from the field conditions.
Laboratory conditions could have favored or prevented the growth of specific microorganisms; (3) the
Winogradsky columns were inoculated with samples taken in December. During the winter period
some organisms could be less active or were absent from the biofilm; (4) laboratory samples were not
subjected to seasonal variations, in contrast to microbial tufas, mats and biofilms in the field.
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Additional SEM analyses of carbonate precipitates in field samples showed long-crystallite
(acicular) dendrites forming around Phormidiaceae filaments (Figure 9A,B).

Figure 8. Natural samples observed (A) in thin section, showing micro-peloids and 10-µm large,
Phormidium-like filament encrusted in carbonate and (B,C) under SEM; (B) shows imprints of
Phormidium-like filaments and (C) depicts the encrusting carbonate on the surface of the same filaments.
Note the differences in scale.

Figure 9. SEM images of elongated crystallite dendrites (white arrows) forming around
(A) a longitudinal and (B) a transversal cut of Phormidiaceae filament voids.

This dendritic carbonate morphology was not detected in laboratory incubations. [61] concluded
that the formation of dendritic crystals was governed by cyanobacterial EPS. Long-crystallite dendrites
were also observed around a high number of voids in SEM observations of field samples (Figure 10B).
These voids (diameter 2–3 µm) (Figure 10A) could be remnants of Oscillatoriaceae filaments that were
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also abundant in the biofilms in laboratory experiments, which would argue for an influence of
cyanobacterial bacterial EPS in the (dendritic) carbonate precipitation. Remnants of Oscillatoriaceae (i.e.,
circular voids) were absent in more mature natural samples, and thus long-term preservation of these
traces of cyanobacterial carbonate precipitation seems unlikely.

Figure 10. SEM images of (A) voids left by Oscillatoriaceae-like filaments and (B) elongated crystallite
dendrites (white arrows) associated with the Oscillatoria casts.

Micro-peloids were observed in thin sections of the field (Figure 8A) and laboratory samples, with
a similar amount of these crystals per surface area of biofilm in both. However, the micro-peloids in
natural samples were 2–10 times smaller than those formed in the laboratory incubations (10–30 µm
and 50–100 µm in diameter, respectively). According to [62], this difference in size can be related to
the saturation index: in the stream SIcalcite ranged from 0.9–1.3 and in the laboratory experiment this
increased from an initial SIcalcite = 0.6–1.4 to SIcalcite = 1.8–2.5 during the stage of extensive precipitation.
Similar to the laboratory experiments, micro-peloids precipitated in close proximity of filamentous
Oscillatoriaceae and EPS in the natural sample. Thus, the presence of micro-peloids in natural samples
could be interpreted as well-preserved ‘indirect’ traces of Oscillatoriaceae community activity.

Rhombic sparite crystals with a uniform size distribution (20–30 um) were occasionally found in
field and experimental samples (Figure 6A). Some polycrystalline rhombic sparite was also present
in the natural sample (Figure 11A). A similar rhombic sparite shape of calcite crystals was obtained
in experiments with EPS of Bacillus licheniformis S-86 by [63]. Thus, it appears that bacterial EPS can
modify the crystal shape of calcite from rhombic, which is often incorrectly considered as a solely
abiotic carbonate product, to polycrystalline rhombic.

Figure 11. SEM images of (A) a rhombic polycrystalline sparite crystal from a natural sample and
(B) diverse diatom species observed in a natural sample.
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3.4. The Carbonate Precipitation Process in the Cyanobacterial Biofilms

In the biological incubations, a sequence of biofilm development and mineral precipitation was
observed in all treatments. The cyanobacteria showed a growth pattern presumably coinciding with
EPS production and excretion of photorespiration products, similar to reports for biofilms (during a
similar time frame as in our experiment; [64]) and microbial mats [6,10,29,30]. The different types of
cyanobacterial metabolisms and their specific effect on the physicochemical conditions are summarized
in Table 3. The key physicochemical measurements (pH, [Ca2+], alkalinity, temperature) from which
the SIcalcite can be calculated and qualitative observations of O2 production and mineral precipitation
support the sequence of precipitation events [65].

Initially, the cyanobacterial enrichments grew rapidly in the fresh medium, which was supported
by evolution of O2 bubbles during the light period. The agar provided a (semi)solid surface critical
for mat development and lithification [38,59]. During this initial phase, the high rates of CO2

fixation could increase the pH and alkalinity through the production of hydroxyl ions resulting from
bicarbonate dissociation into CO2 [66] (Table 3, Figure 12a,b). The production of fresh EPS facilitates
Ca binding [17,32] possibly accounting for the observed decrease (Figure 4C). The SIcalcite increased
slightly (Figure 4D), suggesting a greater impact of the changes in pH and/or alkalinity than that of
[Ca2+]. No precipitation was seen during this period, but the biomass increased visibly.
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Table 3. Key cyanobacterial metabolisms and their potential effect on the physicochemical characteristics and carbonate precipitation.

Cyanobacterial Metabolism Example Reaction Equation(s) Light pH Alkalinity [Ca2+] Precipitation Potential

1. Carbon dioxide fixation CO2 + RuBP→ 2PGA (→→ glycogen)
HCO3

−
→ CO2 + OH−
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Figure 12. Time series of key physicochemical properties during the precipitation experiment (the data
shown for Treatment E as a typical example); temporal evolution of (a) the pH, (b) the alkalinity, (c)
the Ca2+ concentration and (d) the calcite saturation index (SI). Closed symbols (black and grey) are
replicate biological incubations, open symbols indicate the abiotic controls. The observed alkalinity
increase in the abiotic control after three days is surprising and cannot be accounted for. When viewing
the trend of the alkalinity in all treatments (Figure S1b), a constant value or very small increase with
time can be seen. Consequently, we can assume an analytical error resulted in this outlying value.
Since no precipitation was observed in any of the controls, this does not impact any of our observations
nor our conceptual model.

Following this initial rapid biofilm development, photosynthetic rates typically reach a maximum
value [10]. Consequently, cyanobacteria switch from O2 production to O2 consumption later during in
the light period in alkaline conditions [69]. During photorespiration, glycolate is excreted, potentially
reaching millimolar concentrations [17,69]. This would decrease the pH (Figure 12a). As noted,
organic acids contribute to the alkalinity, and account for a small increase in SIcalcite as was observed
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(Figure 12d). The [Ca2+] decrease (Figure 12c), possibly due to binding to low-molecular weight acids
(e.g., extracellular organic matter (EOM); [17]). The combining of Ca and glycolate would ultimately
lead to an increase in pH, as was observed in the following and last phase of mineralization (Figure 12a).
No visible CaCO3 precipitation was noticed in this period.

The next step of biofilm development was characterized by carbonate precipitation, which was
more pronounced in treatments with higher initial [Ca2+]. This observation coincided with decreases
in the [Ca2+] and the alkalinity, with the SIcalcite remaining more or less constant. Following this
phase, no changes in pH, [Ca2+], alkalinity were seen. The results for the all incubations are available
in Supplementary Materials (Figure S1a,b,c,d).

Similar changes in physicochemical measurements (e.g., increases in pH, SIcalcite) were reported
in laboratory experiments [32–36,54] and during manipulations in the field [29,30]. It should be noted
that the physicochemical conditions in the biofilm, which is composed predominantly of cyanobacteria
and EPS, could have been different than those of the overlying water. This was also observed by [29,30]
who reported SIcalcite value approximately 50% lower in the overlying water than in the cyanobacterial
layer of their experimental mats. Such differences between the overlying bulk liquid and the biofilm
may explain some discrepancies in our observations. Yet, the general trend of pH, alkalinity, [Ca2+]
changes in the overlying water and the corresponding degree of CaCO3 precipitation within the biofilm
in our study was clear.

4. Conclusions

The observations of crystals precipitated in a biofilm of a cyanobacterial enrichment revealed three
different carbonate morphologies: (i) micro-peloids, with four mesocrystal shapes: rhombic/polygonal;
trigonal; needle and spheric, (ii) rhombic sparite crystals and (iii) crystals (lamellae) formed directly
on the surface of the large filamentous cyanobacteria (Phormidiaceae). The microscopic observations
combined with the FT-IR spectroscopy demonstrate that cyanobacterial EPS control crystal morphology
of carbonates and spatial distribution of the precipitates. A similar arrangement of carbonate
precipitates (i.e., on cyanobacterial sheets and/or within the EPS matrix of the biofilm, in close proximity
of cyanobacteria) has been reported in hypersaline [24,26], marine [28–30] and freshwater [17,54]
biofilms or microbial mats containing cyanobacteria. A comparison of experimental and natural
samples suggested that the lamellae precipitating on the surface of Phormidiaceae filaments and the
micro-peloids associated with Oscillatoriaceae were the main carbonate crystal morphologies. Elongated
crystallite dendrites that formed around both Phormidiaceae and Oscillatoriaceae filaments were only
observed in natural samples, supposedly requiring more time to form than the experimental conditions
allowed. In sum, the precipitation observed in the laboratory experiment represented an early stage of
microbial tufa formation.

The carbonate mineralization laboratory study in a cyanobacterial biofilm obtained from
mineralizing freshwater sediments, revealed a trend in precipitation based on the change in pH,
[Ca2+], Alkalinity, and SIcalcite that could be coupled to biofilm development and cyanobacterial growth
and EPS production. The changes in pH, alkalinity and [Ca2+] in the overlying water and the degree of
CaCO3 precipitation within the biofilm in our treatments showed a clear cyanobacterial metabolic role.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/7/409/s1,
Figure S1: Time-serial development in all six experimental treatments: 1 (S1.a) the pH, (S1.b) the Ca2+ concentration,
(S1.c) the HCO3

- concentration and (S1.d) the saturation index (SI) of calcite.
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