
minerals

Article

Silicate Melt Inclusions in Diamonds of Eclogite
Paragenesis from Placers on the Northeastern
Siberian Craton

Vladislav Shatsky 1,2,*, Dmitry Zedgenizov 1,2, Alexey Ragozin 1,2 and Viktoriya Kalinina 1

1 V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Science,
630090 Novosibirsk, Russia

2 Geology and Geophysics Department, Novosibirsk State University, 630090 Novosibirsk, Russia
* Correspondence: shatsky@igm.nsc.ru

Received: 8 May 2019; Accepted: 3 July 2019; Published: 5 July 2019
����������
�������

Abstract: New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh
placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N
aggregation state (60–70% B) suggesting their long residence in the mantle. Raman spectral analysis
revealed that the composite inclusions consist of clinopyroxene and silicate glass. Hopper crystals of
clinopyroxene were observed using scanning electron microscopy and energy-dispersive spectroscopic
analyses; these are different in composition from the omphacite inclusions that co-exist in the same
diamonds. The glasses in these inclusions contain relatively high SiO2, Al2O3, Na2O and, K2O.
These composite inclusions are primary melt that partially crystallised at the cooling stage. Hopper
crystals of clinopyroxene imply rapid cooling rates, likely related to the uplift of crystals in the
kimberlite melt. The reconstructed composition of such primary melts suggests that they were formed
as the product of metasomatised mantle. One of the most likely source of melts/fluids metasomatising
the mantle could be a subducted slab.
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1. Introduction

Natural diamonds often contain mineral inclusions, and these inclusions can indicate the type of
rock the host diamonds formed in [1–10]. At the same time, recent data from eclogite xenoliths have
indicated the superimposed character of diamonds, suggesting that diamond crystallisation can result
from metasomatism [11–21]. There have also been reports that single diamondiferous xenoliths can
contain diamonds of several generations, suggesting multiple stages of diamond growth.

It has been found that microinclusions in fibrous and coated diamonds primarily represent
diamond-generating high-density fluids (HDFs) [22–32]. Studies of these HDFs have revealed four
compositional end members: (1) Saline HDFs that mostly contain K, Na, Cl and water, with some
carbonates and silicates; (2) high-Mg HDFs, characterised by high MgO and carbonates, and low SiO2,
Al2O3 and water; and a continuous array between (3) silicic and (4) low-Mg HDFs, with varying
abundances of silicates, low-Mg carbonates and water [23,26,33–36].

Weiss et al. [37] determined that fluid-rock interactions, combined with in-situ melting, could
lead to compositional transitions in HDFs as saline fluids passed through the mixed peridotite-eclogite
lithosphere. However, there have only been a few findings of HDF microinclusions in monocrystalline
diamonds. Weiss et al. [38] reported on HDFs in monocrystalline diamonds from Finsch, South Africa
and in the monocrystalline core of a coated diamond from Kankan, Guinea. Fluids compositionally
similar to those occurring in fibrous diamonds have been found in twinned diamonds [39]. These suggest
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that the majority of lithospheric diamonds were created from migrating carbonate-bearing HDFs that
reacted with the host rocks at the base of the subcontinental lithosphere.

In addition to HDFs, there are several other indications that monocrystalline diamonds contain
melt-derived inclusions. A polymineral aggregate was identified as an inclusion in a diamond from the
Mir kimberlite pipe, Yakutia [40]. The melt inclusion was found to contain four phases—clinopyroxene,
rutile, K-Al-Si and Fe-Ti-Si. The bulk composition of the inclusion was similar to that of hypersthene
andesite [40]. Inclusions of highly-potassic phases, similar in composition to K-feldspar, were found in
a coated diamond crystal from the Mir pipe, and were interpreted as melt inclusions [41]. In addition
to these potassic phases, the host diamond also contained coesite and omphacite inclusions. It has
been suggested that the transparent diamond core crystallised from the melt, while the oversaturated
HDF phase represented the medium in which the diamond coating grew [41].

The amount of data available concerning the composition of diamond-forming environments
does cover every possibility. Here, we report new findings of composite inclusions that contain
silicate glass and hopper pyroxene crystals from within two alluvial diamonds (from the Kholomolokh
placer, northeastern Siberian Platform; Figure 1). The diamond placer deposits of the northeastern
region of the Siberian Platform are located in the Palaeoproterozoic Khapchan fold-belt of the Olenek
tectonic province. The known kimberlites from this region are low-grade or non-diamondiferous.
Diamonds from these placers have been classified into three groups: (1) typical octahedral to rounded
crystals; (2) yellow-orange or dark grey cuboids; and (3) rounded, dark crystals, with radial-mosaic
structure [42]. Diamonds of eclogitic paragenesis in these deposits are dominant, with abundances
reaching 85% [43].
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kimberlite fields are shown as green.
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2. Samples and Methods

The two diamonds are elongated, rounded crystals with visible inclusions (Figure 2). The surfaces
of both crystals indicate intensive resorption. The diamonds were polished on two sides, along two
parallel dodecahedral planes, to expose their inclusions.

The samples were investigated at the Analytical Center for Multi-element and Isotope Research SB
RAS (Novosibirsk, Russia). The infrared spectra of the diamonds were recorded using a Bruker VERTEX
70 Fourier-transform infrared (FTIR) spectroscope, equipped with a HYPERION 2000. Local spectra
were measured over a range of 370–5000 cm−1, with 30 scans at a resolution of 4 cm−1. The spectra
were recorded at an aperture of 60 × 60 µm. The contents of the N-centres were calculated following
standard procedures. The intrinsic absorption of diamond (12.8 cm−1 at 2030 cm−1) was taken to be
the internal standard [44]. The decomposition of the experimental lines between 1100 and 1350 cm−1

made it possible to determine the contribution of different N-defects, using the characteristic lines of
specified shapes. The contents of the N-defects were determined on the basis of proposed ratios [45,46].
The total uncertainty was better than 10% for N content, and the precision was approximately 5% (2σ)
for the aggregation state. The results are summarised in Supplementary Table S1.

The major elements in the diamond inclusions were determined using a Camebax MICRO electron
microprobe (EMP). The quantitative EMP analyses were performed at a 15 kV accelerating voltage,
20 nA sample current, and 2 µm beam diameter. The chemical compositions of the melt inclusions
were examined by energy-dispersive spectroscopy (EDS), using a Tescan MIRA3 LMU scanning
electron microscope (SEM) and AztecEnergy/X-max 50 EDS microanalysis software. A single set of
reference samples was used, which included the simplest compounds and pure metals, including
quartz/SiO2 (for Si and O), corundum/Al2O3 (Al), Cr2O3 (Cr), blue diopside/MgCaSi2O6 (Mg and Ca),
albite/NaAlSi3O8 (Na), orthoclase/KAlSi3O8 (K), and the metals Ti, Mn, Fe and Ni. The full protocol
for the EDS measurements is provided in [47].
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Figure 2. Microphotographs and cathodoluminescence images of polished plates from diamonds:
(a,c)—Hi-39, (b,d)—Hi-51. Omp—omphacite inclusions, Cpx + Glass—combined clinopyroxene and
glass inclusions.
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Cathodoluminescence (CL) patterns from diamonds plates were studied using an Oxford
Centaurus detector on a Leo-1430VP SEM (at accelerating voltages of 12–15 kV and with an electron
beam current of ~0.5 mA).

The Raman spectral measurements were performed using a Horiba Jobin Yvon LabRAM HR800
spectrometer, equipped with an Olympus BX41 microscope. A 514 nm Ar-ion laser was used as
an excitation source. The spectra were recorded at room temperature, in a backscattering geometry,
with a laser power of about 1 mW and a spectral resolution of approximately 2 cm−1.

3. Results

According to the FTIR spectroscopy, both diamonds exhibited a high degree of N aggregation
(Supplementary Table S1). The content of the B1 centres varied between 61% and 69% in Sample Hi-51,
while in Sample Hi-39, the %B was between 63% and 69%. The total N content was in the range of
324 to 596 ppm in Hi-51. There was no evidence for any regularity in the spatial N variability in
this diamond. The highest N content in Hi-39 (541 ppm) was observed in the core and intermediate
region of the crystal, while the N content was significantly lower (249 ppm) in the peripheral parts
(Supplementary Table S1). However, the CL imaging of both crystals revealed a complicated history of
growth and dissolution (Figure 1).

The Hi-51 diamond contained two adjacent inclusions (65 µm from each other)—omphacite
and a composite inclusion. The latter consisted of two phases—melt glass (interpreted as quenched,
non-recrystallised melt) and clinopyroxene. The clinopyroxene had a form that we interpreted as
a hopper crystal (Figure 3a). The size of the inclusion was 50 µm. The Hi-39 diamond contained two
omphacite inclusions and a composite, two-phase (glass and clinopyroxene) melt inclusion (Figure 3b).
The diameter of the two-phase inclusion was 40 µm. The omphacite and two-phase inclusions in
both diamonds were found at the centre. The omphacite inclusions had the same jadeite component
(45%) and similar Mg# (74.5 in Hi-39 and 73.3 Hi-51; Table 1). The eskolaite content of the omphacites
amounted to 13.4% in Hi 39, and 8% in Hi-51.
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Figure 3. Back scattered electrons images of two-phase composite (melt) inclusion containing
clinopyroxene (Cpx) and silicate glass in diamonds Hi-51 (a) and Hi-39 (b).

The Raman spectral analysis revealed that the composite two-phase inclusions included
clinopyroxene (characteristic Raman shift at around 680 cm−1 and 1015 cm−1). The second phase most
likely represents silicate glass, as the Raman spectra exhibited a strong, wide band at around ~890
cm−1 and, in some cases, a weak, wide band at around ~380 cm−1 (Figure 4).

The SEM and EDS observations showed that the hopper crystals in the composite two-phase
inclusions were clinopyroxene, with compositions different from those of the omphacite inclusions
(Table 1). The approximate compositions of the clinopyroxenes in these two-phase inclusions were
quite similar (Table 1). The other phase, representing quenched, non-recrystallised melts, had low oxide
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totals (Table 1). The composition of the glass resembles the composition of trachyte. The Na2O + K2O
content of this SiO2-rich glass exceeded 12 wt %. Hi-39 contained no FeO, MgO or TiO2, while the SiO2

glass from the inclusions in Hi-51 was characterised by relatively high FeO, MgO, and TiO2 contents
(Table 1). Assuming that pyroxene occupies 50% of the mass of the inclusions in both diamonds, the
reconstructed parental melt would be similar to basaltic trachyandesite, compositionally similar to
those documented from eclogite partial-melting experiments [48,49].
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Table 1. Chemical compositions of inclusions in studied diamonds.

Sample Hi-39 Hi-51

Phase Glass Cpx Rec. Omp Cpx Glass Rec. Omp

SiO2 59.6 49.2 54.5 55.4 51.1 61.2 55.8 54.9
TiO2 2.78 1.39 0.880 1.08 0.80 1.01 0.82

Al2O3 19.6 10.4 15 15.0 10.3 19.6 14.6 15.2
Cr2O3 0.04
FeO 5.27 2.63 6.34 5.38 2.07 3.69 4.10
MnO 0.06
MgO 9.59 4.8 3.87 10.3 0.56 5.40 6.32
CaO 1.39 15.9 8.61 10.8 16.8 1.47 9.11 11.1

Na2O 7.40 3.99 5.7 6.59 3.72 5.67 5.46 6.51
K2O 4.65 2.32 0.31 5.57 2.67 0.48
Total 92.7 97.13 94.95 99.3 98.6 96.9 97.7 99.5
Mg# 0.77 0.77 0.52 0.78 0.33 0.72 0.74
Di 0.466 0.206 0.503 0.283
Hd 0.143 0.187 0.147 0.107
Jd 0.252 0.454 0.202 0.447

CaTs 0.137 0.021 0.111 0.054
Es 0.134 0.080

Glass—silicate glass, Cpx—clinopyroxene, Rec—reconstructed composition of melt inclusion (50% Cpx + 50%
Glass), Omp—omphacite.

4. Discussion

We have interpreted the two-phase inclusions—consisting of glass and hopper crystals—in our
diamond samples as melt inclusions. Hopper crystals imply rapid cooling rates, likely related to the
uplift of crystals in a kimberlite melt. The glasses in the inclusions have high SiO2, Al2O3, Na2O and
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K2O contents. They are compositionally similar to the inclusions described by Novgorodov et al. [41]
in diamonds from the Mir kimberlite pipe. At the same time, K strongly prevails over Na in all
of the inclusions in the Mir diamonds, while the analysis of the inclusions in our study revealed
higher Na contents (Table 1). The melt inclusions from the Mir diamonds and from our placer deposit
diamonds are associated with inclusions from eclogite paragenesis (omphacite and coesite). The melt
inclusions occur close to the cores of the crystals. The central inclusion in the diamond from the Mir
pipe, described in [40], coexists with inclusions of eclogite paragenesis, represented by omphacite
and garnet. A combined inclusion of an omphacite and K-rich silicate melt was previously found in
a microdiamond from the Sytykanskaya pipe [50]. Thus, all previously known silicate-melt inclusions,
as well as those described herein, coexist with the minerals of eclogite paragenesis. Melt inclusions
with bulk compositions close to that of olivine have also been identified in at least one diamond [51].

The newly-formed clinopyroxenes in the studied inclusions differ from the diamond-hosted
omphacites, the former having lower jadeite and higher chermakite components (Table 1). These features
suggest a decrease in pressure during the formation of the clinopyroxenes [49]. This might have occurred
when the diamonds were being transported by the kimberlite. The reconstructed parental melts appear
to be trachyandesite-basalt. Despite the varying Mg# in omphacite inclusions co-existing in the same
diamond, the melts reconstructed from the inclusions are almost identical. The clinopyroxene from
Hi-51 has a Mg# similar to that of the reconstructed melt (73%), while the Mg# of the clinopyroxene
from Hi-39 diamond is markedly lower than that of the reconstructed melt (Table 1). Eclogite and
metabasalt melting experiments have demonstrated that the Mg# in the melt can be significantly lower
than that in a co-existing clinopyroxene [49]. As these experiments have also shown, the Mg# of melts
generated by the partial melting of basalts never exceeds 0.45 [48,49]. Therefore, we can assume that the
inclusion-melt, formed during the melting of eclogite, changed in composition through its interaction
with ultrabasic mantle lithologies. The reconstructed melts of the studied composite inclusions yielded
compositions similar to those of low-SiO2 adakites (Figure 5), which are also characterised by high Mg#
(73–76%). According to Martin et al. [52], the primary source of high-SiO2 adakites is subducted oceanic
crust. The low-SiO2 adakites in our samples were likely produced by the melting of a metasomatised
mantle. The source of melt/fluid metasomatising the mantle can be felsic melts from subducted
slab [53].

The different compositions of the omphacite and clinopyroxene in the two-phase inclusions in
our diamonds suggest that the omphacite was protogenetic. This observation might also imply that
the interaction between a modified mantle-wedge melt and an eclogite substrate resulted in diamond
formation. Previous studies of diamondiferous eclogites have testified to the metasomatic origin of
most diamonds, and have suggested their multi-stage formation [11,17,54–58]. Chloride-carbonate
microinclusions have been found in fibrous diamonds in an eclogite xenolith from the Udachnaya
kimberlite pipe [21]. However, studies have revealed that fibrous diamonds from kimberlite
pipes of the Yakutian diamondiferous province contain HDFs with higher carbonate and silicate
contents [26,29,30,59].

Sokol and Pal’yanov [60] studied the crystallisation of diamonds in the SiO2–H2O–C,
Mg2SiO4–H2O–C and H2O–C systems. They showed that the most favourable conditions for diamond
crystallisation occur in a water-rich fluid phase containing small amounts of a silicate solute. The degree
of graphite to diamond transformation was found to decrease with a decrease in water content in the
studied systems. Recent experimental works on diamond growth in hydrous SiO2–carbonate-rich
fluids [61,62] have confirmed the hypothesis that fibrous polycrystalline and monocrystalline diamonds
grow in multi-component water-silicate melts that are rich in carbonate, and in supercritical fluids rich in
carbon and water. Hydrous silicate melts and aqueous fluids can be trapped as inclusions during crystal
growth, as experiments have demonstrated. Depending on the experimental conditions, diamonds
can contain inclusions consisting of aqueous fluids, silicate glass or mineral grains. In the upper
mantle, diamonds can grow from either supercritical fluids/melts, or from aqueous fluids equilibrated
with silicate melts [61,62]. Experiments have shown that diamonds can grow in the presence of two
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fluids—an aqueous fluid and a hydrous silicate melt. The source of the C for diamond growth could
be carbonate (CO3

2−) dissolved in a melt or CO2 in an aqueous fluid. Therefore, the experimental data
imply that water is a key component in diamond growth. Until recently, fluid inclusions were found
mainly in fibrous and coated diamonds [23]. Inclusions of carbonate-bearing HDFs have been found
in the twin of monocrystallime diamonds [39]. Our diamonds possibly grew from two fluids—an
aqueous fluid and a silicate melt. The absence of an aqueous fluid phase in the inclusions could be
explained by their depressurisation after exposure of the inclusions during polishing.
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Figure 5. The compositional features of combined Glass + Cpx inclusions and reconstructed
melts in diamonds Hi-51 (1—glass; 2—Cpx; 3—reconstructed melt) and Hi-39 (4—glass; 5—Cpx;
6—reconstructed melt). Melt inclusions in diamonds from Yakutian kimberlites (7—data from [41,42],
8—data from [51]) and 9—composition of low-Si adakites [53] are shown for comparison.

Estimates [63] have indicated that, in hot subduction zones, the subducting plate dehydrates at
a depth of about 100 km. At a depth of <80 km, phengite decomposes. At depths of greater than
200 km in cold subduction zones, metagabbro may still contain water. Taking into account the Archean
age of the eclogites associated with the Udachnaya kimberlite pipe [64], and the markedly higher
temperatures of the upper mantle during that period [65,66], a complete dehydration of subducted
eclogites at depths corresponding to the diamond stability field might be expected. However, the
diamonds in many of the eclogites associated with the Udachnaya kimberlite pipe have a metasomatic
nature [21,58]. Therefore, we propose that an external source of fluids caused melting of the host
eclogite and subsequent diamond crystallisation. Oceanic lithosphere subducted in the Proterozoic
(~2 Ga), during the amalgamation of the Siberian Craton [67], could have been the main source of such
fluids. Diamonds from eclogite paragenesis strongly prevail (>85%) in the placers of the northeastern
Siberian Craton [43]. The carbon isotope compositions of these diamonds, combined with the rare
element compositions of their mineral inclusions, testify to diamond formation in the compositionally
varying substrates of deeply subducted oceanic crust [17,21,42,43,68]. The data from this study provides
additional evidence for the melting of subducted oceanic crust causing the generation of the diamonds
found in the placers of the northeastern Siberian Craton.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/7/412/s1,
Table S1. FTIR data of studied diamonds.
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